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Abstract

Recently, computational drug repurposing has emerged as a promising method for
identifying new pharmaceutical interventions (PI) for Alzheimer's Disease (AD).
Non-pharmaceutical interventions (NPI), such as Vitamin E and Music therapy, have great
potential to improve cognitive function and slow the progression of AD, but have largely been
unexplored. This study predicts novel NPIs for AD through link prediction on our developed
biomedical knowledge graph. We constructed a comprehensive knowledge graph containing
AD concepts and various potential interventions, called ADInt, by integrating a dietary
supplement domain knowledge graph, SuppKG, with semantic relations from SemMedDB
database. Four knowledge graph embedding models (TransE, RotatE, DistMult and
ComplEX) and two graph convolutional network models (R-GCN and CompGCN) were
compared to learn the representation of ADInt. R-GCN outperformed other models by
evaluating on the time slice test set and the clinical trial test set and was used to generate
the score tables of the link prediction task. Discovery patterns were applied to generate
mechanism pathways for high scoring triples. Our ADInt had 162,213 nodes and 1,017,319
edges. The graph convolutional network model, R-GCN, performed best in both the Time
Slicing test set (MR = 7.099, MRR = 0.5007, Hits@1 = 0.4112, Hits@3 = 0.5058, Hits@10 =
0.6804) and the Clinical Trials test set (MR = 1.731, MRR = 0.8582, Hits@1 = 0.7906, Hits@3
= 0.9033, Hits@10 = 0.9848). Among high scoring triples in the link prediction results, we
found the plausible mechanism pathways of (Photodynamic therapy, PREVENTS,
Alzheimer's Disease) and (Choerospondias axillaris, PREVENTS, Alzheimer's Disease) by
discovery patterns and discussed them further. In conclusion, we presented a novel
methodology to extend an existing knowledge graph and discover NPIs (dietary supplements
(DS) and complementary and integrative health (CIH)) for AD. We used discovery patterns to
find mechanisms for predicted triples to solve the poor interpretability of artificial neural
networks. Our method can potentially be applied to other clinical problems, such as
discovering drug adverse reactions and drug-drug interactions.

Keywords: Alzheimer’s disease, drug repurposing, non-pharmaceutical interventions,
biomedical knowledge graph, link prediction, graph embeddings
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Introduction

Alzheimer's disease (AD) and related dementias (ADRD) are chronic and multifactorial
neurodegenerative disorders that affect cognition, behavior, functional ability and memory of
affected individuals 1. As of 2020, the worldwide prevalence of ADRD was approximately 50
million, and this number is expected to increase to 152 million by 2050, representing a
significant and growing public health challenge 2. The high prevalence of ADRD has
significant economic, medical, and social consequences for society. In 2019, the global
economic burden of ADRD was estimated to be $2.8 trillion, and this burden is projected to
increase to $16.9 trillion by 2050 3. Despite significant advances in our understanding of the
etiology and drug targets of AD/ADRD, effective prevention and treatment of these
conditions remain elusive. Several medications, including lecanemab 4 and aducanumab 5,
have been developed based on well-defined concepts and hypotheses about the etiology
and drug targets of AD/ADRD. These medications are thought to reduce the pathological
progression of the disease; however, their treatment effect is limited 6. This suggests that our
understanding of the pathogenesis of Alzheimer's disease is incomplete, and that novel
unbiased approaches are needed to discover new therapies.

AD is a complex and multifactorial disorder that poses significant challenges to drug
discovery research. Despite significant progress in this field, there remains an unmet need for
effective treatments, prevention, or interventions to slow down the progression of AD 7.
Pharmacological interventions (PI) have demonstrated improvements in cognitive function,
albeit with adverse side effects such as nausea, weight loss, leg cramps, and increased
mortality risk 8,9. On the other hand, non-pharmacological interventions (NPI) including sleep
10,11, diet 12, dietary supplements 13, aerobic exercise 14, aromatherapy 15, light therapy 16 and
cognitive training 17 are widely used by healthcare consumers to enhance their well-being
and manage diseases. Thus, NPIs represent a promising, versatile, and potentially
cost-effective approach to improve outcomes and quality of life for patients with dementia 18.
Recent studies have demonstrated that certain NPIs may be protective against cognitive
decline in individuals with positive biomarkers and cognitive impairment 19. For example,
aerobic exercise has been shown to benefit various aspects of cognition, including the
stabilization of Mini-Mental State Examination (MMSE) scores, as well as improvements in
attention, memory, and recognition 20,21. Cognitive decline may also be attenuated by factors
such as improved nutrition, appropriate dietary supplements, mental exercise, and social
activities 22. Notably, multimodal NPIs have shown promise in improving cognitive function
23,24. However, a comprehensive understanding of the effects of NPI, as well as the potential
synergistic effects of PI and NPI for AD/ADRD, remains lacking.

In recent years, the analysis of existing data on drugs and diseases has emerged as a
promising approach for discovering new therapeutic potentials of existing drugs and
identifying treatments for refractory diseases, a practice commonly referred to as drug
repurposing 25. Text mining is a popular data mining approach for drug repurposing due to
the rapidly increasing volume of biomedical and pharmaceutical research literature. A vast
number of semantic relations between biomedical entities can now be extracted from this
literature. Knowledge graphs (KGs), which are heterogeneous networks, can be utilized to
store, manage and represent these semantic relations. KGs can be tools used to model
entities and their relationships, and the network structure of KGs can be leveraged to
generate hypotheses by utilizing graph theory concepts and methods 25. In biomedical
knowledge graphs (BKGs), nodes signify biomedical entities, and edges represent the
relationships between two entities 26. BKGs can provide solutions to practical problems in the
biomedical domain. For instance, the SuppKG, a Dietary Supplement domain knowledge
graph, can identify interactions between drugs and dietary supplements through discovery
patterns 27. Link Prediction (LP) for knowledge graphs (also known as knowledge graph
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completion) is the task of inferring missing or potential relations between entities in a
knowledge graph 28.

The LP for Semantic MEDLINE Database (SemMedDB) 29 has been found to be effective for
drug repurposing for COVID-19 30. To address the current lack of research exploring novel
NPIs for AD, we first trained and evaluated various LP strategies (e.g., embedding-based,
neural network based models). The best-performing model was further utilized to predict
NPIs that may have the potential to prevent AD. The NPIs include natural products (e.g.,
dietary supplements (DS)) and complementary and integrative health (CIH), which are
identified using self-contained information in SuppKG and a CIHLex we previously created 31,
respectively. Subsequently, discovery patterns 32 are employed to generate mechanism
pathways for candidates with high scores (i.e., high likelihood), and these pathways are
evaluated by domain experts. Our contribution includes creating NPI resources and
developing an innovative framework to predict NPIs that may potentially be repurposed for
AD. To our best of knowledge, this is the first study to discover NPIs for AD. The developed
framework can be applied to NPI discovery for other diseases.

Results

ADInt Statistics

The comprehensive AD Intervention knowledge graph (called ADInt) encompasses 162,213
entities across 113 UMLS semantic types, which after further identification include 25,604
Drugs, 16,474 Diseases, 46,060 Genes and Proteins, 2,525 DS, and 128 CIH. Furthermore,
ADInt comprises 1,017,319 triples, capturing 15 distinct relation types such as
INTERACTS_WITH, AFFECTS and TREATS. Detailed statistics can be found in Table 1.

Performance of LP models

Table 2 presents the performance obtained by various LP methods using the metrics Mean
Rank (MR), Mean Reciprocal Rank (MRR), and Hits@k (k = 1, 3, and 10) 33. A well-performing
model should exhibit a low MR score and high MRR and Hit@k scores. The results
demonstrate that the R-GCN model outperforms the other models in all metrics, followed by
the TransE model. Notably, the CompGCN model performs the lowest performance across
all metrics.

Additionally, Table 3 reports evaluation results of the trained models on the Clinical Trials
dataset. The findings show that the R-GCN model performs the best across all metrics. In
this case, some metrics of the RotatE model (Hits@3 = 0.6320, Hits@10=0.8107, MR=5.228)
are better than TransE (Hits@3 = 0.6294, Hits@10=0.7621, MR=5.417). Collectively, from
both evaluation results presented in Table 2 and Table 3, the R-GCN model exhibits the best
performance, with the lowest MR and the highest MRR, Hits@1, Hits@3, and Hits@10 among
the considered models. Thus, we used the R-GCN for further knowledge discovery of NPIs
on AD prevention.

Embedding representation of knowledge graph

Subsequently, we utilized t-SNE (t-distributed stochastic neighbor embedding) 34 to obtain
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two-dimensional projection of the learned node representations. t-SNE is a technique that
reduces high-dimensional data to low-dimensional data while preserving the distribution
properties of the original data. Moreover, it expresses the similarity between concepts
through the proximity between nodes. As depicted in Figure 1, nodes with similar types tend
to be grouped together, particularly the DS nodes.

Figure 1: Visualization of nodes in ADInt dimensionally reduced by t-SNE algorithm and
shown in a two-dimensional space. Different types of nodes are represented by different
colors. Yellow: Molecular. Green: Drugs. Red: Disorders. Blue: DS (dietary supplement).
Purple: CIH (complementary and integrative health). Gray: others.

Discovered NPI list for AD prevention

We utilized the embedding information obtained from R-GCN to compute the score of each
candidate triple. Specifically, we designated the tail node of these corrupted triples as
C0002395 (Alzheimer's Disease) and the edge as {PREVENTS, TREATS}. We then attempted
to construct different triples by using all nodes in the graph as head nodes and calculated
their score using the R-GCN model. Our focus was solely on the discovery of novel triples;
thus, we excluded triples that already existed in ADInt. For novel triples, a higher score
indicated a higher probability of being closely related to the true relationship. We categorized
the triples into two groups based on the type of the head node, including DS and CIH, to
discover novel NPIs for Alzheimer's disease. The top 10 predicted novel candidates for
Alzheimer's disease are presented in Table 4

Figure 2 displays the network structure of the top-ranked predicted results. The network
highlights three pathways that include a set of interesting findings, which will be further
discussed in the following sections. Specifically, this pathway reveals potential mechanisms
through which CIH and DS may influence the risk of AD, and suggests potential targets for
therapeutic interventions. The identified associations and pathways represent a promising
direction for future research into the prevention and treatment of AD.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2023. ; https://doi.org/10.1101/2023.05.15.23290002doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.15.23290002


Figure 2: Top-ranked predicted results of ADInt-based exploration.

Discussion

In this study, we compared various LP methods on the task of knowledge discovery. The
R-GCN model has demonstrated superior performance over other models on both the Time
Slicing and Clinical Trials test sets (see Table 2 and Table 3). Notably, TransE exhibited the
second-best overall performance, which is consistent with our prior work 30 demonstrating
that relatively simple TransE outperformed other knowledge graph embedding methods
(RotatE, DistMult, ComplEX) on the extended SemMedDB. We speculate that the poor
performance of DistMult and ComplEX is due to their preference for high-degree entities,
which we removed during the data preprocessing stage 35. We believe that the reason for
RotatE's underperformance is similar, as our filtered knowledge graph emphasizes simple
relations. Although RotatE addresses some of the limitations of TransE in handling multiple
and symmetric relations by introducing complex spaces 36, our findings suggest that this
approach may not be appropriate for our knowledge graph. The superior performance of
R-GCN suggests that the neighborhood aggregation operation of the graph convolution
network is useful for learning graph representations 37. However, we found that another graph
convolutional network-based model, CompGCN, had a mediocre performance. We
hypothesize that CompGCN's reliance on linear transformations for relation embeddings
does not suit our knowledge graph 38. Additionally, our evaluation of R-GCN on the Clinical
Trials dataset, which mainly focuses on PREVENTS and TREATS relations, outperformed its
performance on the Time Slicing evaluation. These results demonstrate that R-GCN is adept
at distinguishing which subjects are feasible for treating or preventing AD. It is worth noting
that while our experiments confirm R-GCN as the optimal LP model, metrics such as MR,
MRR, and Hits@ratio only reflect the model's ability to predict interventions being trialed or
known interventions. Indeed, models with low metrics may still produce valuable results 30.
Nevertheless, these metrics can inform model selection for NPI repurposing.
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We used discovery patterns to generate mechanistic pathways for high-scoring triples
predicted by the R-GCN model through the Neo4J platform. Photodynamic therapy (PDT) is
a clinically used approach for treating various medical conditions, ranging from age-related
macular degeneration to malignant tumors such as prostate cancer patients. PDT involves
the use of light and a photosensitizing chemical substance along with molecular oxygen to
elicit cell death 39. Recently, PDT has been proposed as a potential therapeutic option for AD
39. The precise mechanism of how PDT can provide therapeutic benefits for Alzheimer's
disease remains elusive, and the practical use of PDT for treatment of AD is basically
non-existent given that tissue must be directly exposed to light, which is not feasible when
dealing with the entire brain. However, this finding provides theoretical support for treating
AD through modulation of the immune system. For instance, a study evaluating the use of
PDT with 5-aminolevulinic acid on mice has reported that it affects the immune response 40.
The study found that there was a significant reduction in the mRNA expression of
interleukin-22 (IL-22), a cytokine produced by several immune cells that is associated with
inflammation. Converging evidence has demonstrated that immune/inflammation response
plays a crucial role in the initiation and regulation of Alzheimer's disease 41. Thus, our PDT
finding, while based on a therapy that has major practical limitations for treating AD,
highlights immune mechanisms for preventing and treating AD. It should be noted that this is
a preliminary finding based on a limited number of studies, and more research is needed to
confirm these results.

Choerospondias axillaris, commonly known as Nepali hog plum, is a fruit that is
approximately three centimeters long with sour flesh and yellow skin. Plums and other
yellow-skinned fruits, such as papayas, tangerines, and oranges, are high in ß-cryptoxanthin,
an antioxidant. A recent study 42 found an inverse association between serum
β-cryptoxanthin levels and the incidence of Alzheimer’s Disease and all-cause dementias in
individuals who consumed yellow-skinned fruits. Specifically, an increase of 8.6
micromole/liter in serum β-cryptoxanthin levels was associated with a 14% decreased risk of
Alzheimer's disease. To propose a potential mechanism for this protection, we examined the
patterns between Choerospondias axillaris and Alzheimer's disease. In a study 43, it was
found that Choerospondias axillaris inhibits both TNF protein and interleukin-6. These two
inflammation mediators are well-known inducers of Alzheimer's disease, as demonstrated in
previous studies 44,45. Specifically, interleukin-6 has been linked to the pathogenesis of
Alzheimer's disease, while tumor necrosis factor-α has been proposed as a potent
therapeutic target for Alzheimer's disease. Lutein, a carotenoid also found in
Choerospondias axillas, we also found as a protective intervention. This finding corroborates
prior reports that demonstrated an inverse association between lutein intake and dementia
occurrence 45. Furthermore, increased lutein intake has been associated with lower levels of
AD neuropathology postmortem 46. Overall, Choerospondias axillaris and other
yellow-pigmented fruits may act as protectors by reducing the levels of pro-inflammatory
cytokines crucially implicated in Alzheimer's disease.

There are several possibilities for future improvements to our approach. Firstly, we
augmented SuppKG with triples extracted from the SemMedDB database, indicating that all
triples in our ADInt were obtained through literature-based discovery. In order to further
enhance our knowledge graph, we can merge it with other comprehensive biomedical
databases and biological networks, such as DrugBank and KEGG 47. This will enable us to
expand the scope of our analysis and identify additional relevant interventions. Secondly, in
addition to knowledge graph embedding and graph neural network models, other methods
such as rule-based and reinforcement learning techniques have also demonstrated
promising results on LP tasks. These methods could also be explored in future studies on
drug repurposing. Lastly, since the determination of the plausibility of an intervention and its
pathways to Alzheimer’s disease is a labor-intensive process, only the top 10 of each scoring
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table were evaluated by experts. However, in future work, larger samples could be
considered if the necessary resources are available.

Our analysis emphasizes the growing importance and popularity of studying NPIs in the
context of disease management. By demonstrating the efficacy of our approach in revealing
intricate relationships between biomedical entities, particularly NPI entities, and diseases of
interest, we provide plausible mechanistic explanations for these associations. Notably, our
contributions in this field include creating valuable NPI resources and developing an
innovative framework to predict NPIs that may potentially be repurposed for AD. To the best
of our knowledge, this is the first study that specifically aims to discover NPIs for AD.
Furthermore, the versatility and adaptability of our approach enable its application to NPI
discovery for a wide range of other diseases, including COVID-19. Our proposed approach
also holds significant potential in addressing various clinical questions, such as the discovery
of drug adverse reactions and drug-drug interactions, further emphasizing the importance
and applicability of our research in the broader biomedical field.

Methods

The complete workflow is depicted in Figure 3. In order to investigate the association
between PIs and NPIs and AD, we initially conducted preprocessing and integration of triples
extracted from SemMedDB and SuppKG. Subsequently, we employed several graph
representation models to derive the embedding information of ADInt, which included four
knowledge graph embedding models (TransE 33, RotatE 36, DistMult 48 and ComplEX 49) and
two graph convolutional network models (R-GCN 50 and CompGCN 51). Ultimately, we
selected the most effective model for generating hypotheses regarding and NPIs for AD.
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Figure 3: Diagram illustrating the workflow of the methodology.

Materials

SuppKG 27 is a knowledge graph that focuses on DS and has been shown to be useful in
discovering potential drug-supplement interactions (DSI) through discovery patterns. In this
study, we utilized SuppKG to explore DS for AD. To create SuppKG, the domain of the
conceptual space of MetaMap 52 used in SemRep 53 was extended by incorporating dietary
supplement terminologies and relations contained in the Integrated Dietary Supplement
Knowledge base (iDISK) 54. Subsequently, the extended SemRep was employed to extract
semantic relations (triples) related to dietary supplements from PubMed abstracts retrieved
using terms contained in iDISK. During the process of extracting semantic relations, some
extracted semantic meanings were found to be opposite to the intended purpose of the
corresponding text, resulting in the extraction of triples with opposite meanings. Due to the
poor performance of SemRep (0.69 precision and 0.42 recall 53), a fine-tuned PubMedBERT
model 55, which is a pre-trained Bert model with abstracts from PubMed, was utilized to
eliminate incorrect triples. SuppKG comprises 56,635 nodes and 595,222 directed edges,
including 2,928 DS-specific nodes and 164,738 edges. The nodes in SuppKG are identified
by unique UMLS CUIs, while the predicates in UMLS Semantic Network label the edges. To
easily distinguish the DS-specific nodes, a letter "D" was added before the CUI representing
the concept of dietary supplements. For example, "DC0633482" was used to indicate that
"myrtol" is a dietary supplement concept.
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SuppKG is a valuable resource for discovering potential drug-supplement interactions
through pattern discovery, but due to its focus on the dietary supplement domain and the
limitations of its source data, it may not include all pathway information related to AD or
other CIH approaches beyond dietary supplements. To address this limitation, we extended
SuppKG with additional triples extracted from the SemMedDB database 29. SemMedDB is a
repository of semantic triples extracted from PubMed abstracts and titles using the SemRep
program 53,56, which provides detailed information such as the source text and PMID of the
source article. We obtained triples from the PREDICTION table of SemMedDB and filtered
them based on the correctness of the source sentences and text, which we extracted from
the SENTENCE and PREDICATION_AUX tables. This allowed us to supplement SuppKG with
a broader range of information related to interventions for AD beyond the dietary supplement
domain.

Preprocessing and Integration

In this study, an enhanced representation of nodes and relations in the knowledge graph is
proposed by filtering out low-quality triples. Low-quality triples often describe generic facts
that are not meaningful for the study. For instance, the triple (disease, AFFECTS, patient) with
"disease" and "patient" being generic concepts is not useful in this study. Additionally, since
the triples in SuppKG and entries in SemMedDB database are extracted from text using the
SemRep text mining tool, some of the semantic relations expressed by the triples may not
align with the intended meaning of the source text. Therefore, preprocessing is necessary to
integrate the information from SuppKG and SemMedDB. The preprocessing steps can be
classified into three categories 30:

1) Filtering triples by rules. First, we removed nodes in the graph that represented generic
concepts, which was done by referencing the GENERIC_CONCEPT table provided by the
SemMedDB database. This table contained concepts such as "Disease" and "Cells," which
are known to be too broad to be useful for knowledge discovery. Additionally, concepts with
semantic groups that were not likely to be useful for predicting interventions for ADRD were
eliminated, including "Activities & Behaviors," "Concepts & Ideas," "Objects,"
"Occupations," "Organizations," and "Phenomena." Finally, only edges that were deemed
relevant for LP were kept, specifically those with predicate types of AFFECTS, ASSOCIATED
WITH, AUGMENTS, CAUSES, COEXISTS WITH, COMPLICATES, DISRUPTS, INHIBITS,
INTERACTS WITH, MANIFESTATION OF, PREDISPOSES, PREVENTS, PRODUCES,
STIMULATES, and TREATS.

2) Removing high-degree concepts and uninformative semantic relations. High-degree
High-degree concepts in the KG may be too general to be useful for knowledge discovery
due to their broad associations with many other concepts. To address this issue, we first

computed the out-degree ( ) and in-degree ( ) of each node in the KG. Next, we𝑘
𝑖
𝑖𝑛 𝑘

𝑖
𝑜𝑢𝑡

calculated a log likelihood measure known as 57 for each triple, which quantifies the𝐺2

strength of the relationship between the items in the triple. The formula is given by:𝐺2

𝐺2 = 2
𝑖,𝑗,𝑘
∑ 𝑛

𝑖𝑗𝑘
× 𝑙𝑜𝑔(

𝑛
𝑖𝑗𝑘

𝑚
𝑖𝑗𝑘

),  𝑚
𝑖𝑗𝑘

= 𝑖
∑𝑛

𝑗𝑘
×

𝑗
∑𝑛

𝑖𝑘
×

𝑘
∑𝑛

𝑖𝑗

𝑇2

where is the item i,j,k in the observation table (OT) containing observed frequencies of a𝑛
𝑖𝑗𝑘

triple, is the item i,j,k in the expectation table (ET) describing the expected values𝑚
𝑖𝑗𝑘

assuming independence of terms in triples, and . Finally, we normalized ,𝑇 = ∑ 𝑛
𝑖𝑗𝑘

𝑘
𝑖
𝑖𝑛 𝑘

𝑖
𝑜𝑢𝑡
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and and summed them up together to get a final score for each triple. A higher score𝐺2

indicates that the triple is less specific and informative. For instance, the triple
(Pharmaceutical Preparations, AFFECTS, Sleep) has a higher score and is more general
compared to (DZIP1 gene, AFFECTS, heart valve development). Consequently, we filtered
out some triples with high scores to manage the size of the knowledge graph for
computational efficiency.

3) Further removing incorrect triples by a trained PubMedBert model. The triples
extracted from the SemMedDB database through SemRep may contain false positives, as
the semantics expressed by the triples may differ or be contrary to the content of their
source sentences. To address this issue, we utilized a PubMedBert binary classification
model that was fine-tuned in our previous work to evaluate the correctness of the triples by
referencing their source sentence 30. The F1 score of this model was 0.854, with a recall of
0.895 and a precision of 0.816.

For both SemMedDB and SuppKG triples, we applied steps 1) and 2) described above, but
only applied step 3) to SemMedDB triples, as similar processing had been done during the
generation of SuppKG. After filtering, we integrated the resulting triples from both sources,
with DS concept nodes in SemMedDB triples identified by adding the letter D before their
CUIs to match the identifiers in SuppKG. As the subject and object entities of the integrated
triples are identified by UMLS CUIs and their predicates come from the UMLS Semantic
Network, we added new triples to SuppKG that did not overlap with its existing triples,
without mapping concepts or integrating ontologies. The resulting integrated knowledge
graph, named ADInt, was obtained.

NPI nodes identification

We employed multiple approaches to identify nodes representing drugs, DS, and CIH
concepts in our knowledge graph for analysis and repurposing efforts for AD. For drug
nodes, we can directly utilize the semantic types provided in the UMLS Metathesaurus.
Specifically, we identify a node as a drug node if its semantic type is Pharmacologic
Substance (phsu) or Organic Chemical (orch). However, identifying DS concept nodes based
on their semantic type is not feasible. Nonetheless, in SuppKG, DS concept nodes are
denoted by a special mark, a letter D added before their CUI. This mark was retained during
the integration of SuppKG and SemMedDB triples, allowing us to easily identify these nodes
as DS concepts. Unlike drug and DS nodes, nodes describing CIH concepts cannot be
identified directly from the knowledge graph. To overcome this limitation, we utilized an
external list of CIH concepts provided by a graduate student of informatics with a
background in Medicine. This list, known as the CAM concepts list or CIHLex, was compiled
based on a review of the literature, as described in our previous work 58 and Natural
Medicines 59.

Given that DS and CIH nodes may have semantic types of phsu or orch, which are also
associated with drug concepts, it is possible for overlap to occur. To address this issue, we
prioritize the identification of DS or CIH concepts over drug concepts. If a node has been
identified as either DS or CIH, it is considered as such, regardless of its semantic type of
phsu or orch. This approach ensures that there is no ambiguity in the identification of nodes
within the knowledge graph.

Link prediction models training

A knowledge graph can be represented as a labeled directed multi-graph ,𝐾𝐺 = (𝐸, 𝑅, 𝐺)
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where E denotes the set of nodes representing entities, R denotes the set of edges
representing relations, and is a set of triples〈h, r, t〉, where h represents the𝐺 ⊆ 𝐸 × 𝑅 × 𝐸
head entity, r represents the relation, and t represents the tail entity. Link prediction (LP) is an
essential task in knowledge graph completion, which aims to infer missing facts or
relationships from the existing ones. Despite the vast amounts of information contained in
knowledge graphs, they are often incomplete due to various factors, such as noise, missing
data, and sparsity. Thus, LP methods seek to infer new triples that may not be explicitly
represented in the knowledge graph, but which can be logically deduced from the existing
ones. The objective of LP aims to predict the most probable entity or relation that completes
(h, r, ?) (tail prediction), (h, ?, t) (edge prediction), or (?, r, t) (head prediction). Although new
triples (h’, r’, t’) that describe additional facts may also exist in our knowledge graph, they are
not present for some reason. LP for knowledge graphs can be represented as a ranking task,
which aims to learn a prediction function that assigns higher scores to true triples and lower
scores to false triples. To perform LP on our knowledge graph, we explored four knowledge
graph embedding models (TransE, Rotate, DisMult and ComplEX) and two graph
convolutional network models (R-GCN and CompGCN).

TransE 33 is a simple and effective model for LP, particularly for modeling one-to-one
relations. In TransE, a triple (h, r, t) is represented as a translation from the embedding of the
head entity h to the embedding of the tail entity t, with the relation r acting as the translation
vector in the embedding space. This formulation implies that if a triple (h, r, t) exists, the
embedding of entity h plus the representation of relation r should be close to the embedding
of entity t. The TransE score function measures the plausibility of a triple and is defined as
follows

𝑠 ℎ, 𝑟, 𝑡( ) = | 𝒉 + 𝒓 − 𝒕| ||
where is the embedding of h, r and t. Unlike TransE, The RotatE 36 model𝒉,  𝒓,  𝒕 ∈ ℝ𝑑

converts each relation to a rotation from a head entity to a tail entity in a complex vector
space and the score function can be defined as

𝑠 ℎ, 𝑟, 𝑡( ) = | 𝒉 ○ 𝒓 − 𝒕| ||
where ○ is a Hadamard product.

DistMult 48 is the most basic semantic matching models, and its scoring function can be
defined as

𝑠 ℎ, 𝑟, 𝑡( ) = 𝒉𝑇𝒓𝒕
The drawback of DistMult is that it only works on symmetric relations, that is, the scores of
(h,r,t) and (t,r,h) calculated by DistMult are the same. It may cause problems in our
knowledge graph, for example the triple (Bariatric Surgery, TREATS, Alzheimer's) and the
triple (Alzheimer's, TREATS, Bariatric Surgery) should have inconsistent scores. To address
this limitation, ComplEX has been proposed as an extension of DistMult 49. ComplEX uses a
complex vector space and is capable of modeling asymmetric relations. Specifically, head
and tail embeddings of the same entity are represented as complex conjugates, which
enables (h, r, t) and (t, r, h) to be distinguished. This allows ComplEX to provide consistent
scores for both symmetric and asymmetric relations. The scoring function of ComplEX can
be defined as follows

𝑠 ℎ, 𝑟, 𝑡( ) = 𝑅𝑒(𝒉𝑇𝒓𝒕)
Where Re(·) is a real part of a complex vector.

GCNs are a neural network approach for processing graph-structured data 60. However, most
existing GCNs are designed for simple undirected graphs and cannot handle the multiple
types of nodes and directed links that exist in our knowledge graph. To address this
challenge, we explored special graph convolutional neural network models that can handle
heterogeneous graphs. Specifically, we evaluated two models: Relational Graph
Convolutional Network (R-GCN) 50 and CompGCN 51. Based on the architectures of GCNs,
R-GCNs 50 consider each different relation and perform feature fusion to participate in
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updating the hidden states of nodes. The propagation model for calculating the forward-pass
update of a node in R-GCNs can be defined as

,𝒙
𝑖
(𝑙+1) = σ(

𝑟ϵℛ

∑
𝑗ϵ𝒩

𝑖
𝑟

∑ 1
𝑐

𝑖,𝑟
𝑾

𝑟
(𝑙)𝒙

𝑗
(𝑙) + 𝑾

0
(𝑙)𝒙

𝑖
(𝑙))

where is the hidden state of i-th nodes in the l-th layer of the neural network; is𝒙
𝑖
(𝑙)ϵℝ𝑑(𝑙)

ℛ

the set of relations and denotes the neighbor set of i-th node under relation ; and𝒩
𝑖
𝑟 𝑟ϵℛ 𝑾

𝑟
(𝑙)

are the learnable weight matrix under relation and self-loop weight matrix in the l-th𝑾
0
(𝑙) 𝑟

layer respectively; is a normalization constant that can either be learned or chosen in𝑐
𝑖,𝑟

advance. Using R-GCNs for LP tasks can be regarded as a process of encoding and
decoding: an R-GCN producing latent feature vectors of entities and a tensor factorization
model exploiting these vectors to predict edges. Taking the DistMult decomposition as an
example, the score of a triple (h, r, t) is calculated as 50

𝑠 ℎ, 𝑟, 𝑡( ) = 𝒉𝑇𝒓𝒕
Thus, to make the model score observable triples higher than negative triples, the loss
function can be defined as 50:

,ℒ =− 1

(1+ω)|ε| (ℎ,𝑟,𝑡,𝑦)ϵ𝒯
∑ 𝑦𝑙𝑜𝑔𝑙(𝑠(ℎ, 𝑟, 𝑡)) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑙(𝑠(ℎ, 𝑟, 𝑡)))

where is the set of all triples (including positive and negative triples); is the number of𝒯 ω
negative triples; is the number of edges; (.) is the logistic sigmoid function; and is an|ε| 𝑙 𝑦
indicator, where means triple is positive, otherwise negative.𝑦 = 1

CompGCN 51 is another extended version of GCN for heterogeneous graphs, which
systematically leverages entity-relation composition operations and jointly learning latent
feature vector representations for both nodes and edges in the graph. Different from
R-GCNs, CompGCN performs a composition operation Ф over each edge in the neighbor of
central node through the embedding of edges and nodes. The update equation of nodes
embedding in CompGCN can be defined as

,𝒙
𝑖
(𝑙+1) = 𝑓(

(𝑗,𝑘)ϵ𝒩
𝑖
𝑟

∑ 𝑾
λ(𝑘)
(𝑙) ϕ(𝒙

𝑗
(𝑙), 𝒚

𝑘
(𝑙)))

where and are the hidden state of neighboring j-th node and its k-th relation𝒙
𝑗
(𝑙) 𝒚

𝑘
(𝑙)

respectively in the l-th layer, and is a relation-type specific parameter, which can be𝑾
λ(𝑘)
(𝑙)

used for direction specific weights. According to whether the edge is the original edge,

inverse edge or self-loop edge, will correspond to different weight matrices. Ф(.) is𝑾
λ(𝑘)
(𝑙)

used to aggregate two vectors of the same size, which can be Subtraction 33, Multiplication
48, or Circular-correlation 61. After updating the node embeddings, we can also update the
relation embedding as follows 51

,𝒚
𝑘
(𝑙+1) = 𝑾

𝑟𝑒𝑙
𝑘 𝒚

𝑘
(𝑙)

where is a weight matrix that projects all relations to the same embedding space as𝑾
𝑟𝑒𝑙
𝑘

nodes, which allows them to be used in the next layer. Similar to R-GCNs LP model, we
select a tensor factorization model (convE) to calculate the score of triples. And the same
standard binary cross entropy loss function is applied to training the convolutional
networks.

All work was conducted using Python scripts. The implementation of the TransE, RotatE,
DistMult, and ComplEX models was carried out with the DGL-KE 0.1.0.dev0 package 62
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package. Both R-GCN and CompGCN models were constructed using the torch 1.13.1 63

and DGL 1.0.1 64 packages.

Evaluations

Open LBD task: The open discovery approach is specifically aimed at generating innovative
hypotheses; given a head node, the system produces associated tail nodes, thereby
facilitating the identification of previously unexplored triple relationships. 65. In order to
evaluate the effectiveness of our LP model, we utilized two evaluation methods. The first one
is called Time Slicing 66. This evaluation approach involves partitioning the KG at a specific
time and using the data prior to this time to train the model, and subsequently testing the
model on the data following this time to determine if the links formed after the partitioning
time can be accurately predicted. Specifically, in our work, we ordered the triples
chronologically and divided the knowledge graph into training, validation, and testing sets in
an 8:1:1 ratio, with earlier triples used for training and more recent ones for testing, where the
date of publication of the paper mentioning the triple is used as its time, and the partitioning
times were set as April 2020 and April 2021 respectively. To evaluate the model performance,
we computed three metrics for each model: MR, MRR, and Hits@k (k = 1, 3, and 10).
Specifically, for each true triple in the testing set, we generated a batch of negative samples
by randomly replacing the head or tail nodes while ensuring that these negative samples do
not exist in our graph, i.e., we employed corruption with filtering. We then used the trained
model to calculate the scores for the true triple and its negative samples, and obtained the
ranks of the true triples to obtain the metrics of MR, MRR, and Hits@k. MR represents the
average rank assigned to the true relations in the test set, MRR is the average inverse rank of
all true triples in the test set, and Hits@k is the percentage of relations in which the true triple
appears in the top k ranked triples 33.

In the second evaluation approach, we utilized clinical trial data from ClinicalTrials.gov as a
benchmark for predicting potential interventions for Alzheimer's disease. Our approach was
based on the assumption that interventions under investigation for AD have the potential to
be repurposed for other indications. Specifically, we obtained a list of interventions utilized in
AD clinical trials registered after April 21, 2020, by conducting a search for the term
"Alzheimer" and restricting the results to interventional studies as of November 4, 2022. We
excluded control interventions labeled as "placebo," resulting in a total of 671 interventions.
We processed these interventions using MetaMap with the UMLS 2022AA release to identify
relevant UMLS concepts, resulting in 1606 concepts. These concepts were subsequently
used as head nodes, with "TREATS" and "PREVENTS" serving as the relationships, and
"Alzheimer's disease" concepts as tail nodes, creating a series of new triples. Finally, we
employed these newly generated triples based on clinical trial data as a test set to calculate
MR, MRR, and Hits@k for each model.

Close LBD task evaluation: The closed discovery method strives to identify the
connections between the given head and tail nodes in order to evaluate a specific hypothesis
65. Although the knowledge graph embedding and graph neural network models only provide
node and edge representations, patterns from closed discovery were used to infer possible
mechanisms for the repurposed interventions. To uncover potential logical connections
between concepts in a network, we employed a closed discovery approach by combining
sequences of relation types, such as "drug x INHIBITS substance y, substance y CAUSES
disease z" 32. This method was used to identify possible pathways between nodes in the
knowledge graph. For DS, The discovery patterns we focused on were:

InterventionA-INHIBITS|INTERACTS_WITH-ConceptB AND
ConceptB-AFFECTS|CAUSES|PREDISPOSES|ASSOCIATED-Alzheimer’s disease AND
NOT (InterventionA-TREATS|PREVENTS-Alzheimer’s disease)
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where InterventionA is a node whose type is DS; ConceptB can be any concept; | indicates
logical OR; and for Alzheimer's disease, we focus on the node with identifier C0002395. To
analyze the repurposing potential of Complementary and Integrative Health (CIH)
interventions, we encountered a challenge due to the UMLS semantic types of most CIHs
being “topp” (Therapeutic or Preventive Procedure) or “dora” (Daily or Recreational Activity).
As these types do not have INHIBIT or INTERACT_WITH relationships to other concepts in
the UMLS Semantic Network, and the number of possible paths is not extensive, we did not
constrain the predicates in the patterns. The discovery patterns for CIH were:

InterventionB—(any predicate)-ConceptB AND
ConceptB-(any predicate)-Alzheimer’s disease AND
NOT (InterventionB-TREATS|PREVENTS-Alzheimer’s disease

where InterventionB is a node whose type is CIH. We visualized the network structure using
ChiPlot (https://www.chiplot.online/).

Data Availability

ADInt knowledge graph data is available in the following google drive:
https://drive.google.com/drive/folders/187HnI2d-RRFeYk_C7MYSCHtVX-6IuNVS?usp=shari
ng. The complete SemMedDB database can be accessed directly on
https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR.html.

Code Availability

The code used for data preprocessing, model training, result evaluation and visualization in
this study is available in the following repositories: https://github.com/YKXia0/LBD_AD.
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Tables

Table 1: The frequency and the proportion of relation types in ADInt.

Relations Counts (%) Relations Counts (%)

COEXISTS_WITH 332,441 (32.68) DISRUPTS 23239 (2.28)

INTERACTS_WITH 209,458 (20.59) AUGMENTS 21,912 (2.15)

AFFECTS 96,804 (9.52) PRODUCES 21,828 (2.14)

TREATS 90,812 (8.93) PREDISPOSES 13,509 (1.33)

CAUSES 76,236 (7.49) PREVENTS 12,258 (1.20)

ASSOCIATED_WIT
H

46,126 (4.53) COMPLICATES 3,519 (0.35)

INHIBITS 39,158 (3.85) MANIFESTATION_O
F

1,926 (0.19)

STIMULATES 28,093 (2.76)

TOTAL 1,017,319

Table 2: The metrics of link prediction results for different models on integrated knowledge
graph, ADInt, by time slicing evaluation.

TransE RotatE DistMult ComplEX RGCN CompGCN

Hits@1 0.1770 0.1786 0.1109 0.1062 0.4112 0.0906

Hits@3 0.3242 0.3055 0.2586 0.2467 0.5058 0.1509

Hits@10 0.5996 0.5340 0.5921 0.5854 0.6804 0.4267

MRR 0.3109 0.2987 0.2547 0.2479 0.5007 0.1973

MR 8.861 10.11 9.278 9.380 7.099 10.26

Table 3: The metrics of link prediction results for different models on integrated knowledge
graph, ADInt, by clinical trials dataset evaluation.

TransE RotatE DistMult ComplEX RGCN CompGCN

Hits@1 0.5580 0.4545 0.2405 0.2143 0.7906 0.4826

Hits@3 0.6294 0.6320 0.3752 0.3058 0.9033 0.5497

Hits@10 0.7621 0.8107 0.5391 0.4537 0.9848 0.7030

MRR 0.6258 0.5768 0.3543 0.3084 0.8582 0.5535
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MR 5.417 5.228 9.991 11.57 1.731 6.475

Table 4: Top 10 proposed entities for different categories with predicate
PREVENTS/TREATS.

Dietary Supplement Complementary and
Integrated Health

1 Caryophyllus aromaticus Photodynamic therapy

2 Tamaris Interpersonal
psychotherapy

3 Shark Liver Oil Guided imagery

4 Glucomannan Laughter therapy

5 Desmodii herba Cold therapy

6 bidens pilosa Massage Therapy

7 Lutein Manual lymphatic
drainage

8 Artichoke Myofascial release

9 Millet (as Grain, fiber) Mindfulness Relaxation

10 Damask rose Art Therapy
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