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ABSTRACT 
Understanding how genetic risk variants contribute to Alzheimer’s Disease etiology remains a challenge. 

Single-cell RNA sequencing (scRNAseq) allows for the investigation of cell type specific effects of genomic 

risk loci on gene expression. Using seven scRNAseq datasets totalling >1.3 million cells, we investigated 

differential correlation of genes between healthy individuals and individuals diagnosed with Alzheimer’s 

Disease. Using the number of differential correlations of a gene to estimate its involvement and potential 

impact, we present a prioritization scheme for identifying probable causal genes near genomic risk loci. 

Besides prioritizing genes, our approach pin-points specific cell types and provides insight into the rewiring 

of gene-gene relationships associated with Alzheimer’s.  

INTRODUCTION 
Alzheimer’s Disease (AD) is a progressive neurodegenerative disease characterized by loss of cognitive 

functions and autonomy, eventually leading to death1. Many hypotheses about the etiology of AD exists, 

e.g. the amyloid-beta (Aβ) cascade hypothesis, the tau hypothesis, the inflammation hypothesis, the 

oxidative stress hypothesis and more2,3, highlighting the complexity of AD. Genome-wide association 

studies (GWASs) have provided a compendium of genomic loci that are associated with the risk for AD4–7. 

However, understanding how these risk variants contribute to AD etiology remains a challenge. As the 

number of GWASs is still rising steadily and are increasingly becoming larger in sample size, new genomic 

risk loci are regularly identified, while studies that generate mechanistic understanding lag behind8. 

Methods such as mendelian randomization9 and colocalization10 provide insight in causality but fail to 

provide insight in downstream molecular consequences. Single-cell genomics has made it possible to 

investigate genetic regulation in distinct cell types and paves the way to new approaches that will provide 

a more detailed understanding of cell type specific dysregulation in AD, genetics and downstream 

consequences. 

Additionally, scRNAseq has provided insight into cellular heterogeneity and is increasingly used to 

understand transcriptional differences at a single-cell level11,12,13. For AD, several scRNAseq studies have 

been performed14,15,16,17,18 that have generated new insights into AD pathophysiology. Many scRNAseq 

studies focus on cell type abundance18, cell type specific differential expression14,18, identifying novel cell 

types16 or exploring cellular differentiation trajectories19 – where each cell is kept as an independent 

entity, while being categorized into distinct cell types. An alternative approach utilizing scRNAseq data 

involves aggregating multiple measurements of genes within pre-defined cell populations, often 

delineated by cell type and individual, generating pseudo bulk datasets20,21. This approach has successfully 
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been used to identify differential cellular states across conditions21, exploring cell type specific 

responses22, and identifying cell type specific gene regulation under genetic control23.  

While scRNAseq data are well suited for e.g. differential expression analysis (DEA), determining expression 

correlations in scRNAseq data remains challenging24. scRNAseq data is characterized by large numbers of 

zero counts; the lower the expression, the more abundant the zeros25. Consequently, low-expressed 

genes can appear highly correlated due to just a few paired measurements, while the remaining 

measurements are zero26,27. The pseudo bulk approach provides a solution, as each gene would be 

represented by the aggregated value within a cell population, delineated by cell type and individual. As 

such, even low-expressed genes are represented by a robust aggregated value and the correlation is 

determined by the collinearity between genes across individuals instead of single cells. However, even 

though most scRNAseq datasets contain large numbers of cells, these are often derived from a small 

number of individuals, making it challenging to identify meaningful correlations in pseudo bulk data.  

To overcome these challenges, we here combined seven previously published AD scRNAseq 

datasets14,15,16,17,18 and generated seven cell type specific pseudo bulk datasets (excitatory neurons, 

inhibitory neurons, astrocytes, oligodendrocytes, oligodendrocyte progenitor cells (OPCs), microglia and 

endothelial cells), ranging from 132 to 192 individuals. We used this data to investigate differential 

correlation28,29 of genes between healthy individuals (control, CT) and patients diagnosed with AD. In 

contrast to DEA, differential correlation analysis (DCA) provides insight in whether transcriptional changes 

are independent or coordinated and provides insight into dynamic associations of key regulators subject 

to AD. For each cell type we explored gene-gene correlations that are significantly different in AD 

compared to CT. Using a network representation of differential correlations, we identified distinct sets of 

regulatory hubs for each cell type. Using the number of differential correlations to rank genes located 

near AD genetic risk variants, we prioritized known causal genes and identified potential novel ones. In 

addition, this approach revealed altered states of biological processes in AD associated with the prioritized 

genes. Finally, taking advantage of the characteristics of pseudo bulk data, we performed co-expression 

analysis between genes expressed in excitatory neurons and four other cell types (inhibitory neurons, 

astrocytes, oligodendrocytes and microglia) to identify pairs of co-expressed genes that are expressed in 

different cell types.    
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RESULTS 
Analysis workflow 

The analysis workflow consists of six major components. The first component describes the demographics 

of the cell type specific pseudo bulk datasets that were composed of seven separate AD scRNAseq 

datasets (Fig. 1a). In the second component, a general overview of differential correlation results between 

CT and AD is presented (Fig. 1b). Then we continue to investigate hubs; genes that have the majority of 

differential correlations with other genes within each respective cell type (Fig. 1c). In the fourth 

component, we compare hubs between cell types; are they cell type spcific of shared? Here we test 

whether shared hubs also share neigbourhoods. In the next component, we use the number of differential 

correlations of genes genomically located near AD risk variants in a prioritization scheme for identifying 

putative causal genes and cell types (Fig. 1d). In the sixth and final analysis, we perform a co-expression 

analysis in healthy individuals between genes expressed in excitatory neurons and inhibitory neurons, 

excitatory neurons and astrocytes, excitatory neurons and oligodendrocytes and finally excitatory 

neurons and microglia (Fig. 1e), thus asking the question whether there are gene-pairs co-expressed 

across different cell types.  
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Figure 1 Schematic overview of the analysis workflow. A Overview of how the seven cell type specific pseudo bulk datasets were 

combined. Starting with three dimensions (genes, cells and individuals), the data was clustered along the cells axis. Next, the 

clusters were annotated, after which the annotated data was aggregated on cell type and individual. This resulted in seven cell 

type specific datasets with genes defining the rows and the individuals defining the columns. B Schematic overview of differential 

correlations and differential correlation network (DCN). The degree of correlation is first calculated between pairs of genes in 

both healthy controls (CT) and Alzheimer’s Disease (AD) patients separately, resulting in different co-expression networks. The 

differential correlation network is defined by the difference between both co-expression networks. C Schematic representation 

of comparing DCNs and the corresponding hubs between cell types. Different cell types have different DCNs and these similarities 

and differences are identified. Additionally, the network neighborhood genes  of the shared hubs is compared. D Schematic 

representation of the gene prioritization scheme. Genes located near AD risk variants are ranked based on their hub status (i.e., 

based on the number of genes that have an altered association in AD compared to CT). E Schematic overview of differential 

correlation between genes expressed in neurons and genes expressed in astrocytes. 
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Demographics of cell type specific datasets 

We collected seven scRNAseq Alzheimer’s Disease (AD) datasets, comprised of 1,341,953 cells, and 

generated seven cell type specific pseudo bulk datasets (See methods: Aggregation, integration and batch 

correction). The excitatory and inhibitory neuron datasets comprise of five datasets (Table 1) and consist 

of 180 individuals, of which 81 were diagnosed with AD and 84 had no cognitive impairment (CT). A total 

of 15 individuals with mild cognitive impairment (MCI) and/or having other causes for MCI were 

characterized as other (O) and were excluded from any analyses. The astrocyte, oligodendrocyte and 

oligodendrocyte progenitor cell (OPC) datasets comprise six datasets and consist of 180 individuals (NAD = 

87, Nct = 90, NO = 15 ). The microglia dataset comprises five datasets and consists of 168 individuals (NAD = 

73, Nct = 73, NO = 22). The endothelial cell dataset comprises four datasets and consists of 132 individuals 

(NAD = 60, Nct = 70, NO = 2). 

Table 1 Dataset characteristics and demographics 

Cell type BA9 BA10 
BA9-

46 
LAU ENT 

SEA-
AD 

BA9-
46-

Micr
o 

Original 
No. cells 

No. genes 
No. 

subjects 
%female AD CT O 

Excitatory 
Neurons 

X X X X  X  663,175 9,501 180 51% 81 84 15 

Inhibitory 
neurons 

X X X X  X  268,060 3,556 180 51% 81 84 15 

Astrocytes X X X X X X  109,713 2,615 192 50% 87 90 15 

Oligodendrocytes X X X X X X  185,175 2,018 192 50% 87 90 15 

OPCs X X X X X X  41,611 243 192 50% 87 90 15 

Microglia  X X X  X X 58,443 1,356 168 53% 73 73 22 

Endothelial cells  X X X  X  15,776 368 132 52% 60 70 2 

 

Alzheimer’s Disease is characterized by altered correlations between gene pairs across cell types 

To identify altered gene-gene relationships between CT and AD individuals, we performed differential 

correlation analysis within each cell type. Across all cell types, a total of 374,243 pairs of genes (~0.65% of 

all tested pairs, Fig. 2a) had altered transcriptional relationships in AD (Padj ≤ 0.01, |∆r| ≥ 0.5). For 253,135 

pairs, an increase in correlation coefficient (∆r ≥ 0.5) was observed in AD and for 121,108 pairs a decrease 

(∆r ≤ -0.5, Fig.2b). Most altered relationships were identified in excitatory neurons (n = 313,756, 0.70%), 

followed by inhibitory neurons (n = 44,974, 0.72%), astrocytes (n = 7,669, 0.22%), microglia (n = 4,061, 
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0.44%), oligodendrocytes (n = 3,219, 0.61%), endothelial cells (n = 515, 0.77%, Fig. 2c) and OPCs (n = 49, 

0.17%). We next identified genes that are differentially correlated with age or Braak stage in AD individuals 

compared to CT (e.g., no correlation between gene expression and age in CT but a positive correlation in 

AD).  Across all cell types, 169 genes were significantly differentially correlated with age (Fig. 2d-j, e.g. 

upregulated with age in CT while downregulated with age in AD) and 215 genes were significantly 

differentially correlated with Braak stage (SFig. 1) . PTPN3 (Fig. 2k, rCT = -0.29, rAD = 0.44, Padj = 1.35 × 10-4) 

showed the most extreme changes in association with age in excitatory neurons from AD patients. 

Next, we investigated whether the observed differential correlations are explained by the differential 

expression of the genes between CT and AD individuals. Most genes that were differentially correlated 

were not significantly differentially expressed. Of all genes that were differentially correlated with at least 

one other gene (n = 18,321), 3,187(~17%) genes were also significantly differently expressed (PFDR ≤ 0.01, 

STable 1). Interestingly, most pairs of genes that showed an increase in correlation coefficient in AD had 

the same directional effects in gene expression; both up- or both downregulated. Vice versa, most pairs 

of genes that showed a decrease in correlation coefficient showed opposite directional effects in gene 

expression; one up- and one downregulated. Testing the association between correlation 

(increase/decrease) coefficient and directionality of effects (same/opposite) on gene expression resulted 

in a log odds ratio of 2.78 (95%CI = 2.76, 2.80, STable 2). 
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Figure 2 A Percentage and number of significant differential correlations for each cell type. B For each cell type the percentage 

of pairs of genes that have an increased or decreased correlation. Increasing meaning a higher correlation coefficient between a 

pair of genes in individuals with Alzheimer’s Disease (AD) compared to healthy controls (CT), and vice versa. C Volcano plot of the 

differential correlations in endothelial cells. Each dot represents a gene-pair, the x-axis represents the difference in correlation 

coefficient for the respective pair and the y-axis represents the –log10 empirical P-value. Blue dots are significant differential 

correlations where an increased correlation coefficient was found in AD. Conversely, red dots are significant differential 

correlations where a decreased correlation coefficient was found in AD. D, E, F, G, H, I, J Plots of the genes that are differentially 

correlated with age within the respective cell types. The x-axes represent the Spearman’s rank correlation coefficient. Yellow dots 

represent the correlation coefficient in AD for the respective gene with age and purple dots represent the correlation coefficient 

in CT for the respective gene with age. The size of the dots correspond to the –log10 p-value. K Dot plot for PTPN3 (excitatory 
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neurons). Each dot is an individual, the x-axes represent the age of the individuals in years and the y-axes the expression of the 

respective genes in the respective cell types. Yellow dots are individuals with Alzheimer’s and purple dots are healthy controls. 

Beneath the dot plot a density plot of age is shown.   

Regulatory hubs are primarily cell type specific  

Next, we constructed gene differential correlation networks for each cell type, where vertices represent 

genes and edges the significant differential correlations between genes (Fig. 1b). Degree distributions of 

these networks followed a power law (SFig. 2a-g, STable 3), showing that these networks have scale-free 

topology and that per network only a few central genes (hubs) are involved in the majority of altered 

relationships. Comparing hubs between cell types (Fig. 1c) showed that 824 (95%) hubs were cell type 

specific, and 42 (5%) hubs were shared between at least two cell types (Fig. 3a). Of all identified hubs (N= 

866), 261 (30%) hubs had known regulatory functions; 62 (7%) were known transcription factors (TFs)30, 

70 (8%) were known cofactors30 and 154 (18%) hubs were regulators of molecular functions (GO:0065009, 

Fig. 3b). Interestingly, when pairwise comparing the neighbourhoods of excitatory neuron TF hubs (Npairs 

= 930), we found 214 TF pairs with opposite differential correlations with the same genes. For example, 

the TF-hub ZNF579 was negatively correlated with CDH10 in CT (r = -0.28) and positively correlated in AD 

(r = 0.31, Padj = 4.38 × 10-4). Conversely, TF-hub ZNF33A was positively correlated with CDH10 in CT (r = 

0.38) and negatively in AD (r = -0.23, Padj = 3.29 × 10-4). This suggests that there are genes that are under 

control by different TFs in AD compared to CT. Furthermore, within the respective cell types, the 

neighbourhoods of 132 hubs were significantly enriched (PFDR ≤ 0.01) for the KEGG AD pathway (SFig. 3, 

STable 4), namely in excitatory neurons (N= 97), inhibitory neurons (N = 33) and astrocytes (N = 2). We 

identified hub genes that were differentially correlated with age, including sixteen excitatory neuron hubs, 

two inhibitory neuron hubs (MARS and SLF2), two astrocyte hubs (ARHGEF9 and CYFIP2), and one hub 

from endothelial cells (SPOCK2). Additionally, we identified hub genes that were differentially correlated 

with Braak stages, which included one astrocyte hub (ZNF302) and three microglia hubs (ALCAM, RAB11A 

and RASA3).Of the cell type specific regulatory hubs, only excitatory and inhibitory neuron hubs showed 

functional enrichment (GO terms), albeit for distinct processes. For example, hubs of excitatory neurons 

were enriched for regulation of transferase activity (N = 27, PFDR = 6.20 × 10-6, Fig. 3c) and negative 

regulation of protein phosphorylation (N = 15, PFDR = 2.42 × 10-4), and hubs of inhibitory neurons were 

enriched for positive regulation of RNA biosynthetic process (N = 21, PFDR = 5.65× 10-5, Fig. 3d) and 

regulation of transcription by RNA polymerase II (N = 24, PFDR = 9.99 × 10-5).  
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Next, we examined hubs that were shared between cell types (N = 42). SARAF was the only hub in four 

cell types and DGKZ, EMC7, HNRNPH1, MOK, NDUFV3 and S100A6 were shared hubs in three cell types. 

To investigate whether hubs shared between cell types also share neighbourhoods we performed a 

Fisher’s exact test between the neighbourhoods of the respective cell types for each hub that was shared 

between at least two cell types. Considering all cell types, we found 21 hubs with significantly overlapping 

neighbourhoods between cell types (fisher exact test, PFDR ≤ 0.01, SFig. 4, STable 5). Of the 21 hubs shared 

between excitatory and inhibitory neurons, 19 had significantly overlapping neighbourhoods. These 

results show that when hub genes are shared between cell types the putative gene expression regulatory 

disruptions are also shared.   

 

Figure 3 A) An UpSet plot of the hubs identified in each cell type, showing the degree of overlap of hubs between the cell types. 

B Pie charts showing the number of hubs that have known regulatory functions; transcription factor (orange), cofactor (blue) and 

regulator of molecular function (green). C-D Dot plot of the hub enrichment results for excitatory neurons (C) and inhibitory 
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neurons (D), The x-axes represent the % of how many hubs belong to the GO term relative to all genes comprising the GO term. 

The y-axes represent the GO terms. The color of the dots represents the adjusted P-value (FDR) for the term and the size of the 

dots represent the number of hubs belonging respective GO term. 

Differential correlation-based gene prioritization for Alzheimer’s Disease risk variants 

Considering that many hubs are annotated to have known regulatory functions, we argue that the number 

of differential correlations can be seen as a measure of importance and could potentially hint at causal 

involvement of the respective hub in AD. As such, we hypothesized that the number of differential 

correlations can be used to prioritize genes located near AD risk variants. We focused on 79 AD risk 

variants identified by Wightman et al4 and Bellenguez et al5. Using CONQUER31, we identified 2,528 genes 

near these 79 variants (see methods). Of these genes, 975 were present in our collection of single cell 

datasets (SFig. 5). In total, for 32 variants at least one hub was located nearby (Fig. 4a, Nexcitatory neurons= 19, 

Ninhibitory neurons= 9, Nastrocytes= 6, Noligodendrocytes= 3, Nmicroglia= 5). rs61732533 had four nearby located hubs; 

MAF1 and BOP1 in excitatory neurons and PLEC and CPSF1 in inhibitory neurons. Interestingly, a 

dysfunction of PLEC in neurons is known to be associated with tau accumulation32. rs769450 also had four 

nearby located hubs; OPA3, APOE and FBXO46 in excitatory neurons and APOE in inhibitory neurons. For 

five variants the annotated gene was also a hub (rs769450 - excitatory and inhibitory neurons - APOE, 

rs1065712 - excitatory neurons - CTSB, rs141749679 – astrocytes - SORT1, rs72777026 - astrocytes - 

ADAM17 and rs450674 microglia - MAF). 

Next, we calculated a cell type specific normalized rank based on the number of significant differential 

correlations (higher number of differential correlations = higher priority). Using this rank we prioritized 

genes within each cell type and for each risk variant. In total, we prioritized 230 genes in all cell types (Fig. 

4b, STable 6). For 29 variants the previously annotated gene corresponded to the highest prioritized gene 

in different cell types: e.g. rs769450-APOE, rs602602-ADAM10, rs4663105-BIN1, rs11218343-SORL1, 

rs1532278-CLU and rs141749679-SORT1. For 67 variants, another potential new risk gene ranked highest 

in the various cell types among which nineteen transcription factors were prioritized (e.g. rs1140239 - 

ZNF785, rs7384878 - CUX1). Another prioritized gene was MAF1 for rs61732533 in excitatory neurons. 

MAF1 is a stress responsive transcription factor and mTOR effector33. Aberrant mTOR signaling is 

suggested to strongly contribute to AD, mainly through oxidative stress34. KCNC3 was prioritized for 

rs9304690 in inhibitory neurons. KCNC3 is a potassium channel. A dysfunction of potassium channels has 

been associated with AD and many other neurological disorders35. To evaluate our prioritization approach, 

we compared it to prioritization using DEA. In short, using DEA we prioritized genes located nearby risk 
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variants that were the most differentially expressed. The two sets of prioritized genes (DCA- and DEA-

based) were evaluated using DisGeNET36. DisGeNET scores disease-gene associations (GDA, 0.01 – 0.9) 

based on their level of evidence in literature and from curated sources (higher GDA = more evidence). 

DCA- and DEA-based gene prioritization resulted in 70 and 24 genes respectively that were previously 

associated with AD (Fig. 4c). The highest scoring genes using DCA were APP (GDA = 0.9) and APOE (GDA = 

0.70). The highest scoring genes using DEA were TOMM40 (GDA = 0.50) and BIN1 (GDA = 0.50). Thus, we 

identified more disease-associated genes and with higher levels of evidence (i.e., higher GDA score) using 

DCA compared to DEA, offering an internal validation that DCA can be used as a prioritization method to 

identify putative risk genes. Altogether, with this prioritization approach, well-known AD genes were 

prioritized as well as genes that have not yet been associated with AD previously. Our method hints at 

involvement of these lesser-known genes in AD, and as such they might be of interest for future studies.  

 

Figure 4 Prioritization plots of excitatory neurons, inhibitory neurons, astrocytes and microglia. A) hubs located nearby risk 

variants. B) The prioritized genes for the top 20 risk variants from Wightman et al (sorted on significance). C) Distribution of GDA 

scores for the DCA-based (blue) and DEA-based (red) prioritized genes.  
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Co-expression analysis across cell types suggests glia-to-neuron intercellular directionality of gene 

expression regulation 

Finally, taking advantage of the characteristics of pseudo bulk data, we explored whether co-expression 

of genes exceeds cell type boundaries and whether it can also be indicative of transcriptional regulation 

across cell types. We focused on interactions between excitatory neurons and inhibitory neurons, 

excitatory neurons and astrocytes, excitatory neurons and oligodendrocytes, and finally excitatory 

neurons and microglia. Using only CT data, co-expression between pairs of genes was assumed at a 

spearman rank correlation coefficient of |r| ≥ 0.6. Excitatory neurons and inhibitory neurons had the 

highest co-expression rate as 2.69% (n = 909,061, Fig. 5a) of all tested gene pairs were co-expressed. For 

astrocytes, oligodendrocytes and microglia this was 0.06% (n = 16,123), 0.08% (n = 16,196) and 0.02% (n= 

2,078) respectively. Interestingly, when constructing co-expression graphs of each tested cell type pair we 

found that genes expressed in astrocytes (Fig. 5b), oligodendrocytes (Fig. 5c) and microglia (Fig. 5d) were 

more densely connected to genes in excitatory neurons, than the other way around (Fig. 5e-h). For 

example, the most densely connected gene in astrocytes, HINT1, was co-expressed with 728 genes in 

excitatory neurons, which is 7.66% of all genes measured in the excitatory neurons. The most densely 

connected excitatory neuron gene, FAU (Fig. 5b), was co-expressed with only 65 (2.49%) genes in 

astrocytes. Of note, HINT1 was only co-expressed with 238 excitatory neuron genes in the AD population, 

meaning it lost co-expression with 490 genes. Given that HINT1 is implicated in Ca2+ signalling37 and that 

an increase of astrocytic Ca2+ signalling is associated with AD38 and thought to have downstream effects 

on neuronal metabolism39, astrocytic HINT1 might be involved in this dysregulation. In oligodendrocytes, 

the most densely connected gene was YWHAH (n = 1,158, 12.2%), which is implicated in the regulation of 

many signaling pathways40. In microglia UBC (n = 361, 3.80%) was most densely connected. UBC is involved 

in ubiquitination, which is a post-translational modification process involved in the regulation of many 

processes41. The function of these densely connected genes hints at transcriptional regulation of 

excitatory neuron by genes expressed in inhibitory neurons, astrocytes, oligodendrocytes and microglia.  
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Figure 5:  Co-expression between cell types. Top ten (defined by no. of co-expression) excitatory neuron genes co-expressed with 

A) inhibitory neuron genes, B) astrocyte genes, C) oligodendrocytes and D) microglia, and vice versa. E.g. EMC7 expressed in 

excitatory neurons is co-expressed with 1,072 genes expressed in inhibitory neurons, TNRC6B expressed in inhibitory neurons is 

co-expressed with 1,799 genes expressed in excitatory neurons. E-H) Distribution of normalized degree of E) genes expressed in 

excitatory neurons co-expressed with inhibitory neuron genes (left), and vice versa (right). F) Of genes expressed in excitatory 

neurons co-expressed with astrocyte genes, and vice versa. G) Of genes expressed in excitatory neurons co-expressed with 

oligodendrocyte genes, and vice versa. H) Of genes expressed in excitatory neurons co-expressed with oligodendrocyte genes, 

and vice versa. Degrees are normalized for total number of genes of the “other” cell type.  

DISCUSSION 
In this study, we have provided insight into cell type specific and coordinated transcriptional changes in 

AD and pin-pointed putative key transcriptional regulators of the observed changes.  Most importantly, 

we have provided a prioritization scheme that identifies probable causal genes and important cell types 
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by superimposing the set of most differentially correlated genes onto genes located near AD risk variants. 

Finally, we have shown that transcriptional relationships and differences in these relationships do exceed 

the confines of cell types, hinting at altered intercellular communication AD. Altogether, performing 

differential correlation analysis (DCA) on scRNAseq data provided a comprehensive insight into 

transcriptional changes and consequences that are associated with AD. 

Our results show that the number of altered associations a gene has with respect to other genes in the 

trait of interest opposed to healthy controls can be used as a measure of involvement and severity of 

consequence for that trait, with the respective hub as a probable key actor. In the case of AD, examples 

of this are APOE, SORL1 and ADAM10, three well known AD genes42,43,44,45, which were identified as high-

ranking hub genes. The ε4 allele of APOE is the largest contributor to genetic risk for AD46. Of note, APOE 

ranked especially high in neurons (both excitatory and inhibitory), while APOE expression is generally low 

in neurons. This suggest that DCA analysis of pseudo bulk data is particularly capable of also identifying 

novel cell type specific interactions of risk genes. Interestingly,  a recent study confirmed that under stress 

some neurons indeed express APOE47, which might be reflected in our results.  

A strength of our prioritization scheme is that it does not require expression quantitative trait loci (eQTL) 

or colocalization10 analyses for variant-gene mapping, which is generally done in GWASs. The effect of a 

variant on a gene is not always reflected in differential expression of the respective gene. For instance, a 

variant might alter the amino acid sequence of a protein, without changing the extent to which the 

transcript is expressed. As the function of the protein is possibly changed, it can also alter functional 

relationships with other proteins and their respective transcripts. Support for this is shown with the 

association between rs769450 (part of the ε4 allele) and APOE. In brain eQTL and pQTL studies48, rs769450 

has been shown not to influence the abundance of the APOE protein or transcript. Additionally, in 

differential expression analyses of AD, APOE is often not among the most differentially expressed 

genes18,14. However, in our analysis, APOE is ranked among the most differentially corelated hub genes, 

highlighting the importance of looking beyond changes in expression of only one single gene at a time. 

Alternatively, variants might alter the enhancer or promotor regions of a gene, and as a result the 

respective gene might be under control of different TFs in AD compared to healthy controls. Our results 

indeed suggest that when comparing AD with healthy controls, there might be genes that are under 

transcriptional control by different TFs compared to healthy controls. Whether this is due to changes in 

enhancer or promotor regions remains to be elucidated.  
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We mainly focused on hub genes in differential correlation networks, which were defined as genes with 

the most (top 5%) differential correlations. As hubs are involved in the majority of altered associations, 

we expected these to have a regulatory function. However, a previous study evaluating differential co-

expressions showed that differentially regulated targets are more likely to be identified as hubs, instead 

of the regulators (TFs)28. With this in mind, two additional layers of evidence were collected to strengthen 

the regulatory status of the identified hubs. First, annotations concerning a regulatory function were 

collected; are the hubs TFs30, cofactors30 or regulators of molecular function? The second layer of evidence 

was disease association; do the hubs have altered transcriptional relationships with known AD genes49,50?  

Additionally, the gene prioritization scheme provides a third layer of evidence, as it is generally assumed 

that the causal gene is located near the identified risk variant.   

Our results showed that when a pair of genes has increased correlation in the tested group, and both 

genes are significantly differentially expressed, most often the genes of that pair have similar directional 

effects in the tested group in terms of mean expression (either up- or downregulated in both groups), 

whereas a decrease of the correlation coincides with opposite directional effects. However, most genes 

that are differentially correlated are not differentially expressed. This shows that genes that are subjected 

to an increase of their correlation are more likely to respond in a similar direction subjected to the 

perturbation, suggesting shared and altered TF control. Loss of shared control may result from regulation 

by other TFs. In contrast to differential expression analysis, DCA has an added value in providing a more 

detailed view of transcriptional changes, and whether the changes are coordinated or not.  

One limitation of this study is that different brain regions were confounded by the batches, and therefore 

were corrected for. It is known that different brain regions have different gene co-expression networks 

and different cell types and cell-to-cell connectivity,  and that different brain regions respond differently 

to AD51.  As such, our combination of different brain regions likely favoured transcriptional changes that 

are shared between brain regions.  

Overall, we performed DCA in single-cell data and have shown that AD is associated with coordinated 

transcriptional changes. Our analysis highlights the complexity and heterogeneity of cell type specific 

responses to AD.  And lastly, with our bottom-up approach towards gene prioritization we provide a 

compendium of genes that could serve as guidance for functional follow-up studies.  
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METHODS 
Single-cell RNAseq data 

Four 10x single-cell RNAseq (scRNAseq) datasets were acquired from AMP-AD knowledge portal of which 

the subjects were participants of the Religious Orders Study and the Memory and Aging Project 

(ROS/MAP).  Two 10x datasets17,18 were acquired from GEO (GSE157827 and GSE138852). The Seattle 

Alzheimer’s Disease Brain Cell Atlas (SEA-AD) was obtained from (https://registry.opendata.aws/allen-

sea-ad-atlas/). The first dataset (BA9, ID: syn16780177) consisted of 24 subjects and originated from the 

dorsolateral prefrontal cortex (DLPFC), specifically Brodmann area 9 (BA9). Raw fastq files were obtained 

of this dataset. The second dataset (BA10, ID: syn18485175) consisted of 48 subjects and originated from 

the prefrontal cortex (PFC), specifically BA10. A count matrix was obtained of this dataset as it was already 

processed with CellRanger aligning reads to the hg38 genome14. The third dataset (BA9-46, ID: 

syn21670836) consisted of 32 subjects and originated from the DLPFC, BA9 and BA46. Of this dataset a 

count matrix was obtained as it was also processed with CellRanger aligning reads to the hg38 genome52. 

The fourth dataset (BA9-46-Micro, ID: syn12514624) was a microglia only dataset, consisted of 12 subjects 

and originated from the DLPFC, BA9 and BA4615,16. Of this dataset, raw fastq files were obtained. The fifth 

dataset (LAU17, GSE157827) consisted of 21 PFC samples and originated from 12 individuals diagnosed 

with AD and 9 healthy controls. Of this dataset a raw count matrix was acquired as it was also processed 

with CellRanger aligning reads to the hg38. The sixth dataset (ENT18, GSE138852) consisted from 12 

entorhinal cortex samples and originated from 6 individuals diagnosed with AD and 6 healthy controls. Of 

this dataset a raw count matrix was acquired. The seventh dataset (SEA-AD) consisted of 89 middle 

temporal gyrus samples, 23 of which were diagnosed with AD and 32 were specified as CT. Of this dataset 

the raw count matrix was acquired. 

Clinical data 

Clinical data were acquired from the AMP-AD knowledge portal (ID: syn3157322). The variable cogdx was 

used to characterize controls (CT), Alzheimer’s disease (AD) and other (O). Cogdx represents the clinical 

consensus diagnosis of cognitive status at time of death and is indicated with a value ranging from one to 

six. A value of one represents no cognitive impairment (CI), as such, individuals with a cogdx of one were 

characterized as CT. A value of four represents Alzheimer’s dementia and no other cause of CI, as such, 

these individuals were characterized as AD. The remaining values represent mild CI and/or other causes 

for dementia and these individuals were characterized as O. Besides clinical diagnosis, APOE genotype, 

Braak stage, sex, and age at time of death was also available. However, age at time of death is censored 
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above the age 90 years. Of the LAU, ENT and SEA-AD datasets the clinical data were acquired from the 

corresponding sources. For both datasets; age, sex, clinical diagnosis and Braak stage were available.  

Single-cell RNA-seq data alignment and pre-processing 

The two datasets (BA9 and BA9-46-Micro) of which fastq files were acquired were processed with 

CellRanger (4.0.0) aligning reads to the hg38 genome, default parameters were used. Next, all datasets 

were jointly pre-processed. Cells with ≤20% mitochondrial counts, ≥300 total counts, ≤20,000 total counts 

and  ≥200 measured genes, were kept for downstream analyses.  

Clustering and cell type annotation 

Each dataset was separately processed for clustering and cell type annotation which was done as follows. 

The processed count matrix was loaded in Seurat 3.2.253. The data was log-normalized, such that: 𝑦𝑖𝑗 =

 log (
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗𝑗
× 104), where 𝑥𝑖𝑗  and 𝑦𝑖𝑗  are the raw and normalized values for every gene 𝑖 in every cell 𝑗, 

respectively. Next, with the 2,000 most variable genes (default with Seurat), principal components 

analysis (PCA) was performed. The number of principal components (PCs) used for clustering was 

determined using the elbow method (BA9:12 PCs,  BA10:11 PCs, LAU:11 PCs, BA9-46:10 PCs, BA9-46-

Micro: 7PCs, ENT: 6 PCs).Next, Seurat’s FindNeighbours and FindCluster functions were used, 

which utilizes Louvain clustering, the resolution was set at 0.5. A UMAP plot was made to visualise and 

inspect the clusters. The following cell types were identified using known and previously used markers14: 

excitatory neurons (SLC17A7, CAMK2A, NRGN), inhibitory neurons (GAD1, GAD2), astrocytes (AQP4, 

GFAP), oligodendrocytes (MBP, MOBP, PLP1), oligodendrocyte progenitor cell (PDGFRA, VCAN, CSPG4), 

microglia (CSF1R, CD74, C3) and endothelial cells (FLT1, CLDN5). Based on differential expression of these 

markers between clusters, determined with Seurat’s FindMarkers function, cell types were assigned 

(SFiles. 1). When clusters were characterized by markers of multiple cell types, they were assigned as: 

“Unknown”. Of the LAU and SEA-AD the accompanying cell type labels were used.   

Aggregation, integration and batch correction 

Per dataset, for each cell type, pseudo bulk data was generated. For instance, for each subject, cells 

annotated as astrocytes were aggregated in a single vector. As such, we generated cell type specific 

datasets. Aggregation was done based on the binary expression pattern, since the percentage of zeros for 

a gene in a cell population is highly associated with its mean expression25,54. The aggregated value of a 

gene for an individual was defined by the percentage of non-zero measurements in a specific cell 
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population. Genes were kept for aggregation if they were expressed in ≥ 1% of the respective cell 

population in all datasets. Per cell type, the datasets were combined. Each new cell type specific dataset 

was batch corrected with respect to a reference dataset. First by performing a median ratio 

normalization55 and then, batch correction was performed with the ComBat function from the R-package 

sva (3.36.0)56. For the excitatory neurons, inhibitory neurons, astrocytes, oligodendrocytes, OPCs and 

endothelial cells, the BA9 dataset was used as reference and for the microglia the BA9-46-Micro dataset 

was used as reference. Integration was confirmed with a PCA and visually inspecting the first four principal 

components.  

Differential correlation analysis (DCA) 

Differential correlation or differential co-expression was investigated between controls and AD 

individuals. Differential correlation we calculated similarly as described by McKenzie et al.29 First, 

Spearman’s rank correlation coefficient between a pair of genes was calculated separately for the groups 

of interest based on the aggregated detection rates. This results in a correlation coefficient for each group. 

Next, the correlation coefficients are transformed to z-scores by means of the Fisher z-transformation57.  

Then, the difference between z-scores can be calculated with equation 1:  

∆𝑧 =  
(𝑧𝑥− 𝑧𝑦)

√𝑣𝑎𝑟(𝑟𝑥)+ 𝑣𝑎𝑟(𝑟𝑦)

 (1) 

where var(r) is calculated by 1.06/(n-3) , with n being the sample size of the respective groups. As ∆z is 

normally distributed, a two-sided P-value for the differential correlation between each pair of proteins 

can be calculated. Besides the P-value resulting from the Z-test, empirical P-values were also calculated. 

The empirical null distribution was generated by permuting the group labels a 1,000 times and performing 

the Z-test on each pairwise combination of genes. The resulting P-values contributed to the empirical null 

distribution (𝑥0). Next, the empirical P-value was calculated as: 

𝑃𝑒𝑚𝑝 =  
∑ 𝐼(𝑃 ≥  𝑥0)𝑁

𝑛=1

𝑁
 

Where 𝐼() is an indicator function, 𝑁 is the total number of P-values that make up the empirical null 

distribution and 𝑃 is the actual P-value for which we want to determine the empirical P-value. Significance 

was assumed at Pemp ≤ 0.01. 

Classification of differential correlations 
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The directional change of correlation between two genes from one group to another does not reveal 

whether an association is lost or gained. As illustration, a change from r = -0.9 to r = -0.05 and r = 0.05 to 

r= 0.9 both have an increase of the correlation coefficient. However, in the first example a very strong 

association is lost, while in the second example a very strong association is gained. To evaluate differential 

correlations in terms of loss and gain of association we classified each differential correlation. First the 

state 𝒇(𝒓) in both group is determined as follows: 

𝑓(𝑟) = {
0, −0.25 ≤ 𝑟 ≤ 0.25 

+, 𝑟 > 0.25 
−, 𝑟 < −0.25 

 

Where 𝒓 is the Spearman’s rank correlation coefficient of a pair of genes in the respective group. A “𝟎” 

represents a state of no correlation, “+” represents a state of positive correlation and “–“ a state of 

negative correlation. When the state of a pair of genes is “–“ or “+” in CT and 0 in AD, then we classify it 

as a loss of association (-/0, +/0). Vice versa is defined as a gain of association (0/-, 0/+) and a change 

from “–“ to “+” or from “+” to “–“, is defined as a flip of association (-/+, +/-). Differential correlations 

can also remain in the same state between groups (e.g. r = 0.30 to r = 0.95), these are defined as no change 

of association.  

Differential Expression 

As the aggregated detection rates were normally distributed across the individuals, differential expression 

analysis (DEA) was performed with a linear model, where the gene’s expression was specified as the 

outcome variable and the group assignment (CT  = 0 and AD =1) was used as predictor variable. The 

function lm from the stats package from R (4.0.5) was used. Within each cell type, each gene was tested 

on differential expression. P-values were corrected for multiple tests, per cell type, with the Benjamini-

Hochberg procedure and significance was assumed at an adjusted P-value of PFDR ≤ 0.01.  

Network analysis 

For each cell type, the results from the DCA were used to construct networks using igraph (1.2.6). In these 

networks, genes were defined as nodes and an edge between two nodes was drawn when they were 

significantly differentially correlated. The centrality of each gene was determined by the degree (no. of 

differential correlations) within the respective networks. To test whether these networks followed the 

power law the fit_power_law function from igraph was used. Hubs were defined as the top 5% of 

genes having the highest degree. Transcription factors and cofactors were downloaded from 
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AnimalTFDB30. Genes involved in regulation of molecular functions (GO:0065009) were identified using 

the R-packages GOfuncR (1.10.0) and org.Hs.eg.db (3.12.0).  

GO term enrichment analysis 

For each cell type, a GO term enrichment analysis was performed with the hubs that have known 

regulatory functions (TFs, cofactors, GO:0065009). The GO term enrichment analysis was executed with 

the R-package clusterProfiler (v3.18.1)58. Gene symbols were translated to entrez IDs making use of 

org.Hs.eg.db (3.12.0). For each cell type the background was defined by all genes that were present in the 

respective cell type specific dataset. P-values were corrected for multiple tests with the Benjamini-

Hochberg procedure and significance was assumed at an adjusted P-value of PFDR ≤ 0.01. The GO term 

regulation of molecular functions (GO:0065009) was excluded as the hubs were partly pre-filtered with 

this GO term.  

KEGG Alzheimer’s Disease pathway enrichment 

To investigate to what degree a hub was associated with Alzheimer’s Disease, each hub was subjected to 

a KEGG49 AD pathway enrichment analysis. For each hub we performed a gene set enrichment analysis on 

the genes that were significantly differently correlated with the respective hub. Genes belonging to the 

KEGG AD pathway (ID: 05010) were defined with org.Hs.eg.db (3.12.0). Enrichment was calculated with 

the fisher exact test from stats package from R (4.0.5). P-values were corrected for multiple tests, per cell 

type, with the Benjamini-Hochberg procedure. For each cell type the background was defined by all genes 

that were present in the respective cell type specific dataset. 

Hub overlap 

When hubs were identified in multiple cell types, we investigated to what degree the hubs overlap 

between the respective cell types, in terms of genes the hubs were differentially correlated with (e.g. are 

they differentially correlated with the same genes in the different cell types). This was done with the fisher 

exact test from stats package from R (4.0.5) and the background was defined by the genes that were 

present in both cell type specific datasets. P-values were corrected for multiple tests with the Benjamini-

Hochberg procedure. A significant overlap was assumed at P-value of PFDR ≤ 0.01.  

 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2023. ; https://doi.org/10.1101/2023.05.15.23289992doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.15.23289992
http://creativecommons.org/licenses/by-nc/4.0/


Gene prioritization 

For the prioritization we started with the hubs that were identified as previously described. Next, we 

extracted the RS IDs from two GWASs4,5. In total 79 AD risk variants were extracted.  For each variant, 

CONQUER31 was used to identify genes genomically located near the respective risk variants. Besides 

defining a fixed window of 1 Mb around the respective variant, CONQUER uses chromatin interaction to 

dynamically expand the search space. For each variant and cell type, genes were prioritized that were 

located near the respective variant and ordered based on the number of differential correlations within 

the respective cell type. In other words, more differential correlations, higher priority. For each of these 

genes, the regulatory status was evaluated (see Network analysis). Finally, the highest-ranking hubs were 

compared to the previously annotated  genes, provided that the previously annotated gene was present 

in the respective datasets. For the variants extracted from Wightman et al4 the genes were assigned based 

on colocalization, fine-mapping and previous literature. For the variants extracted from Bellenguez et al5 

these genes were the nearest protein coding.  
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