Usefulness of the Short Form-8 (SF-8) for chronic pain in the orofacial region

2	
3	Aiji Sato (Boku) ¹ , Tatsuya Tokura ^{2*} , Hiroyuki Kimura ² , Mikiko Ito ³ , Shinichi Kishi ² ,
4	Takashi Tonoike ⁴ , Norio Ozaki ^{2,5} , Yumi Nakano ⁶ , Saori Nakano ⁷ , Hiroshi Hoshijima ⁸ ,
5	Masahiro Okuda ¹
6	
7	
8	
9	¹ Department of Anesthesiology, School of Dentistry, Aichi Gakuin University, 2-11
10	Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan
11	² Department of Psychiatry, Nagoya University Graduate School of Medicine, 65
12	Tsurumai-cho, Showa-ku, Nagoya, 466-8650, Japan
13	³ Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin
14	University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan
15	⁴ Faculty of Psychological and Physical Sciences, Health Service Center, Aichi Gakuin
16	University, 12 Araike Iwasaki-cho, Nisshin, 470-0195, Japan
17	⁵ Institute for Glyco-core Reserch (iGcORE), Nagoya University Graduate School of
18	Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8650, Japan
19	⁶ Department of Psychology and Human Relations, Nanan University, 18 Yamazaki-cho,
20	Showa-ku, Nagoya, 466-8673, Japan
21	⁷ Aichi PFS Association, 1-21-35 Osu, Naka-ku, Nagoya, 460-0011, Japan

- ⁸Division of Dento-oral Anesthesiology, Tohoku University Graduate School of
- 23 Dentistry, Seiryomachi 4-1, Aoba-ku, Sendai, 980-0000, Japan
- 24 * Corresponding author
- 25 E-mail: <u>tatsuyatokura@gmail.com</u> (TT)
- 27 All authors contributed equally to this work.

- ...

40 Abstract

41	Given that chronic pain has become a major problem in recent years, affecting
42	approximately 30% of the general population, this study used the Short Form-8 (SF-8)
43	Japanese version to investigate (1) the quality of life (QOL) of patients with burning
44	mouth syndrome (BMS) or persistent idiopathic facial pain (PIFP) (compared to a
45	Japanese control group) and (2) whether the therapeutic intervention improves the QOL
46	and reduced pain (comparison between 0 and 12 weeks) of patients with BMS or PIFP.
47	A total of 63 patients diagnosed with either BMS ($n = 45$) or PIFP ($n = 18$) were
48	included in this study. The diagnostic criteria for BMS and PIFP were established based
49	on the 3rd edition of the International Classification of Headache Disorders. Our study
50	results showed that while Physical Component Summary (PCS) in patients with BMS or
51	PIFP improved with treatment, it did not improve to the national standard value (NSV)
52	after 12 weeks of intervention. In contrast, Mental Component Summary (MCS)
53	improved to the same level as NSV after 12 weeks of intervention. Therefore, we found
54	that therapeutic intervention improves MCS and reduces pain; however, improving PCS
55	takes time.

57 Introduction

58	Chronic pain has become a major problem in recent years, affecting
59	approximately 30% of the general population [1]. The majority of these patients are
60	difficult to treat, and even when they can be treated, 50% of them experience only
61	partial improvement and reduced quality of life (QOL) [2,3]. However, understanding
62	chronic pain is difficult; thus, it is underdiagnosed and under-treated because pain
63	cannot be commensurate with the organic abnormality [4,5]. Chronic pain can be a
64	comorbidity of mental illness such as depression and can also affect various aspects of
65	patients' daily lifestyles, such as housework and employment, which immensely lowers
66	their quality of life [6].
67	Chronic pain in the orofacial region includes various conditions, such as
68	burning mouth syndrome (BMS), persistent idiopathic facial pain (PIFP), and
69	nonorganic temporomandibular joint disorder. In particular, BMS and PIFP are
70	commonly encountered in daily clinical practice [7]. Since these patients often complain
71	of physical symptoms only, which are the main complaints, establishing an accurate
72	diagnosis, identifying the treatment, and evaluating the degree of improvement are
73	difficult even after the treatment intervention.

74	The concept of health-related quality of life (HRQOL) has been generally used
75	as a multidimensional assessment of how disease and treatment affect a patient's sense
76	of overall function and well-being [8]. It is also an inclusive concept based on the
77	patient's subjective judgment. In other words, HRQOL quantifies the impact of an
78	illness on performing activities of daily living (ADL). The Short Form-8 (SF-8) is a
79	comprehensive, versatile, and practical tool globally used tool for measuring HRQOL
80	[9], allowing comparison of normative values from large national surveys with results
81	from more focused outcome studies. The SF-8 is based on the SF-36, a 36-item version
82	of the rating scale, but is more convenient because it provides results equivalent to the
83	SF-36. Although the authors provided treatment interventions for many patients with
84	chronic pain in the orofacial region, pre- and post-treatment evaluations were based on
85	conventional clinical diagnostic evaluations based on physicians and dentists and were
86	inadequate from the patient's viewpoint. In addition to pain reduction, the goal of
87	treatment is to improve the QOL; however, to the best of the authors' knowledge, no
88	previous reports evaluated the QOL at pre- and post-treatment intervention for chronic
89	pain in the orofacial region.
90	In this study, the SF-8 Japanese version [10] was used to investigate 1) the

91 QOL of patients with BMS or PIFP (compared to a Japanese control group) and 2)

92 whether the therapeutic intervention improves the QOL and reduced pain (comparison

93 between 0 and 12 weeks).

94 Materials and methods

95 **Ethical guidelines**

- 96 This study was conducted per the principles laid out in the Declaration of
- 97 Helsinki and was approved by the ethical review committee of Nagoya University
- 98 Graduate School of Medicine (no. 234, 234-2, 2004-0234-2 and 2004-0234-3) and the
- 99 ethical committee of the School of Dentistry, Aichi 🗆 Gakuin University (no. 41). Every
- 100 effort was made to protect the patients' confidentiality and personal information. All
- 101 participants provided written informed consent.

102 Study design and patients

103	The study was initiated on May 10, 2010 and patients were recruited between
104	May 10, 2010 and April 21, 2021. A total of 63 patients diagnosed with either BMS (n =
105	45) or PIFP ($n = 18$) who were treated at the Liaison Clinic, Department of Oral and
106	Maxillofacial Surgery, Aichi Gakuin University Dental Hospital (coordinated with the
107	Department of Psychiatry, Nagoya University Graduate School of Medicine) and who
108	consented to participate were included in this study. The diagnostic criteria for BMS and

- 109 PIFP were established based on the 3rd edition of the International Classification of
- 110 Headache Disorders (Table 1) [11].
- 111 A trained psychiatrist performed psychiatric evaluations on all patients using
- the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) [12].
- 113 Patients who visited our liaison clinic before 2013 were diagnosed using the Diagnostic
- and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision
- 115 (DSM-IV-TR) [13]. These patients' psychiatric diagnoses were recategorized based on
- 116 DSM-5 by confirming each patient's clinical record.

117 Table 1. Diagnostic Criteria of BMS and PIFP Based on the 3rd Edition of the International Classification of Headache Disorder.

BMS	PIFP
A. Oral pain fulfilling criteria B and C	A. Facial and/or oral pain fulfilling criteria B and C
B. Recurring daily for 2 h per day for >3 months	B. Recurring daily for 2 h per day for >3 months
C Pain has the following characteristics:	C. Pain has the following characteristics:
1 Burning quality	1. Poorly localized and not following the distribution of the
2. Felt superficially in the oral mucosa	peripheral nerve
. Feit superficially in the oral inteosa	2. Dull, aching, or nagging quality

D. Oral mucosa is of normal appearance, and clinical

examination, including sensory testing, is normal

E. Not better accounted for by another ICHD-3 diagnosis

D. Clinical neurological examination is normal

E. A dental cause has been excluded by appropriate

investigations

F. Not better accounted for by another ICHD-3 diagnosis

118 BMS, Burning Mouth Syndrome; PIFP, Persistent Idiopathic Facial Pain; ICHD-3, The International Classification of Headache

119 Disorders 3rd edition

121	To make a psychiatric diagnosis based on DSM-5, a structured clinical
122	interview was conducted. The psychiatrist and dentist are providing treatment in the
123	same clinic, and the psychiatric and dental diagnoses were performed in the same place
124	and at the same time. Regarding therapeutic intervention, serotonin noradrenaline
125	reuptake inhibitors (SNRIs) are recently more commonly used than tricyclic
126	antidepressants because of their fewer adverse effects although antidepressants have
127	been widely used for the treatment of chronic pain. Our previous study reported that
128	SNRI duloxetine is effective for chronic pain in the orofacial region [14-17]. Based on
129	the above, duloxetine was also used in the present study and administered to patients
130	with the above diagnosis from the initial visit (0 weeks). The initial dose of duloxetine
131	is 20 mg once daily. At \geq 2 weeks after initiating the administration, the dose was
132	increased to a maximum of 40 mg once daily observing symptom changes and adverse
133	effect expressions.
134	The collected data were anonymized, and the authors did not have access to
135	information that could identify individual participants once it was stored.
136	Outcome measures
137	As the main outcome, for patients who received the therapeutic intervention,
138	the SF-8 at the initial visit and after 12 weeks of intervention were evaluated and

139	compared with those of the Japanese control participants. The SF-8 consists of the
140	following items: general health, physical function, daily role function (physical),
141	physical pain, vitality, social function, mental health, and daily role function (mental)
142	(Table 2) [9]. These eight items were scored using norm-based scoring (NBS: scoring
143	based on the national standard value [NSV] [50]) for each item. Based on the eight
144	items, two summary scores, "Physical Component Summary (PCS)" and "Mental
145	Component Summary (MCS)," were calculated to indicate physical and mental health,
146	respectively. For both PCS and MCS, higher scores indicate a higher quality of life. A
147	group of healthy participants matched in the number with the patient group was also
148	created from the NBS data and used as the NSV.
149	Additionally, pain intensity was evaluated using a visual analog scale (VAS)
150	value. To evaluate depression in 63 patients with BMS and PIFP, Beck's depression
151	inventory (BDI: cutoff value, ≤ 10) was used as a subjective index and the Hamilton
152	depression rating scale (HDRS: cutoff value, \leq 7), which uses semi-structured interviews
153	by a trained psychiatrist, as a highly precise objective index [18,19].

Table 2. Component Concepts and Questions of SF-8.

Overall, how has your health been over the past week?	
daily	
sical	
work	
-	

5. Vitality	In the past month, how well have you been?	
	In the past month, how often has your usual social interaction with family and friends	
6. Social function	been prevented by physical or psychological reasons?	
7 Montal boolth	In the past month, how often have you been suffering from psychological problems	
7. Mentai neatui	(feeling anxious, depressed, and irritable)?	
	In the past month, how often have your daily activities (such as work, school, and	
8. Daily role function (mental)	household chores) been prevented by psychological reasons?	
The score for each item is indicated by a	deviation score based on the national standard value (50). In addition, a summary score can be	
calculated by multiplying the score of ea	ch item by a coefficient summary score. The items closely related to the physical summary	

score are 1–4, and the items closely related to the mental summary score are 5–8. 157

155

156

SF-8: the Short Form-8 158

159

160 Statistical analysis

161	Data are expressed as median (interquartile range [IQR]) or number. Since the
162	sample size is small and the data do not follow a normal distribution, we adopted the
163	median value instead of the average value. For statistical testing, the Mann-Whitney
164	U-test was used to compare differences between two independent groups for continuous
165	variables. The two-sided statistical significance level was set at $p \le 0.05$. Statistical
166	analysis of the recorded data was performed using IBM® SPSS® Statistics Ver26.
167	Results
168	A total of 63 patients participated in the study. Table 3 depicts the demographic
169	characteristics and psychiatric diagnosis.
170	

171 **Table 3. Patient Characteristics in this Study.**

Age (year)

BMS PIFP <u>"Patient demographics"</u>

64 [54–70]

57.5 [51.25-64.75]

6/39

1/17

	"Psychiatric diagnosis"	
Major depressive disorder	1	0
Somatic symptom disorder with predominant pain	35	17
Somatic symptom disorder (other than those above)	2	0
Major depressive disorder		

+ somatic symptom 7 1 disorder with

predominant pain

Male/Female

172 Data are expressed as median [interquartile range: IQR] or number.

173 BMS, Burning Mouth Syndrome; PIFP, Persistent Idiopathic Facial Pain

175	As shown in Fig 1, the SF-8 PCS was 41.3 [37.1–45.9] at 0 week, 45.3
176	[40.2–50.1] at 12 weeks, and the NSV was 50.28 [45.86–53.28]. Statistically significant
177	differences were observed between 0 and 12 weeks, 0 week and NSV, and 12 weeks and
178	NSV. The SF-8 MCS was 45.4 [38.4–49.6] at 0 week and 48.1 [44.4–52.3] at 12 weeks,
179	and the NSV was 49.86 [45.96–53.49]. Statistically significant differences were
180	observed between 0 week and 12 weeks and between 0 week and NSV. However, no
181	statistically significant difference was observed between 12 weeks and NSV.
182	Fig 1. Figure 1A. Comparison of SF-8 PCS between at initial visit, after 12 weeks
183	of treatment, and healthy Japanese data. %P<0.01 (0week vs 12weeks), %*
184	P<0.01 (0week vs NSV), ****P<0.01 (12weeks vs NSV)
185	Figure 1B. Comparison of SF-8 MCS between at initial visit, after 12 weeks of
186	treatment, and healthy Japanese data. %P=0.01 (Oweek vs 12weeks) %%P<0.01
187	(0week vs NSV)
188	Fig 2 shows the VAS, BDI, and HDRS between the initial visit and after 12
189	weeks of treatment. The VAS was 53 [32.5–77] at 0 week and 26 [8.5–46] at 12 weeks.
190	The BDI was 12 [6.5–18.5] at 0 week and 6 [1.5–10.5] at 12 weeks. The HDRS was 6

- 191 [3–12] at 0 week and 2 [1–3] at 12 weeks. All parameters showed statistically
- 192 significant differences between 0 and 12 weeks.
- 193 Fig 2. Figure 2A. Comparison of VAS between at initial visit and after 12 weeks
- 194 of treatment. XP<0.01 (0week vs 12weeks)
- 195 Figure 2B. Comparison of BDI between at initial visit and after 12 weeks of
- 196 **treatment. X**P<0.01 (0week vs 12weeks)
- 197 Figure 2C. Comparison of HDRS between at initial visit and after 12 weeks of
- 198 **treatment. X**P<0.01 (0week vs 12weeks)

199

200 **Discussion**

201	This study showed that while PCS in patients with BMS or PIFP improved
202	with treatment, it did not improve to NSV after 12 weeks of intervention, whereas MCS
203	improved to the same level as NSV after 12 weeks of intervention. The results
204	demonstrated that treatment intervention improved BDI and HDRS, a measure of
205	depression. Emotional factors have been reported to be strongly involved in the
206	deposition and relief of chronic pain and may have diverse effects on pain expression
207	[20]. This study indicates that especially when no organic cause has been identified for
208	physical symptoms, prompt collaboration with psychosomatic medicine and psychiatry

209 is extremely important, rather than making a definitive diagnosis and treatment by

210 dentistry alone.

211	The validity of the study results is considered high because the SF-8, a standard
212	and universally used instrument worldwide, was used to measure QOL. Previous reports
213	using the SF8 have included evaluation for rheumatism [21] and stroke [22], and the
214	study results indicate that it can be used adequately in the field of dentistry. Visual
215	assessment methods such as the VAS [23] and the face scale [24] have been previously
216	used as assessment methods that include patients' mental satisfaction; however, it is
217	difficult to say that they are sufficient. To evaluate medical interventions, subjective
218	factors including psychosocial aspects should be measured, and a simple scale is needed
219	for this purpose. In other words, in addition to the subjective evaluation of physicians
220	and dentists, improvement of patients' ADL, and tracking the blood data, a scale similar
221	to the SF8, which easily measures PCS and MCS, can be a good means of
222	communication between physicians and patients.
223	Although the above findings are similar, MCS recovered while PCS did not
224	recover to NSV in this study. Thus, emotional turbulence may cause muscle
225	hyperactivity induced by the central nervous system, resulting in parafunctional habits
226	[25]. Depression is also reported to be more likely a consequence than a precursor of

227	living with pain so the mind needs to gain supremacy over the body to compensate for
228	pain. In other words, the emotional side of pain should be managed first, rather than
229	both the mental and physical sides, and our study may have been the result of
230	intervention from the mental side. However, restoring PCS is still necessary to improve
231	the patients' QOL. This may be because many patients do not yet achieve the level
232	where treatment can be terminated although symptoms tend to decrease after up to 12
233	weeks of treatment, and treatment for PCS may take a few more weeks to recover to a
234	level comparable to NSV. One report revealed that it took 2 years for PCS to finally
235	approach the national norm in a patient with postoperative head and neck cancer [26].
236	This finding suggests that PCS may not be adequately improved even with long-term
237	follow-up.
238	MCS improves first due to "the effects of specialized psychiatric treatment
239	with psychotherapy and antidepressants."
240	This study has several limitations. First, the number of patients and the study
241	duration are limited (as noted above, PCS may improve with longer follow-up), and it is
242	a single-center study. In addition, as the SF-8 is a scale that can be used for a wide range
243	of patients, from normal participants to patients with chronic diseases, it is not a
244	disease-specific scale for chronic pain in the orofacial region.

245	In conclusion, we used the SF-8 Japanese version to investigate (1) the QOL of
246	patients with BMS or PIFP (compared to a Japanese control group) and (2) whether the
247	therapeutic intervention improves the QOL and pain reduction (comparison between 0
248	and 12 weeks). The results showed that therapeutic intervention improves MCS and
249	reduces pain; however, improving PCS takes time.
250	Acknowledgments

- 251 The authors would like to thank Enago (www.enago.jp) for the English
- 252 language review.

253 **References**

254	1.	Ji RR, Xu ZZ, Gao YJ. Emerging targets in neuroinflammation-driven chronic
255		pain. Nat Rev Drug Discov. 2014;13: 533-48.
256	2.	Dworkin RH, O'Connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS,
257		et al. Pharmacologic management of neuropathic pain: evidence-based
258		recommendations. Pain. 2007;132: 237-51.
259	3.	Finnerup NB, Sindrup SH, Jensen TS. The evidence for pharmacological

treatment of neuropathic pain. Pain. 2010;150: 573-81.

261	4.	Murray AM, Toussaint A, Althaus A, Löwe B. The challenge of diagnosing
262		non-specific, functional, and somatoform disorders: A systematic review of
263		barriers to diagnosis in primary care. J Psychosom Res. 2016;80: 1-10.
264	5.	Henningsen P, Zipfel S, Herzog W. Management of functional somatic
265		syndromes. Lancet. 2007;369: 946-55.
266	6.	Turk DC, Wilson HD, Cahana A. Treatment of chronic non-cancer pain. Lancet.
267		2011;377: 2226-35.
268	7.	Umemura E, Tokura T, Ito M, Kobayashi Y, Tachibana M, Miyauchi T, et al.
269		Oral medicine psychiatric liaison clinic: study of 1202 patients attending over
270		an 18-year period. Int J Oral Maxillofac Surg. 2019;48: 644-50.
271	8.	Cella DF. Measuring quality of life in palliative care. Semin Oncol. 1995;22:
272		73-81.
273	9.	Ware JE, Kosinski M, Dewey JE, Gandek B. How to score and interpret
274		single-item health status measures: A manual for users of the SF-8 health
275		survey. Lincoln, RI: Quality Metric Inc.; 2001.
276	10.	Fukuhara S, Suzukamo Y. Manual of the SF-8 Japanese version. Kyoto:
277		Institute for Health Outcomes and Process Evaluation Research; 2004 (in
278		Japanese).

279	11.	Headache classification subcommittee of the international headache society.
280		The international classification of headache disorders. 3rd ed. Cephalagia.
281		2018;38: 1-211.
282	12.	American Psychiatric Association. Diagnostic and statistical manual of mental
283		disorders, fifth edition (DSM-5). Washington DC: American Psychiatric
284		Association; 2013.
285	13.	American Psychiatric Association. Diagnostic and statistical manual of mental
286		disorders. Fourth edition, text revision (DSM-IV-TR). Washington DC:
287		American Psychiatric Association; 2000.
288	14.	Miyauchi T, Tokura T, Kimura H, Ito M, Umemura E, Sato A, et al. Effect of
289		antidepressant treatment on plasma levels of neuroinflammation-associated
290		molecules in patients with somatic symptom disorder with predominant pain
291		around the orofacial region. Hum Psychopharmacol Clin Exp. 2019;34: e2698.
292	15.	Nakamura M, Yoshimi A, Mouri A, Tokura T, Kimura H, Kishi S, et al.
293		Duloxetine attenuates pain in association with downregulation of platelet
294		serotonin transporter in patients with burning mouth syndrome and atypical
295		odontalgia. Hum Psychopharmacol Clin Exp. 2022;7: e2818.

296	16.	Nagashima W, Kimura H, Ito M, Tokura T, Arao M, Aleksic B, et al.
297		Effectiveness of duloxetine for the treatment of chronic nonorganic orofacial
298		pain. Clin Neuropharmacol. 2012;35: 273-77.
299	17.	Kobayashi Y, Nagashima W, Tokura T, Yoshida K, Umemura E, Miyauchi T, et
300		al. Duloxetine plasma concentrations and its effectiveness in the treatment of
301		nonorganic chronic pain in the orofacial region. Clin Neuropharmacol.
302		2017;40: 163-8.
303	18.	Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for
304		measuring depression. Arch Gen Psychiatry. 1961;4: 561-71.
305	19.	Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry.
306		1960;23: 56-62.
307	20.	Khan WU, Michelini G, Battaglia M. Twin studies of the covariation of pain
308		with depression and anxiety: a systematic review and re-evaluation of critical
309		needs. Neurosci Biobehav Rev. 2020;111: 135-48.
310	21.	Itokazu M, Ito Y, Takigami I, Suzuki A, Ohno K, Ogawa H. Evaluation of
311		quality of life (SF-8) following treatment with tacrolimus in patients with
312		rheumatoid arthritis. Jpn J Rheum Jt Surg. 2007:26; 403-11.
313	22.	Yamamoto C, Hyakuta T. Relationship between comprehensive geriatric

- 315 survivors. JJNSR. 2018:41; 741-51.
- 316 23. Callahan LF, Pincus T. A clue from a selfreport questionnaire to distinguish
- 317 rheumatoid arthritis from noninflammatory diffuse musculoskeletal pain.
- 318 Arthritis Rheum. 1990;33: 1317-22.
- 319 24. Lorish CD, Maisiak R. The face scale: a brief, nonverbal method for assessing
- 320 patient mood. Arthritis Rheum. 1986;29: 906-9.
- 321 25. Shueb SS, Nixdorf DR, JohnMT, Alonso BF, Durham J. What is the impact of
- acute and chronic orofacial pain on quality of life? J Dent. 2015;43: 1203-10.
- 323 26. Mukoyama N, Nishio N, Kimura H, Kishi S, Tokura T, Kimura H, et al.
- 324 Prospective evaluation of health-related quality of life in patients undergoing
- 325 anterolateral craniofacial resection with orbital exenteration. J Neurol Surg B
- 326 Skull Base. 2020;81: 585-93.

