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Abstract (281 words) 23 

Objective: To determine the associated factors with mortality, in addition to age 24 

and sex, in a high-complexity hospital in Bogota, Colombia, during the first year of 25 

the pandemic. 26 

Design: A case-control study. 27 

Setting: High-complexity center above 2,640 meters above sea level (masl) in 28 

Colombia. 29 

Methods:  A case-control study was conducted on 564 patients admitted to the 30 

hospital with confirmed COVID-19. Deceased patients (n: 282) and a control group 31 

(n: 282), matched by age, sex, and month of admission, were included. Clinical 32 

and paraclinical variables were retrospectively obtained by systematic revision of 33 

clinical records. Multiple imputations by chained equation (MICE) were 34 

implemented to account for missing variables. Classification and regression trees 35 

(CART) were estimated to evaluate the interaction of associated factors on 36 

admission and their role in predicting mortality during hospitalization.  37 

 Results:  Most of the patients included were males in the seventh decade of life. 38 

Most of the admissions occurred between July and August 2021. Surprisingly, 39 

recovered patients reported heterogeneous symptomatology, whereas deceased 40 

patients were most likely to present respiratory distress, dyspnea, and seizures on 41 

admission. In addition, the latter group exhibited a higher burden of comorbidities 42 

and alterations in laboratory parameters. After the imputation of datasets, CART 43 

analysis estimated 14 clinical profiles based on respiratory distress, LDH, dyspnea, 44 

hemoglobin, D-dimer, ferritin, blood urea nitrogen, C-reactive protein, PaO2/FiO2, 45 
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dysgeusia, total bilirubin, platelets, and gastroesophageal reflux disease. The 46 

accuracy model for prediction was 85.6% (P < 0.0001). 47 

Conclusion: Multivariate analysis yielded a reliable model to predict mortality in 48 

COVID-19. This analysis revealed new interactions between clinical and 49 

paraclinical features in addition to age and sex. Furthermore, this predictive model 50 

could offer new clues for the personalized management of this condition in clinical 51 

settings. 52 

Keywords: SARS-CoV-2, COVID-19, Mortality, Predictors, Risk Factors.  53 
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 70 

List of Abbreviations 71 

ARBs: Angiotensin II receptor blockers. 72 

ARDS: Acute respiratory distress syndrome. 73 

BUN: Blood urea nitrogen. 74 

CART: Classification and regression trees. 75 

COVID-19: Coronavirus disease 2019. 76 

CRP: C-reactive protein. 77 

FiO2: Fraction of inspired oxygen. 78 

GERD: Gastroesophageal reflux disease 79 

HIV: Human immunodeficiency. 80 

ICU: Intensive care unit. 81 

IL-1: Interleukin 1. 82 

IL-6: Interleukin 6. 83 

IQR: Interquartile range. 84 

LDH: Lactate dehydrogenase.  85 

LOS: Length of stay. 86 

Masl: Meters above sea level. 87 

MICE: Multiple imputations by chained equation. 88 

MV: Mechanical ventilation. 89 

NSAIDs: Non-steroidal anti-inflammatory drugs. 90 

PaO2/FiO2: partial pressure of oxygen (PaO2) to inspired (FiO2) partial pressure of 91 

oxygen ratio. 92 

RT-PCR: Reverse transcriptase-polymerase chain reaction. 93 
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S/F: Ratio of oxygen saturation to fraction-inspired of oxygen. 94 

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2. 95 

TBC: Tuberculosis. 96 

TBIL: Total bilirubin levels.  97 

TNFα: Tumor necrosis factor-α. 98 

WHO: World health organization. 99 

 100 

 101 

 102 

 103 

 104 

 105 

 106 

 107 

 108 

 109 

 110 

 111 

 112 

 113 

 114 

 115 

 116 

 117 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 16, 2023. ; https://doi.org/10.1101/2023.05.12.23289918doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.12.23289918


6 

 

 118 

Introduction (Words 2857) 119 

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory 120 

syndrome coronavirus 2 (SARS-CoV-2), was first reported as an outbreak of new 121 

viral pneumonia in Wuhan, China which was quickly distributed worldwide, 122 

generating a remarkable impact. Approximately 520,000,000 cases have been 123 

reported, from which about 6,300,000 have died (1). This infection has a wide 124 

range of clinical manifestations, ranging from asymptomatic disease to individuals 125 

who develop acute respiratory failure (2). However, most patients have mild 126 

symptoms of cough, headache, myalgia, fever, and diarrhea; a smaller proportion 127 

presents severe disease symptoms (1,2). The most common manifestation of 128 

severity is dyspnea, which can be seen in up to 40% of patients and is usually 129 

accompanied by hypoxemia (2). 130 

The United States harbors almost a fifth of the infections worldwide and more than 131 

1,000,000 deaths (1). It is followed by Brazil and India, with 665,000 and 524,000 132 

deaths, respectively (1). Colombia occupies the twelfth position with approximately 133 

140,000 deaths (1,3). Fatality, defined as the ratio between the cases of mortality 134 

and the cases confirmed with SARS-CoV-2, has progressively decreased from 135 

3.7% in March 2020 to 1.22% in the present day (4). Colombia presents a fatality 136 

rate of 2.5%, higher than reported worldwide (3). Thus, further characterization of 137 

mortality in Colombia is required to develop personalized risk profiles to better 138 

respond to the pandemic, especially in the current transition to endemic disease. 139 

Patients with severe diseases are more likely to suffer complications associated 140 

with higher mortality. One of the causes of this clinical deterioration is the cytokine 141 
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storm that generates a systemic inflammatory syndrome in which high cytokine 142 

levels are associated with hyperactivation of the cellular response (5–8). Molecular 143 

mimicry between host and viral proteins has also been described, as well as direct 144 

damage of the microorganism to tissues that present high expression of the 145 

angiotensin-converting enzyme-2 receptor, as other possible causes (5–8). These 146 

processes will result, in most cases, in a respiratory distress syndrome 147 

characterized by impaired gas exchange (6,8). They could also generate a 148 

hypercoagulability state responsible for the increase in thrombotic events in 149 

patients with this condition (5,7,9). 150 

Multiple studies have found several factors associated with developing severe 151 

disease. Age, sex, ethnicity, socioeconomic status, inflammatory markers, and 152 

comorbid conditions have been widely associated with mortality. However, other 153 

factors include ancestry, environmental exposures, viral mutations, and geographic 154 

diversity (10–12). A recent study in Bogota, a city above 2,640 meters above sea 155 

level (masl) in Colombia, found that older age, low S/F: Ratio of oxygen saturation 156 

to fraction-inspired of oxygen (S/F), and high lactate dehydrogenase (LDH) on 157 

admission were predictors of mortality (13). However, observational studies have 158 

shown that other variables, in addition to age and sex, could exhibit interactions 159 

among them, which have been poorly characterized in our population (14).  160 

Herein, we conducted a one-year case-control study to characterize the clinical 161 

and paraclinical factors associated with mortality during the first year of the 162 

pandemic. We implemented supervised machine learning algorithms to evaluate 163 

the interactions among variables and their potential to predict mortality on 164 
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admission. We adjusted the analysis by monthly progression, which may account 165 

for changes in the mortality rates due to viral mutations during the pandemic.  166 

 167 

Methods 168 

Study design 169 

This case-control study was conducted in Clínica de Occidente, a tertiary referral 170 

center in Bogota, Colombia. The study screening was from February 29th, 2020, to 171 

March 1st, 2021. Included patients were selected from 4,163 cases positive for 172 

SARS-CoV-2 by reverse transcriptase-polymerase chain reaction (RT-PCR) and 173 

who attended the emergency room during the first year of the pandemic with 174 

complete clinical records. A non-probabilistic convenience sampling included a 175 

total of 282 deceased patients. An additional group of 282 patients, who were 176 

hospitalized but recovered from COVID-19, was included as the control group. 177 

These controls were matched to deceased patients by age, sex, and month of 178 

consultation (to account for viral mutations). None of the patients received 179 

vaccinations during the study timeframe, and the included patients attended the 180 

emergency room between April 3rd, 2020, to January 30th, 2021. This was a low-181 

risk study according to the resolution 8430 of 1993 from the Ministry of Health of 182 

Colombia. The institutional review board of Clínica de Occidente approved the 183 

study design.  184 

 185 

Inclusion and exclusion criteria 186 

Inclusion criteria comprised the following: (1) aged at least 18 years; (2) COVID-19 187 

diagnosis based on RT-PCR testing; (3) hospitalized patients; and (4) death 188 
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registered in death certificate adequately filled out by medical doctors who certified 189 

COVID-19 as the cause of death. In the case of controls, they were hospitalized 190 

but recovered during the hospitalization and received ambulatory management. 191 

Patients referred to another clinical setting were excluded from the analysis.  192 

Clinical variables and data extraction 193 

Medical records were reviewed through access to the server assigned by the 194 

hospital. Information considered relevant for this investigation was extracted, 195 

including sociodemographic variables, clinical features (signs, symptoms, 196 

laboratories on admission), past medical history, in-hospital management (i.e., 197 

requirement of ventilatory support, intensive care unit (ICU) admission, 198 

vasopressor support), medications administered on admission, organ-specific and 199 

systemic outcomes during hospitalization (Table 1, 2 and 3). Research participants 200 

remained anonymous at all times. All data were collected in an electronic and 201 

secure database as described elsewhere (15). 202 

 203 

Patient and Public Involvement  204 

Patients or the public were not involved in the research's design, conduct, 205 

reporting, or dissemination plans. 206 

 207 

Statistical analyses 208 

Univariate descriptive statistics were performed. Categorical variables were 209 

analyzed using frequencies, and continuous quantitative variables were expressed 210 

as the median and interquartile range (IQR). The Mann–Whitney U-test or Fisher 211 
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exact tests were used based on the results. None of the included parameters were 212 

subjected to statistical transformation or normalization. 213 

The missing data rates for each variable in our study are shown in Tables 1,2,3 214 

and Figure 1. Most of the missingness was secondary to the lack of 215 

standardization at the beginning of the pandemic for laboratory values required in 216 

the follow-up and management of the patients. We used multiple imputations by 217 

chained equation (MICE) to create and analyze five multiply imputed datasets for 218 

variables with less than 80% of data missingness (Table 3). Multiple imputations 219 

are considered cutting-edge by methodologists since they enhance accuracy and 220 

statistical power when compared to other missing data strategies. Incomplete 221 

variables were imputed under wholly conditional specification using the default 222 

settings of the MICE 3.14 package (16). 223 

Then, we built classification and regression trees (CART) to evaluate the 224 

relationship between clinical variables and mortality in each imputed dataset on 225 

admission. This strategy aims to identify, at each partitioning step, the best 226 

predictive variable and corresponding splitting value while optimizing a statistical 227 

criterion. Variables with a p-value ≤ 0.25 in the bivariate analysis were included in 228 

the model. Each model's confusion matrix was built to determine MICE's best 229 

predictive model from the five imputed datasets and was reported accordingly. The 230 

significance level of the study was set to 0.05. Statistical analyses were done using 231 

R software version 4.1.2. 232 

 233 

Results 234 

General characteristics 235 
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The general characteristics of patients are shown in Table 1. The median age of 236 

the patients and sex were similar between groups. On admission, fever, 237 

odynophagia, anosmia, dysgeusia, chest pain, myalgias, arthralgias, headache, 238 

and diarrhea were most commonly reported in recovered patients. General 239 

discomfort, dyspnea, respiratory distress, and seizures were most common in 240 

deceased patients (Table 1). Most of the included patients visited the hospital 241 

between July and September 2020. 242 

 243 

Treatment, comorbidities, and outcomes  244 

Heart failure, hypertension, obesity, type II diabetes, and active smoking were most 245 

common in deceased patients. On the other hand, gastroesophageal reflux 246 

disease (GERD) was mainly reported in recovered patients (Table 1). Deceased 247 

patients were more likely to receive corticosteroids and antibiotics upon admission 248 

(Table 2). Few patients received antimalarials or antivirals. On admission, 249 

deceased patients exhibited paraclinical alterations in inflammatory markers 250 

related to hematological, liver, and pulmonary function (Table 3). This was further 251 

confirmed during the follow-up, given the higher rates of systemic and organic 252 

compromise presented during the hospitalization (Table 3).  253 

 254 

Missing data imputation 255 

The missing values across the variables ranged between 18.79% and 98.94%. The 256 

high missingness rate was related to laboratory variables, mainly albumin, creatine 257 

kinase, procalcitonin, and the erythrocyte sedimentation rate (Table 3 and Figure 1 258 

A-C), whereas clinical characteristics, in-hospital admission management, and 259 
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comorbidities did not have missed values. Since the objective of our study was to 260 

evaluate the interaction between clinical and paraclinical factors on admission in 261 

predicting mortality, we conducted a MICE imputation strategy to include all the 262 

cases in multivariate models.  263 

We created and analyzed five multiply imputed datasets for variables with less than 264 

80% of data missingness (Figure 1C). The sensitivity analysis yielded no significant 265 

differences between the primary and the five imputed datasets (Table 4). This 266 

confirmed that the distribution of imputed data was similar to the original dataset, 267 

as well as the stability of the imputation models. 268 

 269 

A multivariate predictive model for mortality 270 

After imputation, we aimed to evaluate the interaction of multiple variables in 271 

predicting mortality on admission. We estimated CART models using the variables 272 

with p-values ≤ 0.25 from the bivariate analysis for each imputed dataset. We 273 

constructed a confusion matrix for each CART model to estimate the best-fitted 274 

model to the data. After this analysis, we selected the best model based on 275 

estimated accuracy (Figure 2).  276 

The analysis revealed that multiple variables interacted in the prediction of 277 

mortality. Respiratory distress on admission was the first splitting variable from the 278 

tree. Then, the second node was determined by LDH and dyspnea. The former 279 

interacted with hemoglobin, D-dimer, ferritin, blood urea nitrogen (BUN), C-reactive 280 

protein (CRP), partial pressure of oxygen (PaO2) to inspired (FiO2) partial pressure 281 

of oxygen ratio (PaO2/FiO2), dysgeusia, total bilirubin levels (TBIL), and platelets. 282 

The latter interacted with GERD (Figure 2). 283 
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 284 

Discussion 285 

A few published papers have previously characterized the risk factors associated 286 

with COVID-19 mortality in Latin American patients (17,18) Therefore, the present 287 

study highlights multiple variables, including laboratory abnormalities and clinical 288 

features associated with COVID-19 mortality. The main findings in our study were 289 

significant associations between TBIL, ferritin, D-Dimer levels, dyspnea, GERD, 290 

and increased risk of mortality in COVID-19 patients. In contrast, dysgeusia was 291 

associated with a better prognosis. Other trends were found between BUN, 292 

respiratory distress, platelet count, PaO2/FiO2, and CRP.  293 

Increased TBIL was associated with poor COVID-19 outcomes. This is consistent 294 

with previous findings (19) which suggest that high TBIL may reflect a severe level 295 

of hepatic injury among severely ill COVID-19 patients, possibly due to direct 296 

cytopathic effect, immune-mediated effects, hypoxia-induced changes, 297 

microvascular thrombosis, among others (20,21). It is not surprising that some 298 

authors have also considered that TIBL at admission is directly correlated with the 299 

hospital progression of COVID-19 (20). 300 

Serum ferritin has been cited as one of the mortality indicators in COVID-19 301 

patients due to its ability to assess intracellular iron status (22,23). These events 302 

are common in the pathogenesis of uncontrolled inflammation and massive 303 

cytokine release, supporting the hypothesis that hyper-inflammation is a possible 304 

pathogenic mechanism in COVID-19 and, therefore, the rise of serum ferritin level 305 

findings (23). Multiple studies have also suggested that higher levels of CRP on 306 

admission are linked to disease progression, severity, and death (24–26). 307 
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However, we found that CRP interacts with other variables related to inflammation 308 

and organ damage implicated in mortality.  309 

The D-dimer antigen is a unique marker of fibrin degradation that may indicate 310 

infection-related coagulation effects (27,28). Furthermore, previous studies have 311 

found that critically ill patients with COVID-19 have extremely high D-dimer levels, 312 

which can lead to clotting disorders and peripheral microthrombi formation (29). In 313 

this study, we found that higher levels of D-dimer at admission were associated 314 

with increased mortality risk in COVID-19 patients. This is consistent with other 315 

studies that have found D-dimer as another crucial prognostic factor in estimating 316 

mortality in COVID-19 patients (30).  317 

Similar results from other studies also elicited dyspnea as a significant clinical 318 

variable for mortality prediction among COVID-19 patients (31). A meta-analysis 319 

study by He et al. showed that dyspnea was the main difference between mild and 320 

severe COVID-19 [40], and another study confirmed this observation (32). On the 321 

other hand, in patients with gastrointestinal symptoms during COVID-19, GERD 322 

appeared to be a protective factor for acute respiratory distress syndrome (ARDS), 323 

and mortality possible due to a conversely increased acidic environment 324 

associated with GERD that suppresses COVID-19 viral load at the gastrointestinal 325 

point of entry, favoring a milder disease course (33). In our study, similar results 326 

were obtained; COVID-19 patients without GERD had an increased mortality risk.  327 

Interestingly, dysgeusia was associated with lower odds of death in our study. This 328 

might be related to a different inflammatory profile with a better local immune 329 

response, which could limit the spread of the virus in the body, resulting in less 330 

severe disease and a strong local inflammatory response that could mainly affect 331 
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taste receptors. However, there is still a lack of information regarding dysgeusia, 332 

perhaps because of the heterogeneity in how it has been assessed and defined 333 

(34). On the other hand, previous studies have focused on anosmia as a protective 334 

factor for mortality (35,36). 335 

A significant association was found between BUN and mortality risk among 336 

COVID-19 patients. Other studies also supported our results since BUN has been 337 

previously considered a death-related feature (37). Although COVID-19 impacts 338 

mainly the lung, it can also affect the kidney, and the increase in BUN may reflect 339 

kidney injury along with other biomarkers. Moreover, kidney involvement in severe 340 

COVID-19 patients has been frequently observed (37,38).  341 

The glycolytic enzyme LDH has long been identified as an inflammation biomarker 342 

that plays a crucial role in the anaerobic glycolysis pathway and increases in the 343 

bloodstream under conditions of membrane instability (39). In most studies, 344 

authors have concluded that LDH is a deleterious prognostic biomarker with high 345 

accuracy for predicting in-hospital mortality in severe and critically ill patients with 346 

COVID-19 (40,41). In addition, thrombocytopenia has also been reported in 347 

COVID-19 patients and is considered a potential risk factor for mortality in this 348 

group of patients (42,43). The PaO2/FiO2 partial pressure of oxygen has also been 349 

widely used to diagnose and assess the severity of patients with ARDS (44,45).  350 

Since several factors have been related to the incidence of mortality in COVID-19, 351 

the interaction among them may provide better insights into predicting deleterious 352 

outcomes. A similar study in Bogota found that older age, low S/F, and high LDH 353 

on admission were predictors of mortality (13). This study assessed the interaction 354 

of variables by CART analysis, yielding five plausible groups. However, it is unclear 355 
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whether the multivariate model included all the patients since information on 356 

missing data is unavailable, and the model accuracy is unknown.  357 

In contrast, Afrash et al.(46) developed hybrid machine-learning algorithms to 358 

predict mortality. Authors found that the mixture of variables such as length of stay 359 

(LOS), age, cough, respiratory intubation, dyspnea, cardiovascular disease, 360 

leukocytosis, BUN, CRP, and pleural effusion yielded a high accuracy (90%), 361 

specificity (83%), and sensitivity (97%). However, it includes variables that depend 362 

on the patient follow-up (i.e., LOS), thus hindering its applicability during admission 363 

to the emergency room, that is, during the early stages of the disease.  364 

Several manuscripts have developed similar approaches involving different 365 

variables in the prediction of mortality; some of them include dyspnea (46,47), 366 

BUN, platelet count (47,48), sex (47), age (46,48–51), cough (46), weight (49), 367 

cardiovascular disease (46), orotracheal intubation (46), and pleural effusion 368 

(46,49), respiratory rate (47), fraction of inspired oxygen (47), blood oxygen 369 

saturation (47,48) pH (47), aspartate aminotransferase levels (47), estimated 370 

glomerular filtration rate (47), lymphocyte count (49,52), white blood cell count 371 

(46,48), creatine (51) lactic acid (52) and serum calcium (52). However, most of 372 

them do not focus on the interaction of such variables on hospital admission, and 373 

their interpretability by clinicians is difficult. In this line, our study provides a novel, 374 

biologically plausible, and reliable model with clinical applicability in the emergency 375 

room during patient admission. Further studies are necessary to evaluate whether 376 

our model may help to predict the efficacy of therapeutic strategies or outpatient 377 

mortality (during post-COVID syndrome). 378 
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Study limitations must be acknowledged. It was a single-center retrospective study 379 

based on clinical records. This could have prone our study to reporting bias, for 380 

example, on time from symptoms onset to consultation or clinical features. In 381 

addition, the therapeutic strategies changed during the pandemic; however, our 382 

study was matched by month of consultation, making this variable an unlikely 383 

confounding/interaction factor for our results. The objective of our study was to 384 

uncover other risk factors for mortality besides sex and age. In this line, the 385 

adjustment for age, sex, and month of consultation allowed the discovery of new 386 

interactions for mortality prediction. The lack of follow-up beyond the hospitalization 387 

in recovered patients could have offered new insights into mortality beyond the 388 

clinical settings. Another potential shortcoming of the present study is that latent 389 

autoimmunity, especially the positivity for anti-IFN-α antibodies, was not evaluated. 390 

Further analysis involving such variables could improve our model's reliability and 391 

predictive accuracy.  392 

 393 

Conclusions 394 

Our study demonstrates the highly complex interactions among different risk 395 

factors to predict mortality in COVID-19, in addition to age and sex. This predictive 396 

approach may also provide new insights into the tailored management of this 397 

illness in several clinical settings, specifically in Colombian clinical settings. This 398 

study should encourage the follow-up of recovered patients beyond hospitalization 399 

and despite their clinical status during acute COVID-19. 400 

 401 
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Table 1. General characteristics of patients diagnosed with COVID-19. 
 

Variable Recovered patients (n=282) Deceased patients (n=282) P-valuea Misssingness (n: 564) 

Sociodemographics (%) 

Sex 1.0000 0 (0%) 

Female 110 (39.0%) 110 (39.0%)   

Male 172 (61%) 172 (61%)   

Age (Median - IQR) 68 (60 - 77) 69 (60 - 78) 0.4843 0 (0%) 

The month of admission – (2020 to 2021)   1.0000 0 (0%) 

April 4 (1.4%) 4 (1.4%)   

May 8 (2.8%) 8 (2.8%)   

June 17 (6.0%) 17 (6.0%)   

July 77 (27.3%) 77 (27.3%)   

August 49 (17.4%) 49 (17.4%)   

September 20 (7.1%) 20 (7.1%)   

October 16 (5.7%) 16 (5.7%)   

November 9 (3.2%) 9 (3.2%)   

December 37 (13.1%) 37 (13.1%)   

January 45 (16.0%) 45 (16.0%)   

Clinical characteristics on admission (%) 

Fever 167 (59.2%) 138 (48.9%) 0.0179 0 (0%) 

Cough with sputum 41 (14.5%) 45 (16.0%) 0.7255 0 (0%) 

Hemoptysis 1 (0.4%) 1 (0.4%) 1.0000 0 (0%) 

Dry cough 177 (62.8%) 162 (57.4%) 0.2286 0 (0%) 

Odynophagia 66 (23.4%) 35 (12.4%) 0.0009 0 (0%) 
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Anosmia 32 (11.3%) 7 (2.5%) < 1e-04 0 (0%) 

Dysgeusia 34 (12.1%) 7 (2.5%) < 1e-04 0 (0%) 

Rhinorrhea 27 (9.6%) 18 (6.4%) 0.2134 0 (0%) 

Wheezing 4 (1.4%) 4 (1.4%) 1.0000 0 (0%) 

Chest Pain 55 (19.5%) 35 (12.4%) 0.0285 0 (0%) 

Myalgias 70 (24.8%) 40 (14.2%) 0.0020 0 (0%) 

Arthralgias 31 (11.0%) 14 (5.0%) 0.0122 0 (0%) 

General discomfort 165 (58.5%) 226 (80.1%) < 1e-04 0 (0%) 

Dyspnea 137 (48.6%) 227 (80.5%) < 1e-04 0 (0%) 

Inability to walk 1 (0.4%) 0 (0.0%) 1.0000 0 (0%) 

Respiratory distress 22 (7.8%) 149 (52.8%) < 1e-04 0 (0%) 

Headache 66 (23.4%) 29 (10.3%) < 1e-04 0 (0%) 

Seizure 0 (0.0%) 5 (1.8%) 0.0614 0 (0%) 

Abdominal pain 21 (7.4%) 21 (7.4%) 1.0000 0 (0%) 

Nausea/Vomiting 27 (9.6%) 15 (5.3%) 0.0766 0 (0%) 

Diarrhea 45 (16.0%) 22 (7.8%) 0.0039 0 (0%) 

Bleeding 8 (2.8%) 7 (2.5%) 1.0000 0 (0%) 
a p values for categorical variables obtained by Fisher’s exact test. Quantitative variables were analyzed by Mann–Whitney U-test. Abbreviations:; 

IQR: Interquartile range. 

 

 

 

 

 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted M

ay 16, 2023. 
; 

https://doi.org/10.1101/2023.05.12.23289918
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.05.12.23289918


28 

 

Table 2. Comorbidities and hospital management of patients diagnosed with COVID-19. 
Variable Recovered patients (n=282) Deceased patients (n=282) P-valuea Misssingness (n: 564) 

Comorbidities (%) 

Coronary heart disease 22 (7.8%) 25 (8.9%) 0.7609 0 (0%) 

Heart failure 9 (3.2%) 21 (7.4%) 0.0374 0 (0%) 

Hypertension 131 (46.5%) 162 (57.4%) 0.0114 0 (0%) 

Thromboembolic disease 9 (3.2%) 10 (3.5%) 1.0000 0 (0%) 

Dyslipidemia 17 (6.0%) 23 (8.2%) 0.4124 0 (0%) 

Chronic obstructive pulmonary disease 43 (15.2%) 38 (13.5%) 0.6312 0 (0%) 

Asthma 3 (1.1%) 2 (0.7%) 1.0000 0 (0%) 

Chronic kidney disease 39 (13.8%) 51 (18.1%) 0.2058 0 (0%) 

Chronic liver disease 2 (0.7%) 4 (1.4%) 0.6858 0 (0%) 

Stroke 5 (1.8%) 13 (4.6%) 0.0910 0 (0%) 

Gastroesophageal reflux disease 17 (6.0%) 6 (2.1%) 0.0311 0 (0%) 

Hepatitis C 1 (0.4%) 0 (0.0%) 1.0000 0 (0%) 

Hepatitis B 0 (0.0%) 0 (0.0%) - 0 (0%) 

HIV 1 (0.4%) 2 (0.7%) 1.0000 0 (0%) 

TBC 2 (0.7%) 1 (0.4%) 1.0000 0 (0%) 

Type II diabetes 63 (22.3%) 89 (31.6%) 0.0175 0 (0%) 

Cancer 14 (5.0%) 23 (8.2%) 0.1729 0 (0%) 

Obesity 16 (5.7%) 58 (20.6%) < 1e-04 0 (0%) 

Hypothyroidism 47 (16.7%) 51 (18.1%) 0.7390 0 (0%) 

Autoimmune disease 10 (3.5%) 11 (3.9%) 1.0000 0 (0%) 

Former smoking 32 (11.3%) 36 (12.8%) 0.6983 0 (0%) 
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Active smoking 3 (1.1%) 12 (4.3%) 0.0328 0 (0%) 

In-hospital management on admission (%) 

Corticosteroids 130 (46.1%) 163 (57.8%) 0.0069 0 (0%) 

Azithromycin 2 (0.7%) 5 (1.8%) 0.4502 0 (0%) 

Antibiotics 124 (44.0%) 186 (66.0%) < 1e-04 0 (0%) 

Ivermectin 0 (0.0%) 0 (0.0%) - 0 (0%) 

NSAIDs 112 (39.7%) 35 (12.4%) < 1e-04 0 (0%) 

ARBs 56 (19.9%) 26 (9.2%) 0.0005 0 (0%) 

Bronchodilators 86 (30.5%) 88 (31.2%) 0.9274 0 (0%) 

Anticoagulation 30 (10.6%) 33 (11.7%) 0.7894 0 (0%) 

Antimalarials 1 (0.4%) 4 (1.4%) 0.3728 0 (0%) 

Antiviral drugs 1 (0.4%) 0 (0.0%) 1.0000 0 (0%) 

In-hospital management follow-up (%) 

Pronation therapy 26 (9.2%) 121 (42.9%) < 1e-04 0 (0%) 

Nasal cannula 154 (54.6%) 127 (45.0%) 0.0285 0 (0%) 

Non-rebreather mask 42 (14.9%) 208 (73.8%) < 1e-04 0 (0%) 

High flow cannula 9 (3.2%) 38 (13.5%) < 1e-04 0 (0%) 

Orotracheal intubation 14 (5.0%) 169 (59.9%) < 1e-04 0 (0%) 

Dialysis 9 (3.2%) 51 (18.1%) < 1e-04 0 (0%) 

ICU admission 20 (7.1%) 126 (44.7%) < 1e-04 0 (0%) 

Inotropic or vasopressor support 14 (5.0%) 141 (50.0%) < 1e-04 0 (0%) 
a p values for categorical variables obtained by Fisher’s exact test. Quantitative variables were analyzed by Mann–Whitney U-test. Abbreviations: 

NSAIDs: Non-steroidal anti-inflammatory drugs; IQR: Interquartile range; ARBs: Angiotensin II receptor blockers; HIV: Human immunodeficiency 

virus; TBC: Tuberculosis; ICU: Intensive care unit; PaO2/FiO2: partial pressure of oxygen (PaO2) to inspired (FiO2) partial pressure of oxygen ratio. 
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Table 3. Clinical outcomes and paraclinics on admission of patients diagnosed with COVID-19. 

Variable Recovered patients (n=282) Deceased patients (n=282) P-valuea Misssingness (n: 564) 

Clinical outcomes (%)  

Renal alterations 37 (13.1%) 130 (46.1%) < 1e-04 0 (0%) 

Co-infection 20 (7.1%) 57 (20.2%) < 1e-04 0 (0%) 

Hematological alterations 146 (51.8%) 242 (85.8%) < 1e-04 0 (0%) 

Thrombotic events 6 (2.1%) 18 (6.4%) 0.0199 0 (0%) 

Neurological alterations 22 (7.8%) 31 (11.0%) 0.2481 0 (0%) 

Cardiac alterations 18 (6.4%) 95 (33.7%) < 1e-04 0 (0%) 

Paraclinics on admission (Median - IQR) 

Hemoglobin (g/dL) 14.8 (13.5-16.2) 14.4 (12.4-15.8) 0.0086 106 (18.79%) 

Platelets (Cells/uL) 206,000 (170,000 -268,000) 217,000 (157,000 - 274,000) 0.8015 106 (18.79%) 

Leukocytes (Cells/uL) 7,860 (5,620 - 10,285) 10,670 (6,730 - 14,720) < 1e-04 106 (18.79%) 

Lymphocytes (Cells/uL) 1,130 (740 - 1,650) 860 (585-1200) < 1e-04 106 (18.79%) 

Neutrophils (Cells/uL) 5,700 (3,630 - 8,196) 8,915 (5,267 - 13,112) < 1e-04 107 (18.97%) 

C-reactive protein (mg/L) 102.3 (40.2 - 171.2) 174.7 (85.8 - 267.5) < 1e-04 247 (43.79%) 

Erythrocyte sedimentation rate (mm/hr) 22 (22 - 22) 18 (12 - 20) 0.3798 558 (98,94%) 

International normalized ratio 1.06 (1 - 1.17) 1.07 (0.99 - 1.2) 0.9196 453 (80.32%) 

Aspartate aminotransferase (U/L) 37 (27 - 59) 64.5 (41.8 - 97.5) 0.0002 474 (84.04%) 

Alanine aminotransferase (U/L) 30 (21.5 – 54.5) 46 (30 - 93.3) 0.0268 473 (83.87%) 

Albumin (gr/dL) 3.32 (2.97 - 3.48) 3.21 (2.43 - 3.43) 0.3918 543 (96.28%) 

Total bilirubin (mg/dL) 0.64 (0.45 - 0.87) 0.68 (0.49 - 1.09) 0.4640 422 (74.82%) 

Blood urea nitrogen (mg/dL) 18.4 (13.8 - 28.8) 26.3 (18.4 - 43.2) < 1e-04 166 (29.43%) 
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Creatinine (mg/dL) 0.99 (0.78 - 1.24) 1.16 (0.9 - 1.85) < 1e-04 138 (24.47%) 

Creatine kinase (U/L) 6.18 (6.18 - 6.18) 105 (78 - 135) 0.1432 558 (98.94%) 

D-dimer (mg/dL) 0.775 (0.41 - 1.74) 1.52 (0.67 - 4.08) < 1e-04 186 (32.98%) 

Ferritin (ng/mL) 878.6 (495.1 - 1,501) 1,378 (731.2 - 2,475.5) < 1e-04 211 (37.41%) 

Lactic acid (mmol/L) 1.44 (1.14 - 1.99) 2.11 (1.5 – 3.37) 0.0180 443 (78.55%) 

Lactate dehydrogenase (U/L) 298 (225.5 - 377.5) 466 (335.5 - 652) < 1e-04 190 (33.69%) 

Procalcitonin (ng/mL) 0.778 (0.55 - 1) 0.14 (0.09 – 0.19) 0.0641 558 (89.94%) 

PaO2/FiO2 (mmHg) 252.6 (211 - 297.80 115 (71.5 - 222.15) < 1e-04 155 (27.48%) 

Oxygen saturation (%) 92.9 (89.15 - 95.85) 90.2 (86 - 93,78) 0.0002 131 (23.23%) 
a p values for categorical variables obtained by Fisher’s exact test. Quantitative variables were analyzed by Mann–Whitney U-test. Abbreviations: 

NSAIDs: Non-steroidal anti-inflammatory drugs; IQR: Interquartile range; ARBs: Angiotensin II receptor blockers; HIV: Human immunodeficiency 

virus; TBC: Tuberculosis; ICU: Intensive care unit; PaO2/FiO2: partial pressure of oxygen (PaO2) to inspired (FiO2) partial pressure of oxygen ratio. 
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Table 4. P-values from sensitivity analysis between the primary dataset and the imputed datasets. 
 

Variable 
Main Vs.  
Imputed Dataset 1 

Main Vs.  
Imputed Dataset 2 

Main Vs.  
Imputed Dataset 3 

Main Vs.  
Imputed Dataset 4 

Main Vs.  
Imputed Dataset 5 

Paraclinics on admission 

Hemoglobin (g/dL) 0.4503 0.8956 0.7301 0.8204 0.7955 

Platelets (Cells/uL) 0.9705 0.7900 0.4258 0.5854 0.8971 

Leukocytes (Cells/uL) 0.9079 0.7048 0.5637 0.4226 0.8877 

Lymphocytes (Cells/uL) 0.9808 0.7245 0.8874 0.9945 0.8053 

Neutrophils (Cells/uL) 0.8364 0.4069 0.6002 0.2971 0.6169 

C-reactive protein (mg/L) 0.7267 0.9855 0.6387 0.8920 0.4734 

Total bilirubin (mg/dL) 0.1539 0.4270 0.7628 0.8548 0.7584 

Blood urea nitrogen (mg/dL) 0.9875 0.5288 0.6392 0.3416 0.9320 

Creatinine (mg/dL) 0.8553 0.7842 0.9174 0.6214 0.7608 

D-dimer (mg/dL) 0.9702 0.9092 0.6611 0.9079 0.7723 

Ferritin (ng/mL) 0.7442 0.5230 0.1959 0.8348 0.4637 

Lactic acid (mmol/L) 0.2466 0.2657 0.3806 0.4587 0.2240 

Lactate dehydrogenase (U/L) 0.7523 0.4675 0.9154 0.7937 0.5737 

PaO2/FiO2 (mmHg) 0.9339 0.9456 0.6239 0.7643 0.5535 

Oxygen saturation (%) 0.6625 0.9327 0.4655 0.6727 0.8556 
a p values for quantitative variables were analyzed by Mann–Whitney U-test. PaO2/FiO2: partial pressure of oxygen (PaO2) to inspired (FiO2) 

partial pressure of oxygen ratio. 
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Fig 1. Missing data and imputation. A. Histogram of frequency of missing 

variables in the total of patients included (n: 584). B. Heatmap for the distribution of 

missing data. C. Distribution of imputed variables by MICE. The red lines 

correspond to the five imputed datasets, whereas the blue line corresponds to the 

original dataset. MICE: Multiple imputations by chained equation. 

 

Fig 2. Classification and regression trees (CART). This strategy estimated a 

predictive model and 14 clinical profiles, including respiratory distress, LDH, 

dyspnea, hemoglobin, D-dimer, ferritin, blood urea nitrogen, C-reactive protein, 

PaO2/FiO2, dysgeusia, total bilirubin, platelets, and gastroesophageal reflux 

disease. LDH: lactate dehydrogenase; PaO2/FiO2: partial pressure of oxygen 

(PaO2) to inspired (FiO2) partial pressure of oxygen ratio. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 16, 2023. ; https://doi.org/10.1101/2023.05.12.23289918doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.12.23289918


C.

0.
00

0.
05

0.
10

0.
15

0.
20

0 50 100 150

Hemoglobin (g/dL)

0e
+0

0
2e
−0
6

4e
−0
6

6e
−0
6

0e+00 2e+05 4e+05 6e+05

Platelets (cells/uL)

0.
00

00
0

0.
00

00
4

0.
00

00
8

0 50000 100000 150000

Leukocytes (cells/uL)

0e
+0

0
2e
−0
4

4e
−0
4

6e
−0
4

8e
−0
4

0 5000 10000 15000

Lymphocytes (cells/uL)

0.
00

00
0

0.
00

00
4

0.
00

00
8

0.
00

01
2

0 50000 100000

Neutrophils (cells/uL)

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0 200 400 600

C-reactive protein (mg/L)

0.
0

0.
5

1.
0

1.
5

0 10 20 30

Erythrocyte sedimentation rate (mm/hr)

0.
00

0.
01

0.
02

0.
03

0.
04

0 50 100 150

International normalized ratio

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20

Creatinine (mg/dL)

0.
0

0.
1

0.
2

0.
3

0.
4

0 50 100 150 200 250

D-dimer (mg/dL)

0e
+0

0
2e
−0
4

4e
−0
4

6e
−0
4

0 200000 600000

Ferritin (ng/mL)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 5 10 15

Lactic acid (mmol/L)

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0 10002000300040005000

Lactate dehydrogenase (U/L)

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

0 500 1000 1500 2000

PaO2 / FiO2 (mmHg)

0.
00

0.
02

0.
04

0.
06

0 20 40 60 80 100

Oxygen saturation (%)

0.
0

0.
2

0.
4

0.
6

A. B.
La

ct
ic

 a
ci

d
To

ta
l b

ilir
ru

bi
n

C
-re

ac
tiv

e 
pr

ot
ei

n
Fe

rri
tin

La
ct

at
e 

de
hy

dr
og

en
as

e
D

-d
im

er
Bl

oo
d 

ur
ea

 n
itr

og
en

Pa
O

2/
Fi

O
2

C
re

at
in

in
e

O
xy

ge
n 

sa
tu

ra
tio

n
N

eu
tro

ph
ils

H
em

og
lo

bi
n

Pl
at

el
et

s
Le

uk
oc

yt
es

Ly
m

ph
oc

yt
es

La
ct

ic
 a

ci
d

To
ta

l b
ilir

ru
bi

n
C

-re
ac

tiv
e 

pr
ot

ei
n

Fe
rri

tin
La

ct
at

e 
de

hy
dr

og
en

as
e

D
-d

im
er

Bl
oo

d 
ur

ea
 n

itr
og

en
Pa

O
2/

Fi
O

2
C

re
at

in
in

e
O

xy
ge

n 
sa

tu
ra

tio
n

N
eu

tro
ph

ils
H

em
og

lo
bi

n
Pl

at
el

et
s

Le
uk

oc
yt

es
Ly

m
ph

oc
yt

es

M
is

si
ng

ne
ss

 %

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 16, 2023. ; https://doi.org/10.1101/2023.05.12.23289918doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.12.23289918


Higher probability
of death

Lower probability
of death

Probability
of death

Color

0.50
100%

Proportion of patients
sharing the same

characteristics

Gastroesophageal reflux disease

Respiratory distress

LDH < 387 U/L

Hemoglobin >= 13 g/dL

Ferritin 
< 2178 ng/mL

C-Reactive Protein
< 133 mg/L

Total bilirubin
< 0.63 mg/dL

D-Dimer < 0.29 mg/dL

PaO2/FiO
>= 182mmHg

Platelets >= 
130e+3 Cell/uL

Dysgeusia

Dyspnea

0.34
70%

0.21
41%

0.14
32%

0.42
10%

0.33
9%

0.14
5%

0.60
4%

0.36
2%

0.89
2%

1.00
1%

0.53
28%

0.07
3%

0.58
26%

0.45
15%

0.29
9%

0.21
7%

0.71
1%

0.70
6%

0.75
11%

0.14
1%

0.82
10%

0.87
30%

0.14
1%

0.90
29%

0.29
1%

0.93
28%

No Yes

No

NoNo

No

No

No

Yes

Yes

Yes

Yes

Yes Yes

Yes

Yes

Yes

No

No

No

NoYes

Yes

Yes

No

No

Patients with confirmed COVID-19
Sample= 564 (100%)
Mortality= 286 (50%)

248

47

34

235 88%

88,6%

1

0

Predicted Class

Tr
ue

 C
la

ss

0% 50% 100%

Model accuracy 85.6% (P < 0.0001)

Class Accuracy0 1

Blood urea nitrogen
< 27 mg/dL

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 16, 2023. ; https://doi.org/10.1101/2023.05.12.23289918doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.12.23289918

