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Abstract 
The coronavirus disease 2019 (COVID-19) pandemic and the measures taken 
by authorities to control its spread had altered human behavior and mobility 
patterns in an unprecedented way. However, it remains unclear whether the 
population response to a COVID-19 outbreak varies within a city or among 
demographic groups. Here we utilized passively recorded cellular signaling 
data at a spatial resolution of 1km x 1km for over 5 million users and 
epidemiological surveillance data collected during the SARS-CoV-2 Omicron 
BA.2 outbreak from February to June 2022 in Shanghai, China, to investigate 
the heterogeneous response of different segments of the population at the 
within-city level and examine its relationship with the actual risk of infection. 
Changes in behavior were spatially heterogenous within the city and 
population groups, and associated with both the infection incidence and 
adopted interventions. We also found that males and individuals aged 30-59 
years old traveled more frequently, traveled longer distances, and their 
communities were more connected; the same groups were also associated 
with the highest SARS-CoV-2 incidence. Our results highlight the 
heterogeneous behavioral change of the Shanghai population to the 
SARS-CoV-2 Omicron BA.2 outbreak and the its effect on the heterogenous 
spread of COVID-19, both spatially and demographically. These findings could 
be instrumental for the design of targeted interventions for the control and 
mitigation of future outbreaks of COVID-19 and, more broadly, of respiratory 
pathogens.  
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Significance Statement 
Our study utilized passively recorded cellular signaling data and 
epidemiological surveillance data to investigate the changes human mobility to 
a COVID-19 outbreak at an unprecedented within-city level and examine its 
relationship with the actual risk of infection. Our findings highlight the 
heterogeneous behavioral change of the Shanghai population to the 2022 
SARS-CoV-2 Omicron BA.2 outbreak and its heterogenous effect on the 
SARS-CoV-2 spread, both spatially and demographically. The implications of 
our findings could be instrumental to inform spatially targeted interventions at 
the within-city scale to mitigate possible new surges of COVID-19 cases as 
well as fostering preparedness for future respiratory infections disease 
outbreaks.
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Main Text 1 

 2 

Introduction 3 

Following the initial COVID-19 wave in early 2020, mainland China adopted 4 

stringent measures, often referred to as the "zero-COVID" strategy, to curb 5 

COVID-19 outbreaks(1). This approach effectively minimized SARS-CoV-2 6 

transmission in China until the emergence of the Omicron variant in late 7 

2021(2). Subsequently, several Omicron outbreaks occurred, with a 8 

significant outbreak in Shanghai, identified in March 2022, accounting for 9 

over 600,000 confirmed infections(3). Comprehensive PCR testing, citywide 10 

lockdowns, and additional measures to restrict interpersonal interactions 11 

were implemented, ultimately containing the outbreak by June 2022. China 12 

eventually abandoned the "zero-COVID" policy six months later(4). 13 

 14 

Human mobility patterns, ranging from international travel to daily commuting, 15 

significantly influence the spread of infectious diseases due to the nature of 16 

interpersonal interactions(5-10). Recent years have seen an exponential 17 

growth in geolocated datasets that provide unprecedented levels of detail to 18 

quantify human mobility(10-19). In particular, data collected from mobile 19 

devices has extensively been used in the early phase of the COVID-19 20 

pandemic to investigate transmission dynamics, estimate changes in contact 21 

patterns as a result of public health interventions, and forecast epidemic 22 

spread(11, 13, 18, 19). However, limitations in the epidemiological and 23 

mobility data analyzed (e.g., varying COVID-19 reporting rates by age, 24 

incomplete demographic information for individual travel trajectories) have 25 

left several key questions regarding the relationships between epidemic 26 

spread, implemented interventions, and human behavior and mobility 27 

unanswered. In particular, it remains unclear whether population responses 28 

to a COVID-19 outbreak, as measured by travel frequency, distance traveled, 29 

and population connectivity, vary within a city (e.g., by district area) or among 30 

demographic groups (e.g., by age and sex). 31 

 32 

To address these knowledge gaps, we utilized passively recorded Cellular 33 

Signaling Data (CSD) from over 5 million users (approximately 20% of 34 

Shanghai’s population) and epidemiological surveillance data collected 35 

during the SARS-CoV-2 Omicron outbreak in Shanghai. The exceptional 36 

scale and resolution of the human mobility data enabled us to analyze 37 

micro-level changes in mobility within the city and among different population 38 

groups (e.g., age and sex). Additionally, the repeated city-wide PCR 39 

screenings provided an opportunity to examine the association between 40 

these behavioral shifts and high-quality epidemiological data in the unique 41 

context of Shanghai’s 2022 Omicron outbreak. 42 

 43 
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Results 44 

Omicron outbreak in Shanghai and public health response 45 

In early March 2022, Shanghai experienced a significant outbreak of the 46 

SARS-CoV-2 Omicron variant, which rapidly spread among its 25 million 47 

residents. Throughout the outbreak, authorities conducted multiple mass 48 

PCR screenings; by the end of the outbreak on June 30, 2022, they had 49 

identified a total of 627,132 SARS-CoV-2 infections (see Fig. 1a). During the 50 

outbreak's initial phase, authorities implemented grid management and 51 

partial lockdowns at the subdistrict level. On March 28, eastern Shanghai, 52 

consisting of subdistricts east of the Huangpu River (see SI Appendix, Fig. 53 

S1a), entered a population-wide lockdown, followed by a citywide lockdown 54 

for the rest of Shanghai on April 1. The citywide lockdown was lifted entirely 55 

on June 1, 2022, when the daily number of newly reported infections dropped 56 

to 10. Further information on the public health response can be found in the 57 

Methods, SI Appendix, Fig. S2, and SI Appendix, Table S2. 58 

 59 

Changes in frequency of travel, distance traveled, and mobility network 60 

community structure over the course of the outbreak 61 

We quantified spontaneous and intervention-induced behavioral changes of 62 

the Shanghai population in terms of their daily mobility patterns based on 63 

CSD. During the study period (see SI Appendix, Fig. S1e), we analyzed an 64 

average of 5.04 million users accounting for 27% of all mobile phone users in 65 

Shanghai (20% of the total population). We estimated aggregated mobility 66 

flows, defined as the number of trips between two locations where a user 67 

spends at least 30 minutes, at a spatial resolution of 1km x 1km (see SI 68 

Appendix, Fig. S1d). This was done using a grid comprising 7,355 cells that 69 

covered the entire city of Shanghai, including all of its 16 districts and 216 70 

subdistricts (see SI Appendix, Fig. S1a). The geographical distance between 71 

the cell centroids it is assumed to estimate the travel distance. Subsequently, 72 

we employed the Infomap method(20) to identify community structures within 73 

the mobility networks. Further details can be found in the Methods section 74 

and SI Appendix Section 1. 75 

 76 

Pre-outbreak Phase. During the two weeks before the Omicron outbreak 77 

began, we estimated an average of 1.36 trips per individual per day, 78 

corresponding to a total of 7.03 million trips per day (see Fig. 1a). 79 

Approximately, 33.4% of the grids in the central urban areas accounted for 80 

80% of the total mobility in Shanghai (see Fig. 1b). The median distance 81 

traveled was 6.04 km; trips within 10 km accounted for 66.7% of all trips (see 82 

Fig. 1c and d). We identified 22 total communities, with a sizable core 83 

community (~65.3% of Shanghai’s land area) at the city’s center, surrounded 84 

by peripheral communities outside the Shanghai metropolitan area (see Fig. 85 

2a and SI Appendix, Fig. 3a and f). 86 

 87 
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Targeted interventions Phase. After the implementation of public places 88 

closures, school closures, mass screenings, and travel restrictions beginning 89 

on March 2, the number of daily trips decreased from 1.36 to 0.88 (see Fig. 90 

1a). Long-distance trips, defined as those exceeding 30 km, experienced the 91 

most substantial decrease, dropping by approximately 47.5% compared to 92 

the pre-outbreak phase. This reduction brought the median travel distance 93 

down to 5.09 km (see Fig. 1c and d and SI Appendix, Fig. S4a). By the end of 94 

the targeted interventions phase, the number of communities within the 95 

mobility network had increased to around 50 (see Fig. 2b and SI Appendix, 96 

Fig. S3b and f). 97 

 98 

Citywide lockdown Phase. After a citywide lockdown was implemented on 99 

April 1, mobility decreased by 87.5% compared to the pre-outbreak phase 100 

and remained stable for about a month (see Fig. 1a). The median travel 101 

distance decreased to 1.21 km, with 79.0% of trips spanning less than 3 km 102 

(see Fig. 1c and d and SI Appendix, Fig. S4a). The initial 22 communities 103 

fragmented into 180 smaller ones, effectively dismantling the core-periphery 104 

structure that connected various parts of the city (see Fig. 2c and SI 105 

Appendix, Fig. S3c and f). 106 

 107 

Targeted lifting of interventions Phase. Coinciding with the partial lifting of 108 

interventions on May 1, data revealed a gradual increase in mobility, 109 

reaching 19.1% of pre-outbreak levels. Meanwhile, the median distance 110 

traveled per day rose to approximately half of what it was in the pre-outbreak 111 

phase (see Fig. 1a and c). The number of distinct communities decreased to 112 

75 with a ramping up of the strength of connections across different regions 113 

of the city (see Fig. 2d and SI Appendix, Fig. S3d and f). 114 

 115 

Reopening Phase. Upon lifting most interventions on June 1, we observed 116 

an immediate resurgence in mobility flows, reaching 91.2% of pre-outbreak 117 

levels in under a week (see Fig. 1a). Short-distance trips (<3 km) increased 118 

more rapidly, exceeding pre-outbreak levels, while long-distance trips only 119 

recovered to about half of their pre-outbreak frequency. By June 30, the 120 

median trip distance had not returned to its level during targeted 121 

interventions (4.24 km vs. 5.09 km), although the number of daily trips had 122 

almost reverted to pre-outbreak figures (see Fig. 1c and SI Appendix, Fig. 123 

S4a). Ongoing mandatory COVID-19 tests for travel outside residential areas 124 

within the city, along with additional policies, prevented the community 125 

structure from fully reverting to its pre-outbreak state (43 vs. 22 communities) 126 

(see Fig. 2e and SI Appendix, Fig. S3e and f). 127 

 128 

Spatially heterogeneous impact of the epidemic and the adopted 129 

interventions  130 
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Before the lockdown of eastern Shanghai, mobility reductions were 131 

heterogeneous across regions, with larger reductions observed in regions 132 

severely hit by the epidemic (see Fig. 3a). Regions with more than 50 133 

infections exhibited an average mobility reduction of 78.7%, while the 134 

reduction was just 13.0% for regions without infections (see Fig. 3b). During 135 

the targeted lifting of interventions phase, particularly after May 16 when 136 

public transportation began to resume, strict mobility-restricting policies 137 

persisted in high-risk areas with sustained incidence rates. In contrast, 138 

substantial rebounds in mobility were observed in low-risk regions, 139 

encompassing both suburban and rural areas of Shanghai (see Fig. 3c). 140 

Regions with more than 50 infections had a very low recovery of mobility 141 

(12.6% on average), while the recovery reached 84.1% for regions without 142 

infections (see Fig. 3d). 143 

 144 

Changes in frequency of travel, distance traveled, and mobility network 145 

community structure by demographic characteristics 146 

To calculate the mobility and community structure by demographic 147 

characteristics, we analyzed mobility flows separately by age group and sex. 148 

The range of mobility was measured by the proportion of the area covered by 149 

the top ten communities ���, the total number of identified communities 150 

����, and the number of communities covering more than ten grid cells 151 
(�������. Based on the individual-level data of infected individuals reported 152 

between March 1 and March 25 (targeted interventions phase), we analyzed 153 

the relationship between mobility patterns and the incidence of SARS-CoV-2 154 

as well as the number of cells with reported infections by demographic 155 

characteristics. 156 

 157 

During the pre-outbreak phase, number of daily trips and distance travelled 158 

were highest for adults aged 30-59 years (6.20 km; 1.46 trips) and lowest for 159 

older adults aged 70+ (4.35 km; 0.60 trips) (see Fig. 4a and SI Appendix, Fig. 160 

S4b). Compared with middle-aged adults aged 30-59, individuals 0-18 years 161 

old travelled 38.2% less frequently and 23.6% shorter distances, and 162 

correspondingly had a 38.7% lower incidence and 58.0% less infected cells 163 

during the targeted interventions phase. For all age groups, higher mobility 164 

was correlated with higher infection incidence, and longer travel distances 165 

were correlated with larger infected areas (see SI Appendix, Table S7 and 8). 166 

Neither travel distance nor travel volume were obviously different across all 167 

age groups during the citywide lockdown; however, they quickly rebounded 168 

to the pre-outbreak level during the reopening phase (see Fig. 4b and c). 169 

Different age groups also presented significant differences in mobility 170 

network patterns across phases (see Fig. 4d-g). Middle-aged groups (30-59 171 

years old) visited substantially more locations than younger or older groups; 172 

for example, the average degree ��� for middle-aged groups was 40 times 173 

that for 16-18 years old. Similarly, the mobility networks of middle-aged 174 
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groups were more densely connected, with higher transitivity (adjacent 175 

neighboring locations) (see SI Appendix, Table S6). This difference was 176 

more prominent in community structures. For example, younger and older 177 

groups had smaller and less connected communities (�=5.93%, ��=319, 178 

� 	6.88%, ��=369, respectively), whereas middle-aged groups had fewer 179 

well-connected communities covering large areas (� 	37.25%, ��=142) 180 

(see SI Appendix, Fig. S5). The lockdown reduced the connection of the 181 

mobility networks for all age groups (see Fig. 4e). 182 

 183 

Males were associated with longer travel distance (6.08 km vs. 5.81 km) and 184 

30.6% higher daily trips than females during the pre-outbreak phase (see Fig. 185 

4a and SI Appendix, Fig. S4c), which was associated with 9.7% higher 186 

incidence and 7.3% more infected cells than female during the targeted 187 

interventions phase (see SI Appendix, Table S7 and 8). There was no 188 

difference in mobility between males and females during citywide lockdown. 189 

The travel distance remained comparable across sexes (see Fig. 4b-c). Sex 190 

was also a strong factor affecting the mobility network patterns. During the 191 

pre-outbreak phase, males had a greater range of mobility and smaller 192 

community sizes (� 	36.95%, ��=148) than females (� 	31.37%, 193 

��=205), indicating that males traveled more frequently and distantly than 194 

females. This difference persisted across all epidemic phases (see Fig. 4d-f 195 

and SI Appendix, Fig. S5).  196 

 197 

Additional analyses at different spatial and temporal resolutions  198 

Additionally, we compared changes in frequency of daily trips at the grid, 199 

subdistrict, and district levels. Trips between subdistricts or districts exhibited 200 

higher reduction in mobility during the citywide lockdown for the subdistrict 201 

(91.3%) and district levels (95.4%) compared to the grid (1km×1km cells) 202 

level (87.5%) (see SI Appendix, Fig. S6a and SI Appendix, Table S9). We 203 

also observed a less marked reopening rebound of the mobility, reaching 204 

79.1% and 69.2% of the pre-outbreak flows, respectively, for the subdistrict 205 

and district levels compared to 91.2% at the grid level. We then compared 206 

the proportion of daily population flows at different spatial resolutions, 207 

including inter-flow and intra-flow, where the inter-flow denotes the 208 

population flows between cells (or subdistricts, districts) and the intra-flow 209 

represents population flows within the same cell (or subdistrict, district). Our 210 

results show different patterns under different resolutions (see SI Appendix, 211 

Fig. S6b-d). Low-resolution mobility data may thus mask the variability in the 212 

dynamics of mobility flows.  213 

 214 

We further investigated alterations in mobility and commuting patterns at 215 

various temporal resolutions. The periodic weekly commuting pattern swiftly 216 

rebounded during the reopening phase, even though the frequency of travel, 217 

distance traveled, and community structure had not fully recovered. Notably, 218 
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we observed significant differences in travel frequency, distance traveled, 219 

and community structure of mobility networks between weekdays and 220 

weekends, as well as at different times of the day. For more details, refer to 221 

the SI Appendix Section 4 and SI Appendix, Fig. S7-9 for details. 222 

 223 

Discussion 224 

Our analysis provided an in-depth assessment of the behavioral changes 225 

within the Shanghai population in response to the 2022 SARS-CoV-2 226 

Omicron outbreak, considering fine spatial and temporal scales as well as 227 

demographic characteristics. 228 

 229 

Pre-outbreak mobility was unevenly distributed across the city, with 33.4% of 230 

grids located in the center of Shanghai accounting for 80% of all trips. This is 231 

consistent with the geographical distribution of population density in 232 

Shanghai. The crowd movement during the pre-outbreak phase reveals the 233 

specific socio-economic distribution and commuting patterns in Shanghai. 234 

Mobility reductions were also spatially heterogeneous from the targeting 235 

interventions phase through the reopening phase, as different policies were 236 

adopted according to the local epidemic situation. Larger reductions were 237 

measured in regions more severely hit by the epidemic. These findings hint 238 

to possible spontaneous behavioral changes where individuals witnessing a 239 

large number of infections reported in their region might have limited their 240 

mobility beyond the mandated restrictions compared with those living in less 241 

affected regions. When the citywide lockdown entered into effect, the 242 

situation became homogenous as mobility reached its minimum level in all 243 

areas.  244 

 245 

Throughout the outbreak, the frequency of travel and distance traveled 246 

generally adhered to the timeline of interventions implemented to combat the 247 

spread of SARS-CoV-2. Mobility reached its lowest level during the citywide 248 

lockdown phase, with an average of 0.17 trips per day and 1.21 km traveled. 249 

The community structure identified by the mobility flows followed the same 250 

pattern as well, with the population fragmenting into an increasing number of 251 

smaller communities as the level of intervention intensified. Mobility and 252 

community size quickly rebounded within the first week after interventions 253 

were lifted, although in the following month they had not fully recovered to 254 

pre-outbreak levels. During the outbreak, changes in behavior were spatially 255 

heterogenous within the city and directly associated with both the epidemic 256 

situation and interventions. We observed that males and individuals aged 257 

30-59 years old traveled more frequently, traveled longer distances, and their 258 

communities were more connected, which were associated with higher 259 

incidence of SARS-CoV-2 infections and larger infected areas.  260 

 261 
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In late May, public transportation was partially reopened, and individuals 262 

living in less affected regions were allowed conditional trips (e.g., one 263 

individual per household per day was allowed to buy necessities). During the 264 

reopening phase, we found that mobility quickly rebounded within the first 265 

week (although it did not return to the pre-outbreak level). This recovering 266 

trend is substantially different from some European and US locations where 267 

the rebound was much slower, possibly due to the persistence of the 268 

epidemic or different levels of lockdown fatigue(12, 17, 21, 22). Within the 269 

Shanghai population, we found a slower mobility recovery during reopening 270 

among older adults (70+ years), which suggests possible spontaneous 271 

choices to limit mobility to minimize the risk of infection given widespread 272 

information about the increased risk of developing severe symptoms by age 273 

if infected. At the same time, it is also possible that the policy of requiring a 274 

negative PCR results within 72 hours to travel within the city (but outside their 275 

residential area) may have contributed to a reduced mobility among older 276 

adults as they are less likely to use smart phones to show proof of negative 277 

test result(23). 278 

 279 

One interesting aspect of our analysis is that we have observed a spatially 280 

heterogeneous response to the outbreak. Although this was already found in 281 

previous country-level analyses(17, 24-26), here we are observing marked 282 

differences at the within-city scale. Our analysis is also showing that at the 283 

within-city scale, results are generally consistent if data is analyzed at 1 km2 284 

resolution or using administrative boundaries (e.g., district, subdistrict), 285 

although quantitative differences to exists, highlighting the importance of 286 

selecting the appropriate spatial level of aggregation of mobility data 287 

depending on the focus research question. Moreover, we found that 288 

interventions altered not only the number of trips but also their length. In 289 

particular, after the lockdown was lifted, we observed an increase in trips 290 

under 3 km as compared to pre-outbreak mobility. These heterogeneous 291 

patterns may be useful for informing spatially targeted interventions at the 292 

within-city scale. 293 

 294 

While mobile phone data is widely used to quantify human mobility, there are 295 

potential sources of inaccuracy to consider, such as i) population 296 

representativeness (e.g., by age), ii) geographical coverage, and iii) 297 

heterogeneity in user activity. First, our study may be subject to selection 298 

bias, as we analyzed the mobility of mobile phone owners, which could 299 

exclude or underrepresent young children and older adults (see SI Appendix, 300 

Fig. S1h and SI Appendix Section 1). However, despite this affecting our 301 

population-level results, we have provided an assessment by age and sex 302 

that does not suffer from this bias. Second, we analyzed data representing 303 

approximately 20% of Shanghai's population, with a median coverage by 304 

subdistrict of 19.5% (interquartile range: 14.9%-24.7%) (see SI Appendix, Fig. 305 
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S1c). Third, by relying on passively recorded cellular signaling data instead 306 

of actively recorded signals, we have mitigated the bias of heterogeneity in 307 

user activity. Another limitation is that the number of infections disaggregated 308 

by location, age, and sex is available to us only until March 25, 2022. This 309 

constraint limited our comparison between epidemiological data and human 310 

mobility patterns to the initial two phases of the outbreak. 311 

 312 

In summary, behavioral changes during the 2022 Omicron outbreak were 313 

heterogeneous, both spatially and demographically. By shedding light on the 314 

varied responses among population groups, our findings can be instrumental 315 

in guiding the development of spatially targeted interventions to mitigate 316 

potential new surges in COVID-19 cases, as well as fostering preparedness 317 

for future respiratory infectious disease outbreaks. 318 

 319 

Materials and Methods 320 

Data sources 321 

Mobile phone data. Cellular Signaling Data (CSD) were provided by China 322 

Unicom, one of the largest national mobile carriers in China, which accounts 323 

for approximately one-third of all active mobile phone users in Shanghai. 324 

Active signaling data was recorded during events such as phone calls, text 325 

messages, device power on/off, or tower switches, while passive signaling 326 

data captured the user's location approximately every 30 minutes, provided 327 

the phone was turned on. The analyzed CSD data includes the timestamp of 328 

each event and a unique identifier for the mobile phone tower routing the 329 

activity. The data spans from February 15, 2022, to June 30, 2022, and 330 

consists of an average of 5.04 million phone users per day throughout the 331 

study period. 332 

 333 

Epidemiological data. Daily aggregated data on the number of infections and 334 

individual-level data (line list) of all SARS-CoV-2 infections were extracted 335 

from multiple publicly available official data sources (websites of municipal 336 

health commission and local government media) as detailed in our previous 337 

study(3). The age and sex information are available only for infected 338 

individuals reported between March 1-March 25, 2022. 339 

 340 

Timeline of the outbreak and public health response  341 

After the outbreak was initially reported on March 1, 2022, a series of 342 

non-pharmaceutical interventions (NPIs) were implemented to suppress 343 

transmission. Schools closed on March 12. From March 16 to 27, Shanghai 344 

introduced grid management by dividing subdistricts into high-risk and 345 

non-high-risk areas, based on factors such as the epidemiological situation 346 

(number of infections and cases), population density, social characteristics, 347 

and economic activity. High-risk areas underwent one or two rounds of 348 
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population-wide PCR screening within 48 hours, accompanied by lockdown 349 

orders. Non-high-risk areas conducted a single round of mass screening. 350 

 351 

On March 28, eastern Shanghai (comprising subdistricts east of the Huangpu 352 

River, see SI Appendix, Fig. S1a) entered a population-wide lockdown, 353 

followed by the rest of Shanghai on April 1 (citywide lockdown). Key 354 

enterprises and public transportation began resuming operations in May, with 355 

the citywide lockdown fully lifted on June 1. However, some restrictions 356 

persisted throughout June, limiting population movement. For instance, 357 

entering public places and transportation required proof of a negative PCR 358 

test result within 72 hours, and restaurants prohibited dine-in service until 359 

June 29. Additional details on the public health response can be found in SI 360 

Appendix, Fig. S2 and SI Appendix, Table S2. 361 

 362 

Definition of the five phases of the outbreak 363 

For the purposes of this analysis, we categorized the outbreak into five 364 

phases based on the implemented interventions and the epidemic situation. 365 

The first phase, known as the "pre-outbreak phase," spanned from February 366 

15 to February 28, 2022. During this period, only a small number of sporadic 367 

and locally transmitted cases were recorded, and people's daily activities 368 

remained largely unaffected. The period from February 1 to February 14 was 369 

excluded from our analysis as it is overlapped with the Chinese New Year 370 

holiday. The second phase is the “targeted interventions phase”, covering the 371 

period from March 1 to March 31, when spatially targeted NPIs were 372 

deployed to suppress transmission. The third phase is the “citywide lockdown 373 

phase”, covering the period from April 1 to April 30, when the entire city was 374 

in lockdown. The fourth phase is the “targeted lifting of interventions phase”, 375 

covering the period from May 1 to May 31, when restrictions started to 376 

gradually scale-down in specific areas of the city. The last phase is the 377 

“reopening phase”, covering the period from June 1 to June 30, when policies 378 

started to be lifted throughout the entire city. 379 

 380 

Frequency and distance of daily trips 381 

A trip was counted when a user switched to one or more new cell towers, 382 

until the user became stationary again (no further switch for approximately 30 383 

min). We only consider trips between different cells of the grid. We defined as 384 

�� ��� the number of trips between grid j and grid i at time t. The average 385 

number of trips per individual at time t was thus defined as �
��t� 	386 
T�t�/����, where T�t� 	 ∑ 
����� (t) represents the total number of trips at 387 

time t, and ���� represents the number of active users at time t (which 388 

dynamically changes over time due to the flow of commuter to and from 389 

Shanghai). To quantify to what extent mobility changed during the outbreak, 390 

we compare the mobility during different epidemic phases to a baseline 391 

phase with pre-outbreak mobility. Estimates were disaggregated by age, sex, 392 
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day type (i.e., weekday and weekend), and time of the day (i.e., daytime and 393 

nighttime).  394 

 395 

Definition of the mobility network and community detection 396 

To investigate structural changes in the mobility network throughout various 397 

stages of the outbreak, we reconstructed the mobility network �	 for each 398 

phase �. In this network, each node represents a cell of the grid, with 399 

directed edges connecting nodes where users move between cell � and cell 400 

�. The degree of node � is then defined by �� 	 ��
�
 � ��

��
, where ��
�
 	401 

∑ ���� , and ��
��
 	 ∑ ���� , where ��� indicates whether node j is connected to 402 

node i or not (i.e., users travel from node j to node i). The average degree ��� 403 

is then calculated as ��� 	 ∑ ��


��� �⁄ , where � is the number of nodes. The 404 

number of days in each phase � is denoted by �	. Subsequently, the edge 405 
weights ������ are calculated as the average daily number of trips between 406 

cells during this phase as ������ 	 ∑ ������
���
/|��|. We exclude edges 407 

whose average weight is below the threshold ������ � 1.  408 

 409 

We used the Infomap method(20) to detect the community structures in the 410 

mobility network. Briefly, considering the sequence of communities visited by 411 

a random walker who will tend to linger within communities, the algorithm 412 

detects the community based on the probability distribution of random walks. 413 

A community partition is regarded as good if the description of that sequence 414 

requires relatively little information, in the sense of Shannon entropy, and the 415 

Infomap method is built to optimize the minimum description length of the 416 

random walk on the network. Compared with other methods, this approach 417 

retains the information about the directions and weights of the edges, which 418 

has the advantage of being flexible for finding community structures on large 419 

weighted and directed networks(27, 28). To assess community detection, we 420 

calculate the modularity(29). As an index of the difference of connectivity 421 

within a community versus between-communities, a relatively lower 422 

modularity value indicates a higher strength of connections between different 423 

communities rather than within the same community.  424 

 425 

The same methods were used to analyze the mobility networks and 426 

community structures by demographic characteristics by subsetting the 427 

dataset to consider only mobility flows for the analyzed population group. 428 

 429 

Ethical Considerations 430 

This study was approved by the institutional review board of the School of 431 

Public Health, Fudan University (IRB# 2022-05-0969). 432 

 433 

Data Availability. Mobile phone data are proprietary and confidential. We 434 

obtained access to these data from the SmartSteps company controlled by 435 
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China Unicom within the framework of the COVID-19 research project. To 436 

safeguard the privacy of the users, CSD was aggregated over time and 437 

space scale and by users’ age group and sex(30). Raw mobility data cannot 438 

be made publicly available to preserve privacy. Grid-level data to reproduce 439 

the findings of this study can be requested from the corresponding author.  440 

 441 

Code availability. The code will be made available on GitHub upon 442 

acceptance of the manuscript.  443 
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Figures 531 

532 
Figure 1. Changes in population flows and travel distance in Shanghai. 533 

a. Changes in number of daily trips and number of new infections reported 534 

from February 15 to June 30, 2022. Grey bars represent the daily reported 535 

infections. b. The geographic distribution of population trips during the 536 

pre-outbreak phase. The color intensity represents the number of daily trips 537 

occurred in each cell. c. The proportion of daily trips by different distances 538 

travelled (filled colors) and median distance of daily trips (dotted line) from 539 

February 15 to June 30, 2022. d. The cumulative probability distribution 540 

against distance (log) of daily trips across all five phases, where p is defined 541 

as the probability of traveling between locations at a certain distance. Each 542 

line represents the probability distribution per phase.  543 
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 544 

Figure 2. The network structural changes during each phase.  545 

a-e. The community structure of pre-outbreak, targeted interventions, 546 

citywide lockdown, targeted lifting of interventions, and reopening phases, 547 

respectively. The mobility network is visualized with the top 10,000 edges 548 

sorted by weight in descending order. The color of the edges illustrates the 549 

community partitions of the grid.  550 
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 551 

Figure 3. Impact of epidemic and interventions on the changes in 552 

mobility.  553 

a. The geographic distribution of infections and mobility reduction during the 554 

targeted interventions phase. The upper map represents the cumulative 555 

number of infections at the grid level as of March 27 (i.e., before the 556 

lockdown of eastern Shanghai). The lower map represents the mobility 557 

reduction, which is computed as the subtraction of daily trips on March 27 558 

from the pre-outbreak mobility level, divided by the pre-outbreak mobility 559 

level. b. The mobility reduction as a function of number of new infections in 560 

the cells during the targeted interventions phase. The bar represents the 561 

mean value, while the horizontal line represents 50% quantile intervals. Each 562 

dot corresponds to the result for each cell. Note that the dots with a negative 563 

mobility reduction were not displayed. c. The geographic distribution of 564 

infections and mobility recovery during the targeted lifting of interventions 565 

phase. The upper map represents the cumulative number of infections at the 566 

grid level from May 1 to May 31. The lower map represents the mobility 567 

recovery, which is computed as the daily average trips between May 16 and 568 

May 31 divided by the pre-outbreak mobility level. The recovery may be 569 

beyond 100% if the daily trips during May 16 and May 31 are higher than the 570 

pre-outbreak mobility level. d. The same as panel b, but for the targeted 571 

lifting of interventions phase. Note that the dots with a mobility recovery 572 

beyond 100% were not displayed.  573 
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 574 

Figure 4. Changes in frequency, distance, and community structures of 575 

mobility network by age and sex.  576 

a-c. Mean number of daily trips and median distance travelled by age group 577 

and sex during the pre-outbreak, citywide lockdown, and reopening phases. 578 

Summary of frequency and distance across phases is shown in SI Appendix, 579 

Table S4-5. d-f. The left part of each panel represents the proportion , i.e., 580 

the top-10 communities in terms of area (1 km2) for each category to the total 581 

area (7,355 km2). The right part of each panel represents the number of 582 

identified communities. The filled portions represent the number of 583 

communities that spans more than 10 grids (NCɡ≥10), while the black box 584 

represents the overall number of communities (NC). g-h. The degree 585 

distribution of the mobility network across phases by age group and sex. 586 

Summary of the topological features of the mobility networks by age group 587 

and sex is shown in SI Appendix, Table S6. 588 
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