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Abstract

Forecasts of COVID-19 outcomes play an essential role in alerting public health and government officials to the trajectory
of the pandemic. The sudden and critical need for these forecasts spurred both the proliferation of diverse epidemiological
transmission models from academia and industry across the United States and efforts to standardize and curate these
model outputs. In many scientific domains, ensemble models, where individual forecasts are aggregated into one, have
demonstrated smaller forecasting error than the individual models from which they are constructed. Using COVID-19
deaths as an index outcome, we developed and evaluated several ensemble approaches where point forecast models were
combined via weighted sums based on historical individual model or ensemble model performance. We found that a
simple method that minimized the error of the past performance of individual models and used L2 regularization to
encourage broader distribution of weights across models outperformed a baseline mean ensemble and all other tested
methods across US states for both absolute error and weighted interval scores. This suggests that performance-based
ensembles can produce accurate forecasts despite training on only point forecasts and recent historical data, provided
that sufficient regularization and constraints are used to capture uncertainty. Availability of an accurate and explainable
ensemble forecast model can increase trust among stakeholders and the general public, thus bettering preparedness and
response efforts during the COVID-19 pandemic.
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weekly forecasts by, at first, taking an average across the subset
of models with one- to four-week-ahead forecasts, and, later in
July 2020, switching to using a median of the same subset.
This ensemble has displayed the best overall probabilistic ac-
curacy compared to the component models, and the authors
emphasize the importance of combining forecast models (4),
(11). Neither the mean nor the median take model character-
istics, such as individual or combined historical performance,
into account. There is much evidence to suggest that com-
bining forecast models unequally as a weighted-sum ensemble
may provide even more accurate forecasts than an equal-weight
ensemble (7), (12), (14).

Linearly combining predictive models, such as regressions,
through minimizing the error of combined model predictions is
referred to as stacking (17). The stacked algorithm is meant to
learn the relationship between a combination of models and the
observed data (14). Stacking is one of many forms of ensem-
ble development and it has been successful in its application to
regression and classification models, where the weights are con-
strained to be non-negative (2), (17). This algorithm does not
necessarily reward individual model performance, but seeks the
optimal combination of models that are preferably very differ-

1 Introduction

The COVID-19 pandemic created an immediate demand for
timely and accurate forecasts of cases, deaths, and hospital-
izations. Starting in March of 2020, the COVID-19 Forecast
Hub ("the Hub") began collecting weekly COVID-19 forecasts
in a standardized format (covidl9forecasthub.org). Up to 70
research teams have submitted forecasts to the Hub, creat-
ing a diverse and ever-growing historical record of real-time
COVID-19 forecasts. These individual, or component, models
are submitted in the form of single point forecasts and multi-
ple quantile forecasts to provide uncertainty bounds. Given the
large quantity of models and wide ranges of uncertainty within
each model, the spectrum of probable outcomes becomes too
wide for stakeholders to utilize to make informed decisions.
Accurate forecasts are also essential to help governments and
health departments prepare for and respond to public health
crises. Additionally, forecast reversals undermine public trust
in COVID-19 forecast models (6). To more adequately deliver
trustworthy and actionable model results, a single and robust
forecast model with reliable uncertainty is required.

When choosing a final model for any predictive modeling
or machine learning application, cross-validation is often used

to compare various models and parameters where the model-
parameter combination with the smallest prediction error on the
test data is selected. However, combining multiple predictive
models into an ensemble has long been known to often out-
perform the individual models chosen through cross-validation
from the same set (2). This concept has been applied to fore-

ent from one another (2). Ting and Witten (15) noted issues
in this framework for classification and suggested combining
model confidence instead of single valued predictions.

For disease and weather forecasting applications, ensem-
bles have been created using Bayesian Model Averaging (BMA)
and other similar schemes that account for model uncertainty.

casting, Wh&k Ehisnpsiprple rapertzresnssredids thoheasteadyepr certified Hhpereseltipvg avdights|deos hefleeditngafde dividalap reotemast skill

formance in influenza forecasting applications (8). For COVID-
19, the Hub's established ensemble model has been producing

(10). The ensemble is framed as a mixture model of probability
densities where each observation is believed to have been gen-
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erated from a single model. Weights are constrained to sum to
one to create a probability distribution. To maximize the log-
likelihood of this mixture model ensemble, one places weight on
models that display the best past performance while accounting
for the uncertainty provided by their reported distributions (12).
Under a similar probabilistic framework, McAndrew and Reich
(7) explored the forecasting abilities of an adaptive ensemble,
where a new set of weights were calculated for each forecasting
week of an influenza season and the model was trained on only
the current season's historical data. Regularization of weights
given a uniform Dirichlet prior was found to be advantageous
in this adaptive setting where data was prone to revision.

While the probabilistic framework has shown success in in-
fluenza and other forecasting applications (12), the mathemat-
ical complexity of this approach might be at odds with the need
to provide readily accessible results to a broad range of stake-
holders, including the general public. Motivated to find a simple
and robust ensemble method, we developed and evaluated sev-
eral optimization methods on COVID-19 point forecasts with
incident deaths as the target outcome. Death was selected as a
model outcome because deaths were better captured than cases
during the pandemic. The uncertainty surrounding case estima-
tion was due to fluctuating SARS-CoV-2 testing volumes and
often unreported asymptomatic infections (9), (13). We im-
plemented two ensemble frameworks: optimization of the per-
formance of the combined models (as is traditionally done in
stacking, constrained optimization, and linear regression), and
combining models based on individual performance, inspired by
the intuitive understanding of BMA. All ensemble weights were
constrained to be non-negative and sum to one, as is common
in the stacking ensemble literature. We added regularization
terms and constraints that encouraged a broader distribution
of weights across models, similar to the regularization described
in the previous paragraph which was integrated via an equal-
weight prior distribution (7). We describe a novel method that
appears to provide forecasts with smaller absolute error and
weighted interval scores than the baseline and other ensem-
ble methods, and provide an overview of the many advantages
of this simple yet effective methodology compared to previous
work. We compare and contrast our approaches and comment
on the challenges of COVID-19 ensemble forecasting.

2 Methods
2.1 Data

Component model forecasts of 1-week-ahead incident deaths
were obtained from the Hub and used for training and test-
ing ensemble methods. Forecast location targets included the
United States (US), all 50 states, and the District of Columbia
(DC). The observed data were derived from the Johns Hopkins
University Center for Systems Science and Engineering COVID-
19 Dashboard (5). A rolling 7-day sum was applied to the daily
empirical data to match the weekly incident death model fore-
casts submitted to the Hub. The training data were further
smoothed by fitting a natural cubic spline Poisson regression
model to the weekly incident deaths in each training period,
and the full time series of 7-day sums was similarly smoothed
to create the testing data.

To create a singe set of ensemble weights, training data
consisted of 15 1-week-ahead predictions from M valid models
for a particular location, as well as the weekly observed incident
deaths for the same 15 weeks and location. The data were used

as inputs for an ensemble method, and the resulting weights
were applied to the following week's forecasts provided by the
same M models to create an out-of-sample 1-week-ahead en-
semble forecast. This constitutes a single “test” data point,
thus this process is repeated as a sliding time window to cre-
ate multiple weeks of out-of-sample testing ensemble forecast
data.

Inclusion criteria were applied to each training and testing
dataset to remove certain models before ensemble weight opti-
mization. The criteria for component model point and quantile
forecasts was decided in conjunction with the 15-week training
time window. The Hub required incident death forecasts were
provided as a point forecast along with 23 quantile forecasts
ranging from 0.01 to 0.99, thus models must have had a point
and all 23 quantile forecasts on the test date. Additionally, mod-
els must have had no more than 20% missing point estimates
during the training period. We selected the <20% threshold
to balance the benefit of including more models (i.e features)
during optimization with the cost of training on incomplete and
possibly misleading representations of models. Similarly, the 15
week time window helped to keep this balance: the longer the
time window, the more likely models are to be missing a portion
of data, but too short a time window could lead to overfitting.
Additional time windows and thresholds were examined during
preliminary analyses; a full parametric analysis could be com-
pleted in future work.

2.2 Ensemble Methods

Two distinct ensemble methods referred to as Combined Error
(CbEr) and Individual Error (IndEr) were developed and ap-
plied. The CbEr methods minimized the error of the weighted
sum of models, while the IndEr methods minimized the
weighted sum of the individual model error. Regularization
and constraints were implemented for both groups of methods
to encourage smaller, more distributed weights. For compari-
son, two baseline models were implemented. The final (non-
baseline) methods each involve a global parameter, thus a hy-
perparameter selection was performed for all methods by ex-
amining 15 weeks of out-of-sample ensemble forecasts.

For each ensemble method, location, and set of training
dates, a set of weights w; were optimized in order to min-
imize an objective subject to constraints. The weights were
constrained to be nonzero and sum to 1, creating a weighted
sum of component models. Consider the set of z; ; point fore-
casts for a particular location, where i indexes the forecast
date, i+ = 1,2,...T, and j indexes the set of valid models,
j=1,2,...M. The ensemble point forecast for the test date ¢,
zi, is defined as follows:

M
Zi = inijj, = 1, A (1)
j=1

Given that each component model produced 23 quantile
forecasts for the incident death target, let x; j, where ¢ =
1,2, ...23 represent the component model forecast for quantile
q and z; 4 represent the ensemble forecast for quantile ¢. Let
the absence of a ¢ indicate z;; and z; are point forecasts.
For ensemble evaluation, quantile forecasts were calculated as
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a weighted sum, where the same weight is applied to each
quantile ¢ for date i,

M
Ri,q = Z Li,j,qWj
2 2)

i=1,..T, ¢g=1,..23

All optimizations were completed using the Python li-
brary SciPy's minimize function with the L-BFGS-B algorithm
(Limited-memory BFGS), a bounded quasi-Newton optimiza-
tion method (3), (16). The weights were bounded to be be-
tween 0 and 1 and were rescaled to sum to 1 within each
iteration.

A Baseline Mean method was evaluated alongside the op-
timization methods as a means of comparison. The baseline
is an equal-weight sum of all valid models, w; = ;. This
method is common in the infectious disease ensemble litera-
ture and appears as both a standalone method and a baseline
for comparison against unequal weighted methods (7), (11),

(12).
2.2.1 Combined Error (CbEr) Ensemble Methods

The loss function to be minimized for these methods is the
root-mean-square error (RMSE),

T 2

M
. 1

I?UIF T Z Yi — Xiq,jWj5 (3)
: =

i=1

where the weights w; Vj minimize the RMSE of the weighted
sum ensemble, and the smoothed observed data are represented
as y;. This optimization with no additional constraints or regu-
larization terms was also included in the set of evaluated meth-
ods, and will be referred to as the CbEr Baseline. We introduce
two variations of this optimization:

a. Combined Error with L2 regularization (CbEr-L2): L2 reg-
ularization, A Z;w wf is added to the base optimization in
Equation 3 where X is the regularization coefficient decided
during hyperparameter selection. This formulation is similar
to a constrained Ridge Regression, but with RMSE instead
of the sum of squares.

b. Combined Error with Lower Bound (CbEr-LB): weights are
first optimized as in Equation 3, then a portion of the
weights are redistributed to the models with weight less
than a specified lower bound such that w; > LB Vj.

2.2.2 Individual Error (IndEr) Ensemble Methods

Here, we minimize a weighted sum of the RMSE of each indi-
vidual model:

M T
. 1
miny Jwyy | 7 D (= wiy)’ 4)
j=1 i=1

We note that if this equation is optimized directly with no
regularization and only the basic constraints on the wj, the
single model with the smallest RMSE will receive a weight of
1, while all other models will have zero weight.

To encourage the inclusion of models, two variations of
this optimization were implemented:

US 1-Week-Ahead Incident Death
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Figure 1. Comparison of the performance of ensembles with L2 reg-
ularization across hyperparameter values (o) for the 30-week out-of-
sample ensemble forecasts test set (August 2020 - March 2021) and
smoothed US 1-week-ahead incident deaths. When o = 0, the IndEr-
L2 method can be interpreted as a selection of the single model with
the smallest RMSE during the training period. Weights approach
equality as « is increased.

a. Individual Error with L2-Regularization (IndEr-L2): L2 reg-
ularization, A ij w?, is added to the base objective func-
tion in Equation 4. This is similar to 2.2.1 (a), with the
difference in objective function formulation.

b. Top-N Individual Error (IndEr-TN): non-zero weights are
constrained to be equal, and the number of non-zero
weights must be no more than N. Simply: w; = for
the N models with the smallest RMSE.

L
N

2.2.3 Hyperparameter Selection

Each ensemble method required the selection of a hyperparam-
eter before optimizing for ensemble weights: the coefficient A in
L2 regularization, the value of the lower bound LB in CbEr-Lb,
and the value of N in IndEr-TN. For the first two parameters,
there is slightly more nuance than selecting a constant value.
For regularization, we set A = a% ZT y; to scale the term
appropriately against Equations 3 and 4, leaving us to find a
value for . If & = 1, the term would be equal to the average y;
empirical values. If « = 0, we are simply optimizing Equations
3 and 4. For the lower bound, LB must be a function of the
total valid models M, LB = T}W where v > 1. If y = 1, we
have an equal-weight sum.

To select hyperparameter values, 15 weeks of out-of-
sample forecasts were generated with each ensemble method
for a spectrum of «a, v, and N values. This was completed for
the US and a few select states with larger populations from mid
December 2020 through late March 2021. An example of what
may have been considered during this process is shown in Fig-
ure 1, where the o parameter is iterated from 0 to .6, and the
mean absolute error is calculated on many weeks of ensemble
forecasts with each value of a. Hyperparameters that roughly
minimized the error were selected: the value o = 0.3 for both
IndEr-L2 and CbEr-L2, N=10 for IndEr-TN, and v = 1.5 where
LB = —— for CbEr-Lb.

1.5%xM
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Mean  Median  Maximum
IndEr-L2  38.21 26.71 143.86
IndEr-TN  39.04 27.61 143.76

Baseline Mean  39.60 28.80 150.77
CbEr-LB  39.63 28.91 150.53
CbEr-L2  39.74 27.72 156.91

CbEr Baseline  42.38 29.22 168.77

Table 1. Average of model mean, median, and maximum absolute
error in each state, sorted by the average mean absolute error. An
outlier (Ohio) was manually removed before calculating the mean
over the states.

3 Results

The test dataset comprised 30 weeks of 1-week-ahead model
forecasts and smoothed observed weekly incident deaths as de-
scribed in Section 2.1 beginning in August 2020 and ending in
March 2021 for all 50 states and DC. The ensemble forecasts
were created using a sliding 15-week training window ending
the week before each test date, thus the training data included
45 weeks overall. The absolute errors of the point forecasts and
the weighted interval scores (WIS) of the quantile forecasts for
each ensemble method, date, and location target were calcu-
lated. The weighted interval score is a metric that evaluates
forecasts in an interval format and has become widely used for
COVID-19 forecasts (1). Next, aggregate statistics on the 30
dates for each method and location were derived, including the
mean (resulting in the Mean Absolute Error or MAE and the
mean WIS), median, maximum, and standard deviation. The
six ensemble methods (i.e., two baseline approaches and four
variations) were then ranked for each of the summary met-
rics within each state, and the average of these 51 ranks are
shown in Figure 2. Additionally, the average of the absolute
error metrics are given in Table 1. The absolute error is closely
aligned with the metric used during optimization, RMSE, while
the weighted interval score indicates the resulting ensemble’s
ability to predict reasonable uncertainty intervals. Thus, the
absolute error metrics provide a more fair comparison of en-
semble performance, and the weighted interval score results
demonstrate performance of the interval ensemble forecasts.

From examining the absolute error rankings and mean
statistics, Table 1 and Figure 2, a few trends become clear. The
two Individual Error (IndEr) methods had smaller aggregated
error statistics than the Combined Error (CbEr) methods. Sec-
ond, the CbEr Baseline method displayed poorer performance
than the Baseline Mean and all other methods on average, and
was the only model with average rankings above four, where
the maximum rank was six. The weighted interval score rank-
ings displayed similar trends compared to the absolute error
rankings.

The IndEr-L2 method was the top performer for mean and
median absolute error and WIS across states, but it is worth
noting that the IndEr-TN method and Baseline Mean provided
competitive rankings among the maximum absolute error, with
the IndEr-TN method having the smallest average ranking. For
example, in Figure 3, one can see how for the ensembles of
New Jersey forecast models, the maximum IndEr-L2 absolute
error was larger than that of the IndEr-TN method, thus would
be ranked lower for that state. However, the IndEr-L2 errors
are smaller on average across time, with a MAE of 23.51 com-
pared to 27.98. The mean values in Table 1 show that the
Baseline Mean's maximums may be larger in magnitude, which
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Figure 2. Average rankings of ensemble model mean, median, max-
imum, and standard deviation of the absolute error and weighted
interval score in each state, where a smaller rank indicates smaller
error compared to other methods.

is also demonstrated in Figure 3. Thus, the similar absolute er-
ror rankings of the IndEr-TN and Baseline Mean compared to
the IndEr-L2 method may be insufficient to offset the method's
better performance on the other metrics, such as the mean ab-
solute error.

The MAE of the two methods that use L2 regularization
for different parameter values in Figure 1 show a notable trend.
When the hyperparameter « is increased from 0 to 0.02, the
error drops drastically for the IndEr-L2 method. This indicates
that choosing the single best model during the training period
(e = 0), as one would in typical cross-validation, resulted in
significantly more error than when even a slight encouragement
to include more models is added. The shape of the two curves
indicate that not all models should be included in an ensem-
ble: the error increases as « increases and as weights approach
equality. Additionally, the comparison of the IndEr-L2 method
and CbEr-L2 method across the same spectrum of regulariza-
tion parameters shows that for the US 1-week-ahead incident
death forecasts, the IndEr-L2 ensemble produced forecasts with
lower errors for all « values greater than 0.

4 Discussion

Multiple ensemble methods were implemented on publicly avail-
able COVID-19 forecasts of 1-week-ahead incident deaths and
were evaluated across time and location. We created a new
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New Jersey Ensemble Forecast Error
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Figure 3. Absolute error of Individual Error (IndEr) ensemble fore-
casts of New Jersey 1-week-ahead incident deaths. This is an exam-
ple of the 30 weeks of forecast error calculated for each state and
ensemble method.

forecast ensemble method that we refer to as Individual Er-
ror with L2 Regularization or IndEr-L2, in which the weighted
sum of component model point forecast root-mean-squared er-
ror (RMSE) is minimized with L2 regularization. This method
demonstrated improved performance on the test set relative to
other methods including a baseline mean ensemble, a method
where the top performing models were selected with equal
weight, and variations of a typical stacking ensemble algorithm
where the error of the combined models was minimized. The
IndEr-L2 ensemble captures the varying performance of mod-
els across location targets, unlike other COVID-19 ensemble
methods that do not take performance into account (11). While
this method is composed of well-known statistics, the particular
combination of the two components of the objective function
and its application to disease forecasting is new. Additionally,
the simplicity of this ensemble method compared to techniques
such as Bayesian Model Averaging (BMA) is an advantage be-
cause it lowers the threshold of understanding the results, and
may thus increase trust from stakeholders. Though all ensem-
bles were trained on only point forecasts, the respective per-
formance of the IndEr-L2 method for quantile ensembles was
similar to that of the point ensembles, demonstrating the effi-
cacy of training an ensemble in this manner.

The success of the IndEr-L2 approach relative to the meth-
ods that optimize over the error of the combined models, Com-
bined Error or CbEr methods, can be explained by considering
the challenges of predicting COVID-19 outcomes. Forecast-
ers have needed to continuously change their underlying as-
sumptions and inputs throughout the pandemic to account for
rapidly changing conditions (e.g., new variants of the disease,
the introduction of vaccines). Compared to similar ensemble
work in which influenza forecasts were retrospectively gener-
ated for previous seasons using stable modeling frameworks
(7), the adjustment of parameters during the COVID-19 sea-
son may have led to an unpredictable relationship between the
combined models and the observed data. This is the essence
of what stacked ensembles are meant to learn (14). Therefore,

if this learned relationship was subject to change from week
to week, the CbEr ensembles may have forecasted poorly. This
was seen especially in the results of the CbEr Baseline, which
was un-regularized and often performed worse than simply av-
eraging all valid models. In contrast, the IndEr methods simply
measured individual model error, or rather the relationship be-
tween each model and the observed data, and the successful
results demonstrated that this relationship was better main-
tained across time than that of the combination of models and
observed data.

Beyond the immediate results, the IndEr-L2 method also
has an advantage of extensibility. The function is a sum of
sums, thus it is a convex function of its parameters, the weights.
One could easily replace the RMSE with the average weighted
interval score or the maximum absolute error. The same cannot
be said for the CbEr methods; if the weighted interval score
were to be used, the objective function would become non-
differentiable and potentially non-convex if multimodal models
are present. This would require a more advanced solver and
increased computational resources and run times.

The most notable future extension of this study is refin-
ing the method of hyperparameter selection. Ensemble results
from half of the dates in the test set for the US and select
states were used to choose hyperparameters for each method,
which is an in-sample selection. To fully assess real-time per-
formance of the ensembles, hyperparameter selection could be
performed on a historical ensemble forecast test set. We note
this would be difficult when little data is available in the early
stages of the pandemic, especially when historical seasons are
lacking. Previous research was able to leverage past seasons of
influenza forecasts to optimize parameters (7). Research into
hyperparameter and overall ensemble method selection during
the early stages of a new disease outbreak is warranted. In the
later stages, refinements could be made to find more specific
hyperparameter values. Performing global optimizations sepa-
rately for different locations and allowing a new selection for
each week could improve performance, though caution will need
to be exercised to prevent overfitting.

Future work that could address the limitations of this re-
search and provide further confidence in the results include ap-
plying methods to additional forecast targets, and performing
sensitivity analysis on the parameters and methods. Forecast-
ing two-to-four weeks ahead and modifying the outcome to
incident cases consistently results in more intra-model uncer-
tainty, inter-model variation, and poorer performance on em-
pirical data than the 1-week-ahead death forecasts studied. Ap-
plying the methodologies described here to other outcomes and
further time horizons would enable a more comprehensive as-
sessment of the ensemble methods. When forecast data are lim-
ited, especially early in an epidemic, a small number of model
forecasts could have a large influence on ensemble method
performance. Repeated calculations of metrics with data re-
sampling would add certainty to the comparison of ensemble
method performances.

The value of performance-based ensemble models in dis-
ease forecasting was demonstrated in this study. We saw that
combining more than one model resulted in smaller error than
choosing the single best model based on performance of US
incident death forecasts. Additionally, using historical perfor-
mance to inform an unequal-weighted sum ensemble demon-
strated improved error when compared to a simple average of
all models across US states. Minimizing a distanced-based mea-
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sure of combined model performance in the training phase is
not recommended for a rapidly-evolving situation like COVID-
19. Instead, optimization of a weighted sum of individual
model error with regularization to push weights towards equal-
ity should be considered. Implementing the outlined future
work could provide additional confidence in the aforementioned
method.
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