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Abstract

Background

Chikungunya and Zika are both arboviruses transmitted through the Aedes mosquitoes,

which are ectothermic, leading to seasonal outbreak patterns of virus infections in the

human population. Mathematical models linked with mosquito trap data, human case
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data, or both, have proven to be powerful tools for understanding the transmission

dynamics of arboviral diseases. However, while predictive models should consider a

variety of features in the environment, vectors, and hosts, it is not clear which aspects

are essential to assist with short-term forecasting.

Methodology

We consider four simple models with various assumptions, including mosquito dy-

namics, temperature impacts, or both, and apply each model to forecast the Chikun-

gunya and Zika outbreaks of nine different regions in French Polynesia. We use stan-

dard statistical criteria to compare the accuracy of each model in predicting the magni-

tude of the outbreak to select the most appropriate model to use as an alert system for

arbovirus infections. Moreover, by calibrating our “best model”, we estimate biologi-

cally meaningful parameter values to explore the commonality and difference between

Chikungunya and Zika epidemics.

Conclusions

We show that incorporating the mosquito population dynamics in the arbovirus trans-

mission model is essential for accurate arbovirus case prediction. In addition, such

enhancement in the accuracy of prediction is more obvious for the Chikungunya data

than the Zika data, suggesting that mosquito dynamics play a more important role

in Chikungunya transmission than Zika transmission. In contrast, incorporating the

effects of temperature may not be necessary for past outbreaks in French Polynesia.

With the well-calibrated model, we observe that the Chikungunya virus has similar

but slightly higher transmissibility than the Zika virus in most regions. The best-fit

parameters for the mosquito model suggest that Chikungunya has a relatively longer

mosquito infectious period and a higher mosquito-to-human transmission rate. Fur-

ther, our findings suggest that universal vector control plans will help prevent fu-

ture Zika outbreaks. In contrast, targeted control plans focusing on specific mosquito

species could benefit the prevention of Chikungunya outbreaks.
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1 Introduction

Arbovirus refers to the type of virus spread to people by the bite of blood-feeding insects such

as mosquitoes and ticks [1]. Chikungunya fever and Zika fever are diseases caused by arboviral

infections and such arboviruses are transmitted via mosquitoes of the Aedes genus [2]. In recent

years, these two diseases have spread quickly across the world, and several large outbreaks have

occurred in the regions of India, the Pacific Ocean, and America [3]. In addition, arboviruses

are likely to expand to other countries via the travels of asymptomatic individuals. Predictive

and inferential models of arboviral disease outbreaks can assist public health authorities in raising

awareness in local communities, making travel recommendations, and conducting proper vector

control interventions.

Mathematical modeling for vector-borne diseases can be traced back to 1911 when Sir Ronald

Ross proposed several difference equations to describe the transmission of Malaria between people

and mosquitos [4]. In 1927, Kermack and McKendrick extended Ross’s equations into continuous-

time differential equations and introduced the mass-action transmission term into the equations.

Kermack and McKendrick’s pioneering compartmental SIR model later became the fundamental

structure of the modern epidemic models [5–7]. Ross’s work was further refined by Macdonald in

1952 and led to the well-known Ross-Macdonald model [8]. In 1979, Anderson and May refined

the Kermack-McKendrick model by introducing birth and death, which is more realistic and is

therefore widely used [9]. Today, modeling approaches for infectious diseases can be classified

into five categories: compartmental model, spatial model, network model, and individual-based

model [10]. In the vector-borne compartmental models, the human population and the vector pop-

ulation are each split into compartments such as susceptible, infectious, etc. For instance, Funk

et al. (2016) developed an ordinary differential equation model, a variant of the Ross-Macdonald

model, to predict and compare the transmissions of Dengue and Zika outbreaks [11]. In their

model, the human population is separated into susceptible, exposed, infectious, and recovered,

and the mosquito population is separated into susceptible, incubating, and infectious. Bonyah and
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Okosun (2016) developed an ordinary differential equation model with optimal control to predict

the transmission of Zika and evaluate the effects of treatment and insecticide [12]. Recently, Chen

and Huo (2023) developed mathematical models to investigate the connections between the en-

vironmental factors and the Aedes aegypti population dynamics [13]. Despite the differences in

the formulation, one of the most important parameters that can be measured by the compartmental

epidemic models is the basic reproductive number (R0), which is defined as the average number of

secondary infections produced by one infectious individual at the beginning of the outbreak [10].

R0 is an indicator of the transmissibility of a disease, and it can vary with place and time for

the same disease. Other modeling approaches for vector-borne diseases include spatial model-

ing that models the transmission with certain transmission kernels [14], network modeling that

uses a graph to model the interactions between people and disease-transmitting vectors [15], and

individual-based modeling that can incorporate complex individual-level behaviors, interactions,

and characteristics [16].

While complex models can capture a lot more details and achieve much better training and

testing accuracy with careful tuning, simple models are still competitive for their interpretability

and robustness, which sometimes make them better inferential tools than complex models. Thus,

we aim to develop a simple data-driven framework to predict the transmission of vector-borne dis-

ease and identify important factors in vector-borne transmission, and we derived several biological

meaningful parameters from the framework. An ideal inferential framework should contain as few

parameters as possible such that the parameter estimates will be consistent across different sets

of training data obtained from the same or similar biological settings. Also, the model should be

complex enough to reflect any meaningful biological variations.

Uninfected mosquitoes obtain the virus by biting an infected person. Then the virus-carrying

mosquitoes can cause new human infections if they bite susceptible people afterward. Mosquitoes

are ectothermic, meaning their reproduction, development, feeding, and survival rates are sensitive

to the external temperature. Therefore, researchers believe it is essential to consider the abundance

of mosquitoes in the area, the mosquito infection dynamics, and their variation based on the local
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temperature fluctuation when developing compartmental models of arbovirus outbreaks. For ex-

ample, most previous studies that revisit past arbovirus outbreaks have considered both mosquito

population dynamics and temperature fluctuations [17–23]. On the other hand, arbovirus outbreaks

often occur in warm weather and in sub-tropical and tropical areas, with limited temperature varia-

tion during the outbreak periods. Thus some models targeting ongoing outbreaks may interpret the

case data without incorporating the temperature data [24] or the mosquito population dynamics.

This study investigates the roles of two factors in arbovirus outbreaks: mosquito population

dynamics and local temperature. To do so, we consider four compartmental models with and

without these two features. Outbreak data for Chikungunya and Zika fevers, together with local

temperature, are adopted from a prior study [3] in nine different regions of French Polynesia.

Specifically, we use each model as a forecasting tool to inform weekly case reports and evaluate

the quality of prediction statistically, in order to select the optimal model in terms of simplicity and

accuracy.

Once we establish the optimal model, we use it to address several biological questions about the

outbreak data shown in Figure 1. Firstly, although the primary mosquito species that transmit Zika

and Chikungunya are the same, most regions experience outbreaks on different scales. Moreover,

we seek a qualitative explanation of the factors that caused different outbreak sizes of both diseases

in the same area. Secondly, we observe that all nine regions experienced similar Zika outbreak

sizes; we explore whether this commonality indicates shared disease transmission features across

different areas. Finally, we offer an explanation for the occurence of the largest Chikungunya

outbreak, in the Marquesas Islands, compared to other regions.

2 Method

In order to explore the necessity of incorporating both mosquito population dynamics and local

temperature data in the models for arbovirus outbreaks, we developed four deterministic models to

describe the mean number of new cases in each week. We then compared these four models based
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2.1 Data description 6

on their goodness of fit to recorded case data. After identifying our “best model,” we used it to

estimate biologically meaningful parameters, in order to understand the transmissions of Chikun-

gunya and Zika fevers. We used a maximum likelihood approach, implemented in R, followed

by Akaike Information Criterion analysis for model comparison and selection. Finally, we used

Bayesian inference to obtain the posterior values of the parameters and posterior predictions of the

current data.

2.1 Data description

The incidence data consist of groups of successive weekly cases of Chikungunya and Zika in nine

different regions, including six islands and archipelagoes of French Polynesia (Austral, Marque-

sas, Mo’orea, Sous-le-vent, Tahiti, and Tuamotus) and three regions in the French West Indies

(Guadeloupe, Martinique, and Saint-Martin) [3]. The recorded dates range from October 13, 2013

to October 2, 2016, and the weekly data for both Chikungunya epidemics and Zika epidemics are

available for each region, as shown in Figure 1. The weekly average temperature in celsius is also

available for every region and outbreak period, as shown in Appendix Figure S1.
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2.2 Model description 7

Figure 1: Normalized incidence of Chikungunya and Zika fevers in nine different regions during the out-
breaks. The outbreak incidence data for Chikungunya and Zika are shown by orange and blue points,
respectively.

2.2 Model description

We described the number of weekly new cases using a Poisson distribution. Since the number of

new cases is much smaller than the total population size, we assumed that the propensity of the

disease transmission reaction does not change too much in a week. Thus we employed the so-called

tau-leaping approximation for the underlying continuous-time, discrete-state Markov process [25,

26]. We assume the number of new cases in week i, ∆Ii, follows a Poisson distribution with mean

λi × t. We adopt one week as our basic time unit, thus t equals 1. Consequently,

∆Ii ∼ Poiss(λi) (1)

We consider four different models for determining the parameter λi, developed in the following
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subsections: mass-action model, mosquito model, temperature model, and mosquito-temperature

model.

2.2.1 Mass-action model

Following [27], we model the transmission of a disease in a homogeneously mixed population

using the law of mass action, with the number of new infections being proportional to the fraction

of the remaining susceptible individuals. In our simplest model, we describe the mean number of

new cases per week as follows:

λi = β∆Ii−1
Si

N
. (2)

Here Si represents the number of susceptible individuals at the start of the current week (i) and

∆Ii−1 represents and the number of newly infected individuals in the previous week (i − 1). The

initial population size, N , is treated as a constant. The parameter β represents the average number

of transmissions per week per infected individual if the entire population were susceptible. We

assume that the new infections in week (i) are caused by the newly infected individuals in week

(i− 1). That is, we assume that the infected individuals generated from the weeks before the pre-

vious week have been removed from the general population, either through recovery, or through

admittance to hospitals. These individuals comprise a removed class that we take to be an absorb-

ing state. For this model, the basic reproduction number R0 of the disease, i.e. the average number

of secondary transmissions from one infected person in a total susceptible population is expressed

as:

R0 = β. (3)

2.2.2 Mosquito model

Both the Chikungunya virus and the Zika virus are transmitted via mosquito. To explore the

effect of mosquito population dynamic on Chikungunya and Zika transmission, we augmented

the preceeding model so as to consider the dynamics of the infected mosquitoes and susceptible

mosquitoes in each week. For simplicity, in this model we assume that the total population of
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the mosquito remains constant during an outbreak in a specific region. The “Mosquito model”

variables are the number of susceptible mosquitoes Ms and the number of infected/virus-carrying

mosquitoes Mi. By assumption, Ms + Mi = NM , where NM represents the total mosquito pop-

ulation size. The incidence of mosquito biting is assumed to follow the law of mass action. We

define β to be the average number of mosquitoes that bite on each infected person per day if all the

mosquitoes are susceptible. In addition, the infected mosquitoes can become virus-free again with

per capita rate α. We write the kinetics of the mosquito population as:

dMs

dt
=

carrying virus through biting infected people︷ ︸︸ ︷
−βI

Ms

NM

+

resetting from virus-carrying to virus-free︷︸︸︷
αMi , (4)

Since we consider the total mosquito population size to be constant, Mi obeys a scalar differential

equation:

dMi

dt
= βI

NM −Mi

NM

− αMi. (5)

We assume that the infected mosquito population size converges quickly enough to its equilibrium

each week that we can replace the infected population with its steady-state value:

Mi
∗ =

βIi−1

α + βIi−1

NM

. (6)

Therefore we extend the previous mass-action model (2) so that the average number of new cases

in week i can be described as

λi =
γβ∆Ii−1Si

αNH +RHMβ∆Ii−1

, (7)

where NH is the initial human population size, and RHM = NH/NM represents the initial human-

to-mosquito ratio. Moreover, γ represents the average number of transmissions per week per

infected mosquito.

To derive the R0 of the disease for this model, we first calculated the average number of infected
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mosquitoes produced by one infected person in the next week under the assumption that the human

population size is sufficiently large as below:

Mi
∗ =

β

α + β
NM

. (8)

Then, the expression for R0, can be obtained as:

R0 =
γβ

α + βRHM

NH

. (9)

2.2.3 Temperature model

To study the effects of temperature on the transmissions of Chikungunya and Zika fevers, we

extended the mass-action model to incorporate the weekly average temperature wt. To the best

of our knowledge, the effect of temperature on the transmission rate β has not been reported. For

the same of simplicity, we adopt a linear Ansatz to account for the positive associations of the

temperature with the host-seeking ability, biting rate, and development rate of the mosquitoes [28].

λi = β(wti)∆Ii−1
Si

N
,

β(wti) = β0 + β1wti,

(10)

where the transmission rate β in week i is a linear function of the average weekly temperature in

week i (i ≥ 0), wti. Under this assumption, the R0 of the disease is defined as

R0 = β(wt1), (11)

where wt1 is the average temperature in the second week of the outbreak.
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2.2.4 Mosquito-temperature model

Previous studies show that temperature can affect the mosquito survival and activity. In particular,

the immature stages of mosquito (e.g. larvae and pupae) has the optimal survival at 25-30 ℃, and

the mortality rates will dramatically increase at extreme temperatures [29, 30]. Temperature can

also affect the mean duration of the extrinsic incubation period (EIP), and Johansson et al. models

the EIP in the form a × eb×(T−28) [31]. Temperature can also affect the mean duration of the

gonotrophic cycle (GC), and the relationship can be described by the following quadratic equation

GC = 56.64 − 3.736 ∗ T + 0.064 ∗ T 2 [3, 32]. Since GC includes the mosquito biting, one can

expect that a decrease in the average duration of GC will lead to an increase in the mosquito attack

rate. Thus, we assumed that the mosquito attack rate is proportional to the reciprocal of the mean

duration of GC, and to incorporate the effect of temperature on the mosquito biting, we set both

parameter β and γ to be dependent on the mean weekly temperature wti.

β(wti) =
βmt

c− 3.736 ∗ wti + 0.064 ∗ wti2
(12)

γ(wti) =
γmt

c− 3.736 ∗ wti + 0.064 ∗ wti2
(13)

With the framework as the mosquito model, the mosquito temperature model has all the β and γ

replaced by the β(wti) and γ(wti), which results in the formula below:

λi =
γ(wti)β(wti)∆Ii−1Si

αNH +RHMβ(wti)∆Ii−1

. (14)

The equation for R0 has the similar form as equation 9, by replacing all the β and γ with β(wt1)

and γ(wt1), where wt1 is the average temperature in the second week of the outbreak.

R0 =
γ(wt1)β(wt1)

α + β(wt1)
RHM

NH

. (15)
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2.3 Model comparison, parameter estimation and simulation 12

2.3 Model comparison, parameter estimation and simulation

The number of contacts between people and mosquitoes is likely to be large in French Polynesia.

At the same time, the probability of successful disease transmission per contact event should be

small (due to various factors such as the mosquito’s incubation period and the host’s immunity).

Consequently, the Poisson distribution appears to be a reasonable (and parsimonious) choice for

modeling the weekly incidence rates. For the model comparison and initial model simulations,

therefore, we used the Poisson distribution for weekly cases and the maximum likelihood approach

to derive the loglikelihoods of the different models across different groups of data.

Since the Poisson distribution is not overdispersed, we compared models based on on their

abilities to describe the variation by using their core parameters. In other words, by assuming that

the process is less stochastic, we can fully compare the predictive powers of the different models.

Using overdispersion in model comparison might cause a low-bias model to be less distinguishable

from a high-bias model because the mean has less influence on the likelihood than the variance.

We used the Akaike Information Criterion (AIC) [33, 34] to evaluate and compare the models.

By convention, the AIC is calculated as AIC = −2L + 2k, where L and k are the log-likelihood

and number of parameters, respectively. The AIC metric is an indirect estimation of the test error

of a model, and it penalizes the model for having more parameters due to a higher chance of

overfitting. Due to the limited amount of data available, performing validation or cross-validation

may overestimate the test error. Also, since our models are not purposed primarily for accurate

prediction, we consider AIC to be sufficient for model selection.

We found that model simulations using the Poisson distribution tend to underestimate the vari-

ance of the field data. As shown in Appendix B (Figure S2), the data is more dispersed than any of

the four models would predict. Therefore, it appears that the Poisson distribution fails to capture

all sources of stochasticity in the disease transmission process. In order to construct more realistic

simulations, and to pursue more accurate parameter estimation, we used replaced the Poisson dis-

tribution with a Normal distribution (with some overdispersion) in order to approximate the number
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2.3 Model comparison, parameter estimation and simulation 13

of weekly cases. The additional stochasticity could arise from unspecified human, mosquito, and

(or) human-mosquito processes. For instance, the human recovery period and the weekly infected

mosquito population are both random quantities, but are treated as deterministic in the Poisson

model.

Thus, we introduce a scaling factor σ to account for the various sources of process variations

that are ignored in the Poisson model, as well as (random) errors due to the τ -leaping assumption

that the propensities of the reactions stay unchanged in one week. We write the incidence of new

cases as:

∆Ii ∼ N(λi, λiσ
2). (16)

To ensure that our model comparison result and best-model choice still hold after replacing

the Poisson distribution with the Gaussian distribution, we repeated our model comparison for

all four models using the Gaussian likelihood function across different values of σ. As shown in

Appendix C (Figure S4), our best-model choice holds for all σ less than 10. For larger values of

the disperson parameter σ, the four models become indistinguishable from each other. However,

for every region except Tahiti, the estimated posterior distributions of σ for both diseases indicate

that σ is likely to be below 10. The larger σ value obtained from the Tahiti data possibly suggests

that some other covariates at this particular region contribute more variability than the mosquito-

human transmission process. Thus, the conversion from the Poisson distribution to the Gaussian

distribution does not typically alter the conclusions from the previous model comparison results

with σ = 1.

Computational methods. For this inferential study, we used Stan, a programming language for

MCMC-based Bayesian inference, to obtain the posterior distributions and 90% credible intervals

of the parameters (https://mc-stan.org). The posterior predictive distributions are then obtained to

check the agreement of the model prediction and the training data.
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3 Result

3.1 Comparing models

In order to select the model that best balances parsimony with accurate data fitting, we calibrated

all four models with respect to the data from all nine regions. We then applied the AIC test for

model comparison and model selection. Table 1 shows the results of the AIC tests evaluated for

outbreak data from different regions. We compute the ∆AIC of each model by subtracting the

AIC of the best model from the AIC of the current model. A smaller ∆AIC corresponds to shorter

distance to the best model, and the model with zero ∆AIC is the best model. As shown in Table

1, incorporating mosquito dynamics into the model results in a significant improvement in the

accuracy of prediction, which is supported by both diseases across all the regions. In contrast,

the mosquito-temperature model is only justified by both diseases in the Austral Islands and the

Marquesas Islands, suggesting that incorporating the effect of temperature on mosquito biting gives

only a limited enhancement of the predictive power. Figure S2 (Appendix B) compares simulations

of the four calibrated models to Austral Chikungunya incidence data. Since the mosquito model

is more strongly justified than the mass-action and temperature model, and has similar predictive

power but fewer parameters and predictive variables than the mosquito-temperature model, we

conclude that the mosquito model is the best model among all four models in this study.
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3.1 Comparing models 15

Table 1: Model comparison summary: AIC test comparison the four models

Region Outbreak Disease
∆AIC of each model

Best model
Mass-action Temperature Mosquito Mosquito-

temperature

Austral Islands
Chikungunya 102.6 104.6 12.7 0.0 Mosquito-

temperature

Zika 19.1 17.6 9.2 0.0 Mosquito-
temperature

Guadelope
Chikungunya 115.0 117.0 0.0 2.0 Mosquito

Zika 76.2 78.2 0.0 2.0 Mosquito

Marquesas Islands
Chikungunya 112.7 114.7 19.8 0.0 Mosquito-

temperature

Zika 75.9 74.4 29.9 0.0 Mosquito-
temperature

Martinique
Chikungunya 134.2 136.2 0.0 2.1 Mosquito

Zika 424.3 426.3 0.0 2.0 Mosquito

Mo’orea Islands
Chikungunya 108.0 110.0 0.0 2.0 Mosquito

Zika 31.0 33.0 0.0 1.8 Mosquito

Saint-Martin
Chikungunya 175.4 168.3 0.0 2.0 Mosquito

Zika 24.0 26.0 0.0 2.0 Mosquito

Sous-le-vent Islands
Chikungunya 144.5 146.5 0.0 2.0 Mosquito

Zika 3.1 5.1 0.0 2.0 Mosquito

Tahiti
Chikungunya 262.8 264.8 0.0 2.0 Mosquito

Zika 71.8 73.8 0.0 2.0 Mosquito

Tuamotus
Chikungunya 42.9 44.9 0.0 2.0 Mosquito

Zika 13.5 15.5 0.0 2.0 Mosquito
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3.2 Biological insight about Chikungunya and Zika based on parameter es-

timation

Table 2: Median and 90% credible intervals of the parameters in the mosquito model

Region Virus
Parameter

R0
α(time−1) β(time−1) RHM γ(week−1)

Austral Islands
Chikungunya 2.86 [0.61; 6.62] 2.18 [0.45; 6.40] 3.47 [0.51; 8.03] 1.63 [0.34; 5.34] 1.20 [0.90; 1.57]

Zika 3.07 [0.71; 6.83] 1.97 [0.43; 5.96] 3.10 [0.30; 7.60] 1.67 [0.36; 5.41] 1.07 [0.89; 1.29]

Guadelope
Chikungunya 3.12 [0.82; 6.66] 1.97 [0.44; 5.66] 3.19 [0.42; 7.61] 1.79 [0.51; 5.50] 1.15 [1.08; 1.23]

Zika 3.06 [0.69; 6.71] 1.97 [0.39; 6.04] 3.11 [0.38; 7.44] 1.66 [0.35; 5.66] 1.06 [0.97; 1.15]

Marquesas Islands
Chikungunya 3.03 [0.84; 6.68] 2.31 [0.53; 6.04] 3.33 [0.59; 7.40] 2.28 [0.77; 5.65] 1.67 [1.31; 2.21]

Zika 3.00 [0.62; 6.67] 2.02 [0.44; 6.15] 3.32 [0.47; 7.70] 1.63 [0.29; 5.60] 1.09 [0.82; 1.37]

Martinique
Chikungunya 2.76 [0.58; 6.51] 2.27 [0.47; 6.61] 3.57 [0.53; 7.88] 1.42 [0.27; 5.17] 1.13 [1.07; 1.23]

Zika 2.84 [0.49; 6.86] 2.15 [0.39; 6.29] 3.34 [0.48; 7.68] 1.56 [0.21; 5.33] 1.06 [0.98; 1.18]

Mo’orea Islands
Chikungunya 3.06 [0.82; 6.53] 2.08 [0.45; 6.06] 3.33 [0.52; 7.53] 1.87 [0.51; 5.56] 1.25 [0.96; 1.61]

Zika 2.97 [0.68; 6.93] 1.92 [0.41; 5.97] 3.07 [0.33; 7.75] 1.69 [0.30; 5.63] 1.04 [0.80; 1.31]

Saint-Martin
Chikungunya 2.84 [0.49; 6.49] 2.19 [0.48; 6.50] 3.44 [0.45; 7.89] 1.51 [0.19; 5.45] 1.11 [0.98; 1.26]

Zika 2.86 [0.50; 6.55] 2.09 [0.43; 6.27] 3.22 [0.43; 7.69] 1.58 [0.20; 5.55] 1.07 [0.97; 1.20]

Sous-le-vent Islands
Chikungunya 2.88 [0.67; 6.45] 2.24 [0.49; 6.44] 3.53 [0.51; 7.72] 1.57 [0.42; 5.45] 1.25 [1.03; 1.61]

Zika 3.11 [0.77; 6.95] 2.02 [0.39; 5.91] 3.08 [0.33; 7.52] 1.74 [0.43; 5.48] 1.07 [0.93; 1.23]

Tahiti
Chikungunya 3.06 [0.73; 6.85] 1.99 [0.41; 5.92] 3.05 [0.34; 7.45] 1.86 [0.56; 5.72] 1.22 [1.05; 1.44]

Zika 3.10 [0.75; 6.91] 1.86 [0.40; 5.91] 3.16 [0.31; 7.44] 1.81 [0.41; 5.76] 1.08 [0.93; 1.24]

Tuamotus
Chikungunya 2.87 [0.65; 6.52] 2.14 [0.43; 5.97] 3.30 [0.49; 7.70] 1.80 [0.54; 5.75] 1.32 [1.10; 1.65]

Zika 3.06 [0.58; 6.80] 1.97 [0.40; 6.13] 3.21 [0.50; 7.55] 1.72 [0.28; 5.46] 1.06 [0.88; 1.28]

3.2.1 Basic reproductive number R0.

The goal of this study is to compare the scales of Zika and Chikungunya outbreaks among all

nine regions, and to investigate differences in the transmission dynamics of these two diseases.

Our results from the best-fit model (Figure 2) show that (i) the Zika R0 is similar in each region;

(ii) Chikungunya possesses a higher R0 value than Zika universally in all regions; (iii) Marquesas

Islands possesses significantly higher Chikungunya R0 value than all other regions. These obser-

vations are consistent with the outbreak data shown in Figure 1. Thus they serve to support our

model: the Zika outbreak in each region is of a similar scale and smaller than the Chikungunya

outbreak, and the Marquesas Islands experienced the largest Chikungunya outbreak among all nine

regions.

In addition, to better understand the effects of the parameters of the mosquito model on the R0,

we evaluated the elasticities for all the parameters at the fitted parameter values for the Chikun-
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gunya outbreak in the mosquito model in the Austral islands, shown in Figure S3 (Appendix B).

3.2.2 Transmission parameters β, γ, RHM and α.

Aedes aegypti and Aedes albopictus are the two primary vectors responsible for the transmission

of both viruses. Though sharing a few common characteristics, the two mosquito species should

contribute differently to the transmission of each disease, as they still differ in the feeding prefer-

ence, thermal-dependent life cycle, extrinsic incubation period, and transmission ability, inter alia.

Further, the prevalence of the two mosquito species could differ significantly among regions, re-

sulting in different outbreak potentials of vector-borne diseases. Due to the lack of species-specific

transmission parameter estimation, our model accounts for the overall impact of Aedes mosquitoes.

Therefore, the model parameters estimated from each fitting only represent a combined effect of

both species and thus should be different among regions.

Chikungunya and Zika outbreak sizes in the same region. Although all nine regions expe-

rienced various scales of Zika and Chikungunya outbreaks, our parameter estimation (Figure 3)

indicates that the specific reason for the unequal outbreak sizes could be distinctive from region

to region. Marquesas Islands is estimated to possess human-to-mosquito ratios (RHM ) and the

infectious mosquito turnover rates (α) that are close for Zika and Chikungunya, meaning that the

components of mosquito species for the transmission of both viruses are similar. At the same time,

the Chikungunya outbreak in this region was significantly larger. Therefore, the larger outbreak

is attributable to other parameters, namely the transmission rates between mosquitoes and humans

(β, γ). This analysis suggests a high biting rate and poor mosquito bite prevention in the Marquesas

Islands. In contrast, the larger Chikungunya outbreak in Sous-le-vent Islands appears to have been

caused by a slower infectious mosquito turnover rate and higher human-to-mosquito transmission

rate, even though more mosquitoes spread Zika than Chikungunya.

Chikungunya and Zika outbreak sizes among regions. The outbreak sizes and R0 of the Zika

virus vary minimally among all regions, and so do the estimated model parameters. The homoge-
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neous estimations on β and γ suggest that the effective biting rates of mosquitoes transmitting the

Zika virus are similar among most regions. Further, the estimations on the human-to-mosquito ra-

tio for Zika transmission are close in many regions, which indicates the component of mosquitoes

that transmit Zika is similar among these regions. These findings suggest that a uniform vector

control strategy could be applied universally to all regions to prevent future Zika virus outbreaks.

On the other hand, the parameter estimations are diverse for Chikungunya in most regions.

For example, the Marquesas Islands possess the highest values of β and γ but a moderate value

of RHM , which indicates the largest Chikungunya outbreak is attributable to a more prominent

component of mosquito species that transmits Chikungunya more effectively, not to a small human-

to-mosquito ratio. Therefore, in order to manage future Chikungunya outbreaks, one could employ

vector control plans that target the mosquito species with the most efficient transmission ability of

the virus.

Figure 2: Basic reproductive number R0 estimated from the mosquito model (section 2.2.2). Each dot refers
to the median value of estimated R0 and the whiskers represent the 90% credible interval of the estimation.
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Figure 3: Parameter estimation of mosquito model (section 2.2.2) for both diseases at nine regions in French
Polynesia.

3.3 Model simulations and comparison with field data

Figures 4 and 5 illustrate the simulated average weekly cases versus time for Chikungunya and

Zika fevers, respectively. The green shaded area gives the 90% credible interval for the number of

simulated cases per week, all of which matched the reported incidence data very well. Hence, the
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calibrated “best model” - the mosquito model - captures most features of the outbreaks.

Figure 4: Mosquito model (section 2.2.2) fittings with Gaussian likelihood function to the Chikungunya
disease incidence data in all nine regions.
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Figure 5: Mosquito model (section 2.2.2) fittings with Gaussian likelihood function to the Zika disease
incidence data in all nine regions

4 Discussion

The Chikungunya and Zika diseases have threatened public health in many regions, and the rapid

expansions of both diseases could potentially lead to future global pandemics [35]. In addition

to efforts to develop drugs and vaccines, mathematical modeling is an important tool for disease-
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control planning. The usefulness of modeling depends on its ability to predict the propagation of

infectious diseases and identify factors that can affect patterns of spread [36,37]. Ideally, an infer-

ential model should capture the key factors influencing outbreaks, but contain as few parameters

as possible in order to save computational power and ensure robust parameter estimation.

Studies have shown that French Polynesia is at high risk for having Chikungunya and Zika

outbreaks due to the presence of two local mosquito species: Aedes aegypti and Aedes polyne-

siensis [38, 39]. A study has also shown that though sharing a few common characteristics, these

two species differ in feeding habits, thermal-dependent life cycle, extrinsic incubation period, and

transmission ability [2]. Moreover, they are highly competent in transmitting the arboviral dis-

eases. Hence, it is likely that these two species contribute differently to the transmission of each

disease. In addition, the hot and rainy season in French Polynesia that continues from October to

March favors the reproduction of the mosquitoes [40]. Hence, to better understand the common-

alities and differences among these two Aedes-transmitted diseases, we conducted a joint analysis

of Chikungunya and Zika outbreaks in French Polynesia, building on common aspects in location

and vectorial transmission.

Firstly, to investigate the necessity of including mosquito population dynamics and the local

temperature data in models of the arboviral outbreaks, we developed four deterministic models

with and without the above two features as follows: a mass-action model, a mosquito model, a

temperature model, and a mosquito-temperature model. We assumed the Poisson distribution for

the weekly cases. One advantage of such choice is that it could make the low-bias models more

distinguishable from the high-bias models than overdispersed distributions. We calibrated all four

models using weekly incidence data of Chikungunya and Zika in nine different regions in French

Polynesia, and we applied the AIC test for model comparison and model selection. Our results

(Table 1) suggested that mosquitoes play a crucial role in the spread of arboviral diseases. While

the effect of temperature on the spread of arboviral diseases varies across different regions, the

temperature does not appear to play as significant a role as the mosquito dynamics. In particular,

the effect of temperature on mosquito biting is one of the dominant factors that determines the
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rate of disease spread in the Austral islands and Marquesas islands, which is not true in the other

regions. This difference probably arises because the temperature also affects aspects other than the

mosquito biting, such as the mosquito population and extrinsic incubation period (EIP) [41, 42].

In the present analysis, we concluded that incorporating the mosquito population dynamics in

the transmission of arbovirus modeling is essential to enhance the predictive power, while the

temperature impact may not be necessary for understanding past outbreaks in French Polynesia.

Our study included some but not all factors that could influence patterns of disease spread.

Although we have parameterized some of the key factors involved in Arboviral disease transmis-

sion, we omitted other mosquito factors, such as the EIP and gonotrophic cycle, as well as human

factors such as human behavioral changes through the progression of the disease outbreak, asymp-

tomatic cases that can cause additional disease transmissions, the incubation period and immunity.

Although these factors were excluded from the present study, they could be considered for more

accurate model prediction in future studies. Here, we used the mosquito model as our best model

among the four models considered. Overall, our calibrated “best model” captured most of the

features of the outbreaks (Figures 4 and 5).

As we know, the basic reproduction number, R0, defined as the average number of secondary

transmissions from one infected person in an otherwise susceptible population, has important im-

plications for mitigation efforts needed to bring an epidemic under control. We observed that

(shown in Figure 2): (i) the Zika R0 is similar in each region; (ii) Chikungunya possesses a higher

R0 value than Zika universally in all regions; (iii) Marquesas Islands possesses significantly higher

Chikungunya R0 value than all other regions. These observations are consistent with the outbreak

data shown in Figure 1. We further analyzed the following four parameter values to obtain bi-

ological insight of Chikungunya and Zika diseases: mosquito biting rate on infected people (β),

disease transmission rate from infected mosquitoes to susceptible people (γ), human-to-mosquito

ratio (RHM ), and the infectious mosquito turnover rate (α). It is worth noting that the parameters

β and γ represent the joint effects of many factors. Parameter β represents the combined effect

of the mosquito biting and the incubation period on the rate at which the susceptible mosquito
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becomes infected. Similarly, parameter γ represents the combined effect of the mosquito biting

and the transmission probability on the rate of disease transmission from the mosquito to human.

Our results (Figure 3) indicate that the specific reason for the unequal outbreak sizes of Zika and

Chikungunya could vary from region to region. For example, the large Chikungunya outbreak in

the Marquesas Islands is probably attributable to the transmission rates between mosquitoes and

humans (β, γ), which indicates a high biting rate and poor mosquito bite prevention in the Mar-

quesas Islands. In contrast, the larger Chikungunya outbreak in Sous-le-vent Islands is caused by

a slower infectious mosquito turnover rate and higher human-to-mosquito transmission rate, even

though more mosquitoes spread Zika than Chikungunya. Moreover, the parameter estimations are

diverse for Chikungunya in most regions. On the other hand, the outbreak sizes and R0 of the

Zika virus vary minimally among all regions, and so do the estimated model parameters. These

findings suggest that universal vector control plans will help prevent future Zika outbreaks, but tar-

geted control plans focusing on specific mosquito species could aid the prevention of Chikungunya

outbreaks.

Future investigations could explore how population fluctuations and behavioral changes of the

mosquito population are influenced by seasonal factors. In addition, a better understanding of how

weather affects the mosquitoes during the disease transmission could further strengthen disease-

control efforts.
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Appendix

Appendix A: Temperature data in nine different regions

Figure S1: Weekly average temperature data during the outbreaks of both diseases at nine regions in French
Polynesia. The outbreak temperature data for Chikungunya and Zika are shown by orange and blue points,
respectively. The temperature data is used as an input variable in the temperature (section 2.2.3) and
mosquito-temperature models (section 2.2.4).

Appendix B: Model comparison

Simulations of the four calibrated models and comparison to Austral Chikungunya incidence

data

As shown in Figure S2, the upper and lower limits of the 1000 randomly simulated samples bound

most of the observed data points, indicating that all four models can capture most of the features
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of the Chikungunya outbreak in the Austral islands. Specifically, the mass-action model and tem-

perature model produce similar predictions on the weekly mean cases (Figure S2A and B). The

mosquito model and the mosquito-temperature model generate much different predictions than the

other two models (Figure S2C and D), and their predicted weekly means are much closer to the

real data compared to the mass-action model and temperature model. The similar predictions be-

tween mosquito and mosquito-temperature model suggest that incorporating temperature does not

qualitatively change predictive power. In addition, from week 1 to week 5, the predictions of the

mosquito model and mosquito-temperature model fit the data better than the those of the other two

models, indicating the importance of mosquito in the early stage of the disease spread. For the

portion from week 6 to week 11, the mosquito-temperature model’s prediction fits the data better

than that of the mosquito model, suggesting that the effect of temperature on mosquito biting can

affect the rate of disease spread. All four models fail to accurately predict the peak between week

12 and week 14, indicating additional stochasticity involved in the disease transmission process

that has not been formulated into the models.
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Figure S2: Simulations of the four calibrated models and Austral Chikungunya incidence data: (A) Mass-
action model, (B) Temperature model, (C) Mosquito model, (D) Mosquito-temperature model. 1000 random
simulations of each model are shown by the green dots in the corresponding sub-figure. The margin of the
green-shaded region in each sub-figure indicates the upper and lower bounds of these 1000 simulations.
Each model predicts the expected number of weekly cases for each week, which is shown by the black
curve in each sub-figure.
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Local elasticity analysis

To better understand the effects of the parameters of the mosquito model on the R0, we calculated

the local elasticity for each parameter by using this equation:

Epi =
pi
R0

× ∂R0

∂pi
, (17)

where pi is one of the parameters presented in equation 9. The local elasticities are evaluated

on the fitted parameter values for Chikungunya outbreak in the mosquito model in the Austral

islands, shown in Figure S3. Increasing β or γ will cause an increase in R0, while increasing

α and RHM will cause an decrease in R0. These make intuitive sense because β and γ are the

mosquito biting rate on infected people and disease transmission rate from infected mosquitoes to

susceptible people, respectively. So, an increase in either one’s value is going to accelerate the

spread of disease. In contrast, an increase in α, the rate at which the infected mosquito becomes

virus-free, will cause a decrease in the average infectious period of an infected mosquito and

thereby prevent the spread of the disease. An increase in the initial human-to-mosquito ratio,

RHM , means a decrease in the mosquito density, the number of mosquitoes per person, which

prevents the spread of the disease.
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Figure S3: Local elasticity analysis for the mosquito model for Chikungunya outbreak in the Austral islands.
The elasticity value indicates the percentage change of R0 in response to 1% increase of that parameter.
Equation 17 is used to calculate the elasticity value.
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Appendix C: Model comparison using normal model

Figure S4: Model comparison results with Gaussian likelihood function across different values of σ. The
top margin shows the posterior distributions of σ for both diseases, denoted with different line types, in 9
different regions, denoted with different colors. ∆AIC of a model is the difference of this model’s AIC and
the best model’s AIC, so the model with ∆AIC + 1 = 1 is the best model. The mosquito model is the best
model for σ < 10, and the mass action model is the best model for σ ≥ 10. The two distributions with most
of their highly probable intervals above 10 are from Tahiti, and the highly probable intervals of the other
distributions of σ are below 10.

Appendix D: Expected extinction time

To estimate the outbreak period, we used the mosquito model (section 2.2.2) and ignored the recov-

ery from disease, meaning that the model is further simplified to a SI model. Then, since we only

consider the disease infection, the mean first-passage time for this SI process to conclude (i.e. for

the last individual to become infected) can be calculated by integrating the disease-transmission

propensity with respect to the number of remaining susceptible people, as given by the equation
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below.

E(T ) =

∫ Nh−1

1

1
γβx(Nh−x)

αNH+RHMβx

dx

=
(2α+RHMβ) log (Nh − 1)

βγ

Table S1 shows the expected outbreak extinction-times of both diseases, along with the actual

number of weeks that are case reported. Broadly speaking, the expected outbreak extinction-times

follow the trend of the number of case-reported weeks. However, note that the actual distribution

of the outbreak extinction-time is hard to parameterize due to the different population sizes in

different regions, and the variance of the outbreak extinction-time will go up when the population

size becomes larger.

Table S1: Median and 90% credible intervals of the expected number of weeks for an outbreak to end. The
actual number of weeks that have reported cases are shown in the last column.

Region Virus E(T ) (week) Number of case-reported weeks

Austral Islands
Chikungunya 33 [17; 126] 18

Zika 32 [18; 117] 17

Guadelope
Chikungunya 45 [25; 111] 48

Zika 46 [27; 172] 37

Marquesas Islands
Chikungunya 25 [15; 45] 19

Zika 35 [19; 146] 22

Martinique
Chikungunya 53 [26; 238] 60

Zika 50 [27; 301] 40

Mo’orea Islands
Chikungunya 33 [18; 83] 18

Zika 35 [20; 149] 16

Saint-Martin
Chikungunya 41 [21; 275] 74

Zika 39 [22; 251] 37

Sous-le-vent Islands
Chikungunya 39 [20; 123] 21

Zika 37 [21; 112] 20

Tahiti
Chikungunya 39 [23; 94] 20

Zika 43 [24; 132] 23

Tuamotus
Chikungunya 32 [18; 78] 20

Zika 35 [20; 162] 20
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