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Abstract 

Background 

Growing evidence indicates that dynamic changes in the gut microbiome can affect intelligence; 

however, whether the relationships are causal is unknown. 

Methods 

We conducted a bidirectional two-sample Mendelian randomization (MR) analysis using the 

summary statistics from the largest GWAS meta-analysis of gut microbiota composition (n = 18,340) 

and intelligence (n = 269,867). Inverse-variance weighted method was used to conduct the MR 

analyses complemented by a range of sensitivity analyses to validate the robustness of the results. 

We further applied a two-step MR analysis to evaluate whether the effect of identified taxa on 

intelligence was mediated by regulating the brain volume. 

Results 

MR evidence suggested a risk effect of the genus Oxalobacter on intelligence (β = -0.032; 95% 

confidence interval, -0.049 to -0.015; P = 1.88×10-4) and a protective effect of the genus 

Fusicatenibacter on intelligence (β = 0.051; 95% confidence interval, 0.023 to 0.079; P = 3.03×

10-4). In the other direction, we did not find causal evidence of intelligence on gut microbiome 

composition. The mediation analysis showed that the effect of genus Fusicatenibacter on intelligence 

was partly mediated by regulating the brain volume, with a mediated proportion of 26.7% (95% 

confidence interval, 4.9% to 48.5%). 

Conclusions 

Our findings may help reshape our understanding of the microbiota-gut-brain axis and development 

of novel intervention approaches for preventing cognitive impairment. 
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Introduction 

Intelligence, also known as cognitive ability, is a robust predictor of educational and socioeconomic 

achievement and broadly implies lifestyle behaviors and health resource advantages across the 

lifespan [1-3]. Establishing causality and prioritizing targets responsible for individual differences in 

intelligence is one of the key challenges in psychological and brain sciences. Currently, emerging 

evidence recognizes gut microbiota as an essential component of normal physiology, with an 

important role in both brain development and function [4-6]. 

 

The gut microbiome is a highly complex and diverse hidden kingdom and plays a fundamental role 

in gut-brain communication. Growing evidence indicates that alterations in the gut microbiome can 

affect neurodevelopment and cognitive ability [7, 8]. An early life antibiotic exposure is associated 

with subsequent worse neurocognitive outcomes [9, 10]. By contrast, the administration of probiotic 

strains yielded controversial results in terms of cognitive changes. For example, probiotic ingestion 

has been reported to improve sustained attention and working memory in elderly participants [11], 

while an early study reported potential cognitive impairments of probiotic consumption [12]. For the 

specific taxa, a multi-omics integration analysis revealed that three genera, Odoribacter, 

Butyricimonas, and Bacteroides, exhibited a positive association with improved cognitive 

performance [13]. Additionally, the abundance of Odoribacter was linked to several important 

features of brain structure and volumes [13]. Furthermore, a recent metagenomic association analysis 

found that bacteria with the ability to produce short-chain fatty acids (SCFAs), including Bacteroides 

massiliensis, and Fusicatenibacter saccharivorans were found to be positively correlated with 

improved cognitive performance [14]. Despite growing evidence linking gut microbiome 
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composition and cognitive ability, the causal role is still scarce. Moreover, current conclusions are 

mainly based on conventional observational studies, which can be impacted by a variety of 

confounding factors, such as diet. It is critical to explore the potential causal role between gut 

microbiome composition and intelligence. 

 

Randomized controlled trials (RCTs) of gut microbiota have the potential to establish causal 

relationships. Nevertheless, most RCTs are expensive and time-consuming, and more importantly, 

gut microbiome composition cannot be randomly allocated in practice. Alternatively, Mendelian 

randomization (MR) employs genetic variants as instrumental variables (IVs) to investigate the 

causal associations between modifiable exposures and outcomes [15]. Genetic variants are 

distributed randomly during meiosis and fertilization, making them largely independent of 

self-selected behaviors, thereby circumventing bias from confounding factors and reverse causality. 

Large-scale genome-wide association studies (GWASs) on the gut microbiome [16] and intelligence 

[17] provide the opportunity for MR analysis with significantly improved statistical power. 

 

In the present study, we performed a bidirectional two-sample MR analysis to investigate the causal 

relationships between 211 gut microbiota composition (consisting of 131 genera, 35 families, 20 

orders, 16 classes, and 9 phyla) and human intelligence. We eventually identified two putative causal 

associations. Considering the close relationship between brain volume and human intelligence [18, 

19], we further conducted a two-step MR analysis to explore whether the effect of the identified taxa 

on intelligence was mediated by regulating the brain volume. Our findings may provide insight into 

the early-stage intervention of cognitive ability at the gut microbiome level. 
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Methods 

Study overview 

An overview of the study is shown in Figure 1. We first used single-nucleotide polymorphisms 

(SNPs) derived from the summary-level data as genetic instruments for the risk factor. In this study, 

each bacterial taxon was regarded as an independent exposure. We then performed a two-sample 

bidirectional MR to assess the causal effect of each gut microbiome composition on intelligence, and 

vice versa. At last, we utilized a two-step MR analysis to assess whether brain volume plays a causal 

role in mediating the pathway linking the identified gut microbiome composition and intelligence. 

 

Data sources 

Summary information on the data sources and sample sizes used in this study can be found in 

Supplementary Table 1. 

 

Gut microbiome composition. The genetic information for gut microbiome composition was obtained 

through the largest GWAS meta-analysis to date conducted by the MiBioGen consortium [16]. The 

study involved the coordination of 16S rRNA gene sequencing and genetic profiling of 18,340 

individuals from 24 cohorts, most of whom were of European ancestry [16]. Only taxa that met the 

criteria of an effective sample size of at least 3,000 individuals and presence in at least three cohorts 

were included in the original paper. A total of 211 taxa at six levels (131 genera, 35 families, 20 

orders, 16 classes, and 9 phyla) were ultimately analyzed. 
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Intelligence. The genetic associations for intelligence were derived from the largest meta-analysis of 

GWAS to date, which encompassed 269,867 individuals of European ancestry across 14 independent 

cohorts [17]. Intelligence was measured through various neurocognitive assessments, such as verbal 

and mathematical fluid intelligence tested in UK Biobank (UKB) [20]. But different measures were 

operationalized to index a common latent factor, labeled general intelligence or Spearman’s g [21], 

also known as the positive manifold of cognitive ability or intelligence. Association analysis was 

conducted using a linear model for all cohorts except the HiQ/HRS. These cohorts utilized a 

multidimensional set of cognitive performance tests to generate normally distributed scores such as a 

single sum, mean, or factor scores, which were subsequently employed as the phenotype. The 

HiQ/HRS cohort used an extreme sampling design to compare individuals with high intelligence (top 

0.03% of the IQ distribution) with unascertained population controls, and a logistic regression was 

applied [22]. 

 

Brain volume. The genetic variants associated with brain volume were derived from meta-analysis 

results of brain volume in the UKB, as well as two additional GWAS on intracranial volume and 

head circumference, both considered proxy measures for brain volume [18]. A total of 17,062 

participants were included in the GWAS analyses in UKB. Brain volume was estimated using 

structural (T1-weighted) magnetic resonance imaging (MRI) by combining total gray and white 

matter volume with ventricular cerebrospinal fluid volume. The GWAS results of intracranial volume 

conducted by the ENIGMA consortium included 11,373 participants [23] and head circumference 

included a total of 18,881 participants [24], resulting in a combined sample size of 47,316. 
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Genetic instruments selection 

The genetic instruments employed must fulfill three assumptions [25]: (1) the genetic variants should 

be strongly associated with the exposure, (2) the genetic variants should not be associated with any 

potential confounding factors, and (3) the genetic variants should not affect the outcome 

independently of exposure. 

 

Selecting genetic instruments. We used the clump function within PLINK software [26] to identify 

independent SNPs for each exposure, using the 1000 Genomes European data as the reference. A 

strict cut-off of r2 < 0.001, a window of 10,000 kb, along with a P < 5×10-8 were used for clumping. 

It is worth noting that we used a relaxed P value threshold of 1×10-5 for gut microbiome composition, 

similar to previous MR studies [16, 27, 28], since SNPs below this threshold were found to have the 

largest explained variance on microbial features [29]. To ensure consistency, we harmonized the 

effects of SNPs on both exposure and outcome by aligning the beta values to the same alleles. Where 

shared SNPs between exposure and outcome were not available, we replaced them with proxy SNPs 

(r2 > 0.8) that were significantly associated with the exposure. 

 

Removing confounders. To avoid potential confounding, we removed SNPs significantly associated 

with plausible confounders in the PhenoScanner database [30, 31] in European participants. Four 

potential confounders were taken into account, including diet, socioeconomic status, drinking, and 

smoking behavior. These traits have been reported to affect both gut microbiome composition [32, 

33], and intelligence or cognitive ability [34-37]. In addition, SNPs associated with the outcome (P < 

1×10-5) were also excluded to satisfy the third assumption. 
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Quality control of genetic instruments. We excluded palindromic SNPs with intermediate allele 

frequencies (>0.42), which would introduce potential strand-flipping issues. To enhance the accuracy 

and robustness of the remaining genetic instruments, we also removed outlier pleiotropic SNPs 

detected by RadialMR [38]. RadialMR identified outlier pleiotropic SNPs utilizing a heterogeneity 

test (modified Q statistics) with a nominal significance level of 0.05. F statistics [39] were calculated 

to estimate the strength of genetic instruments, and only SNPs with F statistics > 10 were included in 

the MR analysis. We only kept the results with at least three SNPs after removing confounders and 

quality control. 

 

Two-sample Mendelian randomization 

Bidirectional causal relationships were performed to test if gut microbiome composition causally 

affects intelligence and if intelligence can causally affect gut microbiome composition. We utilized 

the inverse-variance weighted (IVW) method based on a multiplicative random-effects model [40] as 

the primary causal inference. This approach combined Wald ratio estimates from individual SNPs 

into a single causal estimate for each risk factor [41]. Specifically, each estimate was calculated by 

dividing the SNP-outcome association by the SNP-exposure association [41]. Since the IVW 

estimates can be biased if pleiotropic instrumental variables are introduced [42], we estimated the 

causality using additional four methods in parallel to enhance the reliability of our results. Briefly, 

robust adjusted profile score (MR-RAPS) considers systematic and idiosyncratic pleiotropy, enabling 

robust inference with many weak instruments [43]. The weighted-median approach can tolerate up to 

50% of variants violating MR assumptions when horizontal pleiotropy is present [44]. The 
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weighted-mode method can provide unbiased estimates if SNPs contributing to the largest cluster are 

valid [45]. Lastly, the MR-Egger method allows instruments to have non-zero pleiotropy and 

provides a way to test and estimate the pleiotropy effect in addition to causal estimates [46]. The MR 

estimates are expressed as β values that indicate the change in outcome units for each unit change in 

exposure. The P values from the IVW MR test were adjusted using Benjamini–Hochberg FDR 

correction for multiple testing to the results; for the resulting q value the threshold was set to 0.05. 

Since the large number and hierarchical structure of taxa used in our study, the multiple comparison 

adjustments may be excessive. We also reported nominally significant results (P < 0.05) in the 

Supplementary materials.  

 

Sensitivity analysis 

We conducted a series of sensitivity analyses to address the potential issue of pleiotropy in the causal 

estimates. First, we used MR-Egger regression to assess the presence of horizontal pleiotropy based 

on its intercept term; deviation from zero (P < 0.05) was considered evidence for directional 

pleiotropic bias [46]. Additionally, we utilized MR-PRESSO [47] to detect the presence of pleiotropy 

(P < 0.05). MR-PRESSO compares the observed distance of all the variants to the regression line 

with the expected distance under the null hypothesis of no horizontal pleiotropy. Third, we assessed 

heterogeneity using Cochran’s Q statistic [48], which is produced by different genetic variants in the 

fixed-effect variance weighted analysis; a P value of less than 0.05 indicated the presence of 

pleiotropy. At last, we conducted a leave-one-out analysis to determine whether the causal 

association was driven by an individual variant.  
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Mediation analysis 

A two-step MR analysis was performed to evaluate whether the effect of identified taxa on 

intelligence was mediated by regulating the brain volume. In the first step, we estimated the causal 

effect of specific gut microbiome composition on brain volume. In the second step, we assessed the 

causal effect of brain volume on intelligence. The indirect effect of identified gut microbiome 

composition on intelligence through brain volume was evaluated using the product of coefficients 

method [49]. To determine the proportion of the effect of the contribution of identified taxa on 

intelligence that was mediated by regulating brain volume, we divided the indirect effect by the total 

effect. Standard errors for the indirect effect were obtained using the delta method [50]. 

 

Results 

Causal effects of gut microbiota composition on intelligence 

We conducted a two-sample MR analysis to investigate the impact of gut microbiome abundance on 

intelligence. The IVW analyses revealed that the genetic liability for two specific taxa, namely the 

genus Oxalobacter and genus Fusicatenibacter, achieved statistical significance after FDR 

correction. The abundance of genus Oxalobacter was negatively associated with intelligence (IVW 

beta, -0.032; 95% confidence interval (CI), -0.049 to -0.015; P = 1.88×10-4) (Table 1). The estimates 

were similar in size in MR RAPS (beta, -0.032; 95% CI, -0.051 to -0.014; P = 6.85×10-4). We also 

found causal evidence that the abundance of genus Fusicatenibacter was positively associated with 

intelligence (IVW beta, 0.051; 95% CI, 0.023 to 0.079; P = 3.03×10-4) (Table 1). The results were 

further supported by MR RAPS (beta, 0.052; 95% CI, 0.021 to 0.083; P = 1.01×10-3), and weighted 

median (beta, 0.048; 95% CI, 0.010 to 0.087; P = 0.014). The CIs of the weighted mode and MR 
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Egger methods were wider compared to other methods, which could be attributed to their lower 

statistical power when compared to IVW [45]. Scatter plots of SNP effects on these two taxa versus 

intelligence are presented in Figure 2, with colored lines representing the slopes of different MR 

analyses. Forest plots of individual and combined SNP MR-estimated effect sizes are also presented. 

Moreover, we reported additional 27 taxa causally associated with intelligence at a nominally 

significant level (P < 0.05) (Supplementary Table 2).  

 

All SNPs selected for inclusion and exclusion for the two identified taxa are presented in 

Supplementary Tables 3-6 for replication. After selection, 10 and 14 SNPs significantly associated 

with the genus Oxalobacter and genus Fusicatenibacter were used in the MR analyses. The F 

statistics for the genetic instruments indicated the absence of weak instrument bias (Table 1, 

Supplementary Tables 3 and 5). Sensitivity analyses did not address any pleiotropy in the causal 

estimates (Supplementary Table 7). Specifically, the MR-Egger intercept analysis did not reveal 

evidence of directional pleiotropy for the genus Oxalobacter (intercept, -0.005; 95%CI, -0.015 to 

0.006; P = 0.414), and genus Fusicatenibacter (intercept, 0.003; 95%CI, -0.003 to 0.010; P = 0.341). 

MR-PRESSO did not detect any potential outliers for the genus Oxalobacter (P = 0.537) and genus 

Fusicatenibacter (P = 0.877). Furthermore, Cochran’s Q statistic indicated a lack of evidence for 

pleiotropy across instrument effects for the genus Oxalobacter (Q, 8.25; P = 0.509) and genus 

Fusicatenibacter (Q, 7.86; P = 0.853). At last, analyses leaving out each SNP found that none of the 

SNPs were responsible for driving the MR results (Supplementary Figure 1).  

 

Causal effects of intelligence on gut microbiota composition 
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With genetic liability for intelligence as exposure, we performed MR analyses to explore the causal 

effect of intelligence on the abundance of the gut microbiome. The SNPs that were included and 

excluded for intelligence are presented in Supplementary Tables 8-9 to replicate our findings. We 

found no evidence of causal relationships for intelligence on the genus Oxalobacter (IVW beta, 

0.013; 95% CI, -0.170 to 0.196; P = 0.889) and genus Fusicatenibacter (IVW beta, 0.031; 95% CI, 

-0.066 to 0.127; P = 0.536) (Table 2, Supplementary Figure 2). Similar effect patterns were observed 

across the MR-RAPS, weighted median, weighted mode, and MR-Egger methods (Table 2). 

Additionally, the F statistics of the genetic instruments suggested a lack of weak instrument bias 

(Table 2, Supplementary Table 8). Sensitivity analyses did not address potential pleiotropy in the 

causal estimates (Supplementary Table 7). Analyses leaving out each SNP found that none of the 

SNPs were responsible for driving the MR results (Supplementary Figure 3). Although no causal 

evidence after multiple testing corrections, we found that the genetic liability for intelligence had a 

causal contribution to the abundance of 15 gut microbiomes at a nominally significant level (P < 

0.05) (Supplementary Table 10). 

 

Mediation analysis 

Considering the close relationship between brain volume on human intelligence [18, 19], we 

performed a two-step MR analysis to investigate whether the effect of identified taxa on intelligence 

was mediated by regulating the brain volume.  

 

We first estimated the causal effect of identified taxa on brain volume using genetic instruments 

specific to the genus Oxalobacter and genus Fusicatenibacter. Summary information on brain 
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volume for the SNPs associated with these two taxa is listed in Supplementary Tables 11-12. We 

identified that increased genus Fusicatenibacter was associated with increased brain volume (IVW 

beta, 0.086; 95% CI, 0.019 to 0.153; P = 0.012) (Figure 3a, Supplementary Figure 4). We found no 

evidence of causal relationships for genus Oxalobacter on the brain volume (IVW beta, 0.006; 95% 

CI, -0.033 to 0.046; P = 0.745). Sensitivity analyses did not address any pleiotropy in the causal 

estimates (Supplementary Table 13). Analyses leaving out each SNP found that none of the SNPs 

were responsible for driving the MR results (Supplementary Figure 5). 

 

We then assessed the causal effect of brain volume on intelligence using genetic instruments that 

were associated with brain volume (Supplementary Tables 14-15). We found extremely causal 

evidence for the effects of brain volume on intelligence (IVW beta, 0.159; 95% CI, 0.120 to 0.198; P 

= 1.80×10-15) (Figure 3b, Supplementary Figure 6), similar to the results reported in a previous paper 

[18]. Sensitivity analyses did not address any pleiotropy in the causal estimates (Supplementary 

Table 13). Analyses leaving out each SNP found that none of the SNPs were responsible for driving 

the MR results (Supplementary Figure 7). 

 

Finally, we revealed that the genus Fusicatenibacter indirectly affects intelligence by regulating 

brain volume. Specifically, the mediation effect was estimated to be 0.014 (95%CI, 0.003 to 0.025; P 

= 0.016) with a mediation proportion of 26.7% (95% CI, 4.9% to 48.5%) (Table 3). 

 

Discussion 
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The role of our microbiome play in health and disease is one of the biggest scientific challenges [51]. 

In this study, by utilizing summary statistics obtained from the largest GWAS meta-analysis of gut 

microbiota and intelligence, we conducted a bidirectional two-sample MR analysis to disentangle the 

causal relationship. We observed causal evidence indicating a risk effect of the genus Oxalobacter 

and a protective effect of the genus Fusicatenibacter on intelligence. As for the other direction, we 

found no evidence of causal relationships of intelligence with the abundance of the gut microbiome. 

More interestingly, we conducted a mediation analysis and showed that the effect of genus 

Fusicatenibacter on intelligence was partially mediated by regulating brain volume. The findings 

may have implications for public health interventions that seek to enhance individual intelligence. 

 

The gut microbiota potentially impacts the development and function of the immune, metabolic, and 

nervous systems through bidirectional communication along the gut-brain axis [52], which is 

believed to be involved in the intelligence/cognitive ability of the host [8]. For instance, compared to 

normal mice, germ-free mice showed impairments in tests of memory and reductions in hippocampal 

brain-derived neurotrophic factor (BDNF) [53], which is a neurotrophin crucial for neuronal 

development and survival, synaptic plasticity, and cognitive function. By contrast, the administration 

of probiotic strains can promote memory behavior [54] through their production of lactate and the 

promotion of gamma-aminobutyric acid (GABA) accumulation in the hippocampus [55], providing 

solid evidence for the role of the microbiome in intelligence. The association between the gut 

microbiome and cognitive ability in animals also occurs in humans as mentioned in the introduction. 

However, current conclusions predominantly rely on disparities in gut microbiome composition and 

the results of trials that involved the transplant of gut microbiota into gnotobiotic mice [56-58], 
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which can be impacted by various confounding factors. As the gut microbiome is considered to be 

highly dynamic, causal association has been an unresolved issue in the field. 

 

To our knowledge, we report the first MR analysis to investigate the potential causal relationship 

between gut microbiota and intelligence. We found the genetic liability for two taxa, genus 

Oxalobacter and genus Fusicatenibacter, reached a statistical significance after FDR correction. 

Oxalobacter is one of the key taxa involved in the gut microbiome diversity of individuals [59], and 

previous studies showed that Oxalobacter formigenes plays an important role in oxalate absorption 

and secretion pathways in the gut [60]. Observational studies found controversial associations 

between the genus Oxalobacter and cognitive ability. Some studies reported a negative association 

between the abundance of the genus Oxalobacter and the cognitive ability estimated by the 

Mini-Mental State Examination (MMSE) score [61]. On the contrary, another study reported the 

reduced abundance of the genus Oxalobacter was associated with mild cognitive impairment in older 

adults [62]. Our MR analysis observed causal evidence indicating the risk effect of the genus 

Oxalobacter on intelligence. We also provided the protective effect of the genus Fusicatenibacter on 

intelligence. A recent cross-sectional analysis focusing on species-level features associated with 

cognition found that certain bacteria capable of producing short-chain fatty acids, such as 

Fusicatenibacter saccharivorans, were positively associated with better cognitive performance [14]. 

Specifically, a higher abundance of Fusicatenibacter saccharivorans was linked to better scores on 

both the MMSE and the Montreal Cognitive Assessment (MoCA) [14].  
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Another interesting conclusion arising from the current study is that the protective effect of genus 

Fusicatenibacter abundance on intelligence was partially mediated by increasing brain volume. In 

the first step, we identified an increased abundance of the genus Fusicatenibacter associated with 

increased intelligence. Differences in gut microbial composition have been reported associated with 

brain structure [63-66]. Specifically, multimodal neuroimaging fusion biomarkers have been reported 

to mediate the association between gut microbiota and cognition [67]. Yet little is known about the 

effect of genus Fusicatenibacter on brain volume. The second step provided evidence of genetically 

determined higher brain volume was associated with higher intelligence. Jansen and colleagues [18] 

found causal evidence of genetically predicted brain volume on intelligence (beta = 0.154, P = 1.88×

10-23) using the generalized summary-data-based MR (GSMR) package. This result supports our 

second-step estimate in terms of both direction and magnitude.  

 

Admittedly, several limitations should be acknowledged when interpreting the results of this study. 

First, although we utilized the largest GWAS meta-analysis for gut microbiome composition to date, 

the number of subjects in gut microbiome composition GWAS is relatively small, and genetic factors 

can only explain a small proportion of variance in gut microbiome features; thus, the power to detect 

the causal relationship was limited. Second, we used a relaxed P value threshold to select genetic 

instruments due to the limited variant number associated with gut microbiome composition, in line 

with previous microbiota MR studies [16, 27, 28], which may introduce weak instrument bias. 

Nevertheless, we tested the instrument strength and found that all instruments enjoyed F statistics 

exceeding 10, a conventional cutoff for strong instruments [68]. Third, due to the lowest taxonomic 

level being genus in the exposure dataset, we were unable to explore the causal association between 
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gut microbiota and intelligence at the species level. Finally, although the majority of participants in 

the GWAS summary data were European, a small number of the gut microbiota data from other races 

may result in weak instrument variables and potential bias estimates [69]. Moreover, it might 

difficult to extrapolate our results to different ethnic populations, and significant replication when 

diverse samples become available is essential. 

 

Conclusion  

In summary, we used the largest GWAS meta-analysis of gut microbiota and intelligence to 

disentangle the causal association. We found robust genetic evidence of gut microbiome features on 

intelligence, and the protective effect of genus Fusicatenibacter on intelligence was partially 

mediated by regulating brain volume. Our findings may potentially reshape our understanding of the 

microbiota-gut-brain axis and highlight the gut microbiota as a prospective target for treating and 

preventing cognitive impairment. 
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Figure Legends 

Figure 1. Study workflow.  

GWAS indicates genome-wide association study. 

 

Figure 2. Mendelian randomization (MR) plots for the relationship of gut microbiome 

composition with intelligence.  

a. Scatterplot of single-nucleotide polymorphism (SNP) effects on genus Oxalobacter vs intelligence, 

with the slope of each line corresponding to estimated MR effect per method. Data are expressed as 

raw β values with 95% CI. IVW indicates the inverse-variance weighted method; RAPS indicates the 

robust adjusted profile score. b. Forest plot of individual and combined SNP MR-estimated effects 

sizes for genus Oxalobacter on intelligence. c. Scatterplot of SNP effects on genus Fusicatenibacter 

vs intelligence. d. Forest plot of individual and combined SNP MR-estimated effects sizes for genus 

Fusicatenibacter on intelligence. 

 

Figure 3. Mediation analysis of gut microbiome composition on intelligence via brain volume. 

a. Summary MR estimates derived from the inverse-variance weighted (IVW), weighted median, 

weighted mode, robust adjusted profile score (MR RAPS), and MR-Egger methods for genus 

Oxalobacter on brain volume (left) and genus Fusicatenibacter on brain volume (right). b. Summary 

MR estimates for brain volume on intelligence.  
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Table 1. Significant MR results for the relationship between gut microbiota and intelligence 

MR: Mendelian Randomization; IVW: inverse variance–weighted; RAPS: robust adjusted profile 
score; SNP: single nucleotide polymorphism; CI: confidence intervals. P-values from the IVW MR 

test were adjusted using Benjamini–Hochberg FDR correction; for the resulting q-value the threshold 
was set to 0.05. 
  

Method 
Number of 
SNPs 

F-statistic β (95% CI) P-value  q-value 

genus Oxalobacter on intelligence  

  IVW 

10 102.8 

-0.032 (-0.049 to 

-0.015) 
1.88×10-4 

0.040 

  MR RAPS  
-0.032 (-0.051 to 
-0.014) 

6.85×10-4 
 

  Weighted Median  -0.019 (-0.042 to 0.005) 0.115  

  Weighted Mode -0.015 (-0.053 to 0.022) 0.377  

  MR Egger -0.001 (-0.086 to 0.083) 0.973  

genus Fusicatenibacter on intelligence  
  IVW 

14 23.9 

0.051 (0.023 to 0.079) 3.03×10-4 0.032 

  MR RAPS  0.052 (0.021 to 0.083) 1.01×10-3  

  Weighted Median  0.048 (0.010 to 0.087) 0.014  

  Weighted Mode 0.015 (-0.053 to 0.083) 0.643  

  MR Egger 0.002 (-0.109 to 0.114) 0.964  
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Table 2. Bidirectional MR results for the relationship between intelligence and gut microbiota 

MR: Mendelian Randomization; IVW: inverse variance–weighted; RAPS: robust adjusted profile 
score; SNP: single nucleotide polymorphism; CI: confidence intervals. P-values from the IVW MR 

test were adjusted using Benjamini–Hochberg FDR correction; for the resulting q-value the threshold 
was set to 0.05. 
  

Method 
Number of 
SNPs 

F-statistic β (95% CI) P-value  q-value 

Intelligence on genus Oxalobacter  
  IVW 

154 44.7 

0.013 (-0.170 to 0.196) 0.889 1 

  MR RAPS  0.024 (-0.170 to 0.217) 0.811  

  Weighted Median 0.107 (-0.150 to 0.365) 0.414  

  Weighted Mode 0.637 (-0.167 to 1.442) 0.119  

  MR Egger 0.217 (-0.722 to 1.156) 0.649  

Intelligence on genus Fusicatenibacter  
  IVW 

155 43.0 

0.031 (-0.066 to 0.127) 0.536 1 

  MR RAPS  0.037 (-0.065 to 0.139) 0.480  

  Weighted Median 0.050 (-0.091 to 0.191) 0.488  

  Weighted Mode 0.020 (-0.397 to 0.437) 0.924  

  MR Egger 0.030 (-0.501 to 0.562) 0.910  
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Table 3. The mediation effect of gut microbiota on intelligence via affecting brain volume 

Exposure Total effect Direct effect A Direct effect B Mediation effect Mediated proportion (%) 
(95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) P-value 

genus 
Oxalobacter 

-0.032  
(-0.049 to -0.015) 

0.006  
(-0.033 to 0.046) 0.159  

(0.120 to 0.198) 

0.001  
(-0.005 to 0.007) 

0.758 - 

genus 
Fusicatenibacter 

0.051  
(0.023 to 0.079) 

0.086  
(0.019 to 0.153) 

0.014  
(0.003 to 0.025) 

0.016 26.7 (4.9 to 48.5) 

Total effect: indicates the effect of gut microbiota on intelligence; direct effect A: the effect of gut microbiota on brain volume; direct effect B: 
the effect of brain volume on intelligence; mediation effect: the effect of gut microbiota on intelligence through affecting brain volume. IVW 
derived the total effect, direct effect A, and direct effect B; the mediation effect was derived by using the delta method. All statistical tests were 
two-sided. P�<�0.05 was considered significant. 
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