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Abstract 

Background: Metal exposures are associated with gut microbiome (GM) composition and function, 
and exposures early in development may be particularly important. Considering the role of the GM in 
association with many adverse health outcomes, understanding the relationship between prenatal 
metal exposures and the GM is critically important. However, there is sparse knowledge of the 
association between prenatal metal exposure and GM later in childhood.  

Objectives: This analysis aims to identify associations between prenatal lead (Pb) exposure and GM 
composition and function in children 9-11 years old. 

Methods: Data come from the Programming Research in Obesity, Growth, Environment and Social 
Stressors (PROGRESS) cohort based in Mexico City, Mexico. Prenatal metal concentrations were 
measured in maternal whole blood drawn during the second and third trimesters of pregnancy. Stool 
samples collected at 9-11 years old underwent metagenomic sequencing to assess the GM. This 
analysis uses multiple statistical modeling approaches, including linear regression, permutational 
analysis of variance, weighted quantile sum regression (WQS) , and individual taxa regressions, to 
estimate the association between maternal blood Pb during pregnancy and multiple aspects of the 
child GM at 9-11 years old, adjusting for relevant confounders. 

Results: Of the 123 child participants in this pilot data analysis, 74 were male and 49 were female. 
Mean prenatal maternal blood Pb was 33.6(SE=2.1) ug/L and 34.9(SE=2.1) ug/L at second and third 
trimesters, respectively. Analysis suggests a consistent negative relationship between prenatal 
maternal blood Pb and the GM at age 9-11, including measures of alpha and beta diversity, 
microbiome mixture analysis, and individual taxa. The WQS analysis showed a negative association 
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between prenatal Pb exposure and the gut microbiome, for both second and third trimester exposures 
(2Tβ=-0.17,95%CI=[-0.46,0.11]; 3Tβ=-0.17,95%CI=[-0.44,0.10]). Ruminococcus gnavus, 
Bifidobacterium longum, Alistipes indistinctus, Bacteroides caccae, and Bifidobacterium bifidum all 
had weights above the importance threshold from 80% or more of the WQS repeated holdouts in 
association with both second and third trimester Pb exposure. 

Discussion: Pilot data analysis suggests a negative association between prenatal Pb exposure and the 
gut microbiome later in childhood; however, additional investigation is needed. 

 

Introduction 

Lead (Pb) has been a recognized environmental hazard for centuries,(Woolley, 1984) 

however its etiological pathways to disease are still not entirely understood. One potential 

mechanistic pathway between Pb exposure and its many downstream adverse health outcomes may 

be via the human gut microbiome. The collection of trillions of microbes that inhabit the human gut, 

including bacteria, fungi, viruses, and archaea, as well as their many genetic functions, are known as 

the gut microbiome.(Human Microbiome Project Consortium, 2012) The normal functions of the gut 

microbiome include nutrient metabolism, support of the mucosal and epithelial barriers within the 

gut, and interactions with immune, nervous, and cardiovascular systems.(Gomaa, 2020; Wilmes et 

al., 2022) Xenobiotic exposures, including Pb, influence the composition and function of the gut 

microbiome, affecting its interaction with systemic bodily function, and may lead to altered health 

status.(Claus et al., 2016) 

Animal studies have linked Pb exposure to alterations of the gut microbiome including shifts 

in individual sample diversity (α-diversity), community composition (β-diversity), and individual 

bacterial taxa and gene abundance (Breton et al., 2013; Wu et al., 2016; Gao et al., 2017; Xia et al., 

2018). Moreover, the body of epidemiologic evidence linking Pb exposure to altered gut microbiome 

composition and function is growing rapidly. Studies have linked human Pb exposure to increased 

abundance of many specific bacteria, including Proteobacteria  (Bisanz et al., 2014; Eggers et al., 

2019), a common indicator of gut microbiome dysbiosis, or imbalance (Shin et al., 2015; Litvak et 
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al., 2017). Other analyses have linked Pb exposure to bacteria that are known to affect gut barrier 

integrity and gut health.(Laue et al., 2020; Sitarik et al., 2020; Shen et al., 2022) Alterations in gut 

and blood-brain barrier integrity resulting from metal-associated shifts in the gut microbiome may 

allow for increased metal toxicity by allowing for greater absorption into the bloodstream. While this 

growing field of epidemiologic research has uncovered relationships between Pb exposure and the 

gut microbiome, so far the analyses have been limited to the use of 16S rRNA amplicon sequencing 

data, which is less accurate in assigning taxonomy and inferring gene function than metagenomic 

sequencing. More studies with advanced omics analysis are needed to understand the relationship 

between Pb exposure and the gut microbiome. 

Little is known about the relationship between prenatal exposures and the gut microbiome 

later in childhood. In fact, there are relatively few studies that investigate the gut microbiome in 

general between the ages of 5 and 20, especially from populations in low to middle-income 

countries.(Ortega, 2022) Using data and specimens from the Programming Research in Obesity, 

Growth, Environment and Social Stressors (PROGRESS) cohort, we examine relationships between 

prenatal Pb exposure and the gut microbiome of 9-11 year old children from Mexico City, Mexico. In 

this study, we aim to identify critical windows of prenatal Pb exposure that are associated with the 

gut microbiome later in childhood. Given the existing evidence from epidemiological and animal 

studies, we hypothesize that elevated prenatal Pb exposure during at least one time point will be 

associated with altered gut microbiome composition at 9-11 years old.  

Methods 

Study Design 

PROGRESS is an ongoing prospective birth cohort in Mexico City, Mexico. The study 

enrolled 948 women in early pregnancy who went on to a live birth through the Mexican Social 

Security System, followed the offspring in infancy every 6 months, and biannually thereafter. The 
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focus of PROGRESS is on neurobehavioral development and child obesity, with emphasis on 

environmental exposures, like metals, in pregnancy and early life that program later life behavior and 

growth. Exposures and outcomes were assessed at several time points beginning in the 2nd trimester 

of pregnancy through a combination of surveys, physical exams, psychological and behavioral 

assessments. At each visit, biological specimens (including blood) were collected, processed, 

aliquoted and stored. Stool samples were collected from a subset of participants (n=123) when the 

children were between the ages of 9-11. Protocols for the main PROGRESS study, and its ancillary 

microbiome study were reviewed and approved by the Institutional Review Board at the Icahn 

School of Medicine at Mount Sinai (STUDY-12-00751A, STUDY-21-00242). 

 

Pb Exposure Measurement 

Prenatal Pb exposure in the PROGRESS cohort has been previously described. (Heiss et al., 

2020) Briefly, Pb exposure was assessed using maternal whole blood, drawn during the second and 

third trimesters of pregnancy, at an average of 18.3 and 31.6 weeks gestation, respectively. Pb level 

was measured using inductively coupled plasma mass spectrometry (ICP-MS) in the trace metals 

laboratory at the Icahn School of Medicine at Mount Sinai. 

 

Gut Microbiome Sample Collection and Processing 

Participants were recruited at the PROGRESS clinic visit as part of the 9-11 year visit. 

Samples were collected in clinic or at home using a sampling kit provided. Once obtained, stool 

samples were stored in a biosafety bag in the participant’s home refrigerator at 4oC. The sample was 

retrieved by a driver within 24 hours, processed following the FAST(Romano et al., 2018) protocol, 

and stored at -70oC within 48 hours from sample deposit. Frozen samples were sent to the 

Microbiome Translational Center at Mount Sinai. Samples were then processed and sequenced in two 

batches, with n=50 and n=73 samples, respectively. Whole genome sequencing was performed using 
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the NEBNext DNA Library Prep kit and sequenced on an Illumina HiSeq. Sequencing reads were 

quality trimmed with Trimmomatic (Bolger et al., 2014) and human reads removed by mapping to a 

reference with bowtie2. (Langmead and Salzberg, 2012) The remaining reads were processed using 

MetaPhlAn2 (Truong et al., 2015) and StrainPhlAn (Truong et al., 2017) to determine microbial 

taxonomy down to the species/strain level, and HUMAnN2 (Franzosa et al., 2018) to profile 

microbial gene pathways. 

 

Covariates 

 Covariates used in this analysis included child sex, child’s age at time of stool sample 

collection, mother’s socio-economic status (SES) during pregnancy, mother’s age at birth, mother’s 

body mass index (BMI) during pregnancy, and microbiome analysis batch. Mother’s height and 

weight were collected with a professional digital scale and stadiometer at the study visit during the 

second trimester of pregnancy. Weight and height were used to calculate BMI, which was modeled as 

a continuous covariate in regression analyses. SES during pregnancy was assessed based on the 1994 

Mexican Association of Intelligence Agencies Market and Opinion (AMAI) rule 13*6. Families are 

classified in six levels based on 13 questions about characteristics of the household. Most families in 

the study were low to middle SES, thus the six categories were condensed into three: lower, middle, 

and higher.(Sanders et al., 2022) 

 

Statistical Analysis 

All analysis was conducted in R version 4.0.3. Any two tailed p-value less than 0.05 was 

considered statistically significant.  

 

Data Processing 
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The count data for each Taxa were converted into relative abundance. To consider any 

possible batch effect while measuring taxa count, (1) only those taxa with at least 5% relative 

abundance in both batches were further considered in primary statistical analyses; (2) All models 

were controlled for a batch indicator variable along with other covariates. (3) Further detailed 

sensitivity analysis was conducted by choosing taxa with at least 25% relative abundance in both 

batches. The second and third-trimester Pb concentrations were log (base = 2) transformed to meet 

distributional assumptions with higher confidence.  

 

Alpha & Beta Diversity 

We calculated Shannon alpha diversity and Bray-Curtis beta diversity.(Shannon, 1948; Bray 

and Curtis, 1957) To estimate the associations with second and third-trimester lead concentrations, 

(1) for alpha diversity, we used the Kruskal-Wallis rank sum test (without covariate adjustment) and 

linear regression (with covariate adjustment); and (2) for beta diversity, we used PERMANOVA with 

10000 permutations and w/o covariate adjustments.(Oksanen et al., 2019)  

 

Weighted Quantile Sum Regression 

We used the Weighted Quantile Sum (WQSRSRH) regression (Carrico et al., 2015) with 

random subset (Curtin et al., 2019) and repeated holdouts (Tanner et al., 2019), as established for 

microbiome data (Eggers et al., 2023), to estimate the association between second and third-trimester 

lead exposures and the effect on the abundance of the overall mixture of microbial taxa. Since the 

interest lies in the directionality of the association, the WQSRSRH model was fitted with all the chosen 

taxa as exposures and the log transformed Pb concentration as the outcome. For ease of 

interpretation, the relative abundance of the taxa was converted into deciles, while a null relative 

abundance was kept at zero.  Moreover, two WQSRSRH models were fitted at each trimester, with the 

overall mixture effect assumed in the negative or positive directions. The final optimal model (Liao 
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et al., 2018) from each trimester was chosen based on the smallest Akaike information criterion 

(AIC) (Akaike, 1974) and the Bayesian information criterion (BIC) (Schwarz, 1978). Those 

microbial taxa were judged important in the final chosen models, which had weight contributions to 

the overall mixture index above a chance threshold (1/the number of components in the index). 

Lastly, to account for any between taxa correlations and the relatively smaller sample size, each 

WQSRSRH model was fitted based on 200 repeated holdouts (with randomly 40% data set aside for 

validation) and 100 bootstrapped with-replacement sampling at each iteration.  

 

Taxa-Wide Association Analysis 

To estimate the effect of Pb exposure on individual relative abundance of each chosen taxa, 

we conducted Taxa-wide association analysis (TWAS) with generalized linear models at both 

trimesters. Further, the unadjusted raw p-values with respect to regression beta estimates were plotted 

through Volcano plots. The Bonferroni procedure was adapted for multiple comparison error 

correction on raw p-values. We estimated the effective number of tests for the TWAS using the 

eigenvalues of the relative abundance of the correlation matrix (Li and Ji, 2005; de Prado-Bert et al., 

2021).   

 

Gene Function Analysis 

We extracted the microbial gene function pathways of the important taxa from the WQSRSRH 

analysis at each trimester. We selected the top 20 most frequently occurring pathways in each 

trimester for ease of interpretation. Through a simple Venn diagram, we further elaborated on the 

pathways which are common to a) both trimesters, b) only present in the second trimester, and lastly, 

c) only present in the third trimester.  

 

Sensitivity Analysis 
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We also conducted a sensitivity analysis to understand whether the choice of relative 

abundance in both batches affected the overall mixture effect. To that end, we repeated the entire 

WQSRSRH analysis with only those taxa having at least 25% relative abundance in both batches. 

Further, we chose not to rescale the chosen taxa with at least 5% relative abundance (1) to reflect the 

original contributions and (2) to make the analysis robust irrespective of the chosen relative 

abundance cutoff.  

 

Covariate Adjustment 

Each model was controlled by a priori chosen set of covariates. Although we thought Pb 

exposure during childhood may be a confounder, we tested the correlation between prenatal Pb and 

childhood Pb at birth, 1 year, 2 years, and 4 years of age, and did not find a correlation, thus we 

decided to exclude these variables from the models. A few covariates had missing values (less than 

5%), which were imputed by the multiple imputation chained equations as implemented in the 

“MICE” R package (Buuren and Groothuis-Oudshoorn, 2011).  

 

Results 

Study Population Characteristics 

 Of 123 participants in this study (Table 1), 49 were female, and 74 were male. Mean Pb 

concentration was 33.6 ug/L and 34.9 ug/L in the second and third trimesters of pregnancy, 

respectively. Mothers with low SES were more likely to be in the fourth quartile of Pb exposure for 

both trimesters of pregnancy. 

 

Alpha & Beta Diversity 
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 In linear regression analysis of alpha (within individual) diversity and prenatal Pb exposure, 

we found slight negative associations, that were not statistically significant, for both second and third 

trimester Pb exposures, in unadjusted and adjusted models (Table 2). In PERMANOVA analysis of 

beta (between individual) diversity (Table 2), second trimester Pb exposure was associated with a 

non-significant R2 of less than 1% (Adjusted R2 = 0.007, p-value = 0.515). However, third trimester 

Pb exposure was associated with an R2 of 1.1% in the adjusted model, and was directionally trending 

(Adjusted R2 = 0.011, p-value = 0.066). 

 

Microbiome Mixture Analysis 

The primary WQSRSRH analysis was run in the negative direction because we hypothesized 

the association between prenatal Pb exposure and the gut microbiome mixture to be negative (Figure 

1). Including adjustment for covariates, second trimester Pb exposure was negatively associated with 

the gut microbiome mixture (β = -0.17, 95%CI = [-0.46, 0.11]), with 88% of the repeated holdout 

estimates below zero. Third trimester Pb exposure showed a very similar association with the gut 

microbiome mixture (β = -0.17, 95%CI = [-0.44, 0.10]), and had 89% of the repeated holdout 

estimates below zero. Within the weighted indices, taxa with a weight above 0.027 were considered 

important in the mixture association. Of the 20 bacterial taxa above the importance threshold for 

second trimester Pb exposure, 16 were also above the importance threshold in association with third 

trimester Pb exposure. Ruminococcus gnavus, Bifidobacterium longum, Alistipes indistinctus, 

Bacteroides caccae, and Bifidobacterium bifidum all had weights above the importance threshold 

from 80% or more of the repeated holdouts in association with both second and third trimester Pb 

exposure.  

In a sensitivity analysis, we ran the same WQS model using only the bacterial taxa that were 

present in at least 25% (instead of 5%) of participants from both analytical batches, and found 

associations in the same direction, with slightly larger estimates and confidence intervals that still 
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crossed zero (Sup. Figure 1). We conducted an additional sensitivity analysis running the WQSRSRH 

analysis in the positive direction and found null results. When comparing the likelihood estimates 

between the negative and positive WQSRSRH models, the likelihood was higher for the negative 

model, confirming our appropriate use of the negative model as the primary analysis. 

When examining microbial gene function pathways of the important taxa associated with 

each of the second and third trimester Pb exposure separately, of the top 20 most abundant gene 

pathways for each trimester, approximately 1/2 of pathways from each trimester were found to be 

unique (Figure 2). Overall, common pathways were more likely to do with nucleic acid biosynthesis, 

and functions essential to all bacteria, while pathways associated with only one trimester Pb exposure 

or the other, were more likely to be involved in amino acid biosynthesis, and more specialized 

metabolic functions. 

 

Individual Taxa Analysis 

 In analysis of each individual bacterial taxa with prenatal Pb exposure (Figure 3), we found 

six taxa (Alistipes putredinis, Ruminococcus ghavus, Bacteroides caccae, B. intestinalis, 

Coprococcus catus, and A. indistinctus) to be negatively associated, and one (B. coprocola) to be 

positively associated with second trimester exposure. With third trimester exposure, we found three 

taxa (Bifidobacterium bifidum, B. longum, A. indistinctus) to be negatively associated, and three taxa 

(B. coprocola, Eubacterium eligens, B. finegoldii) to be positively associated with Pb.  

 

Discussion 

In this analysis of pilot microbiome data from the PROGRESS cohort, we examined 

associations between prenatal Pb exposure and several different components of gut microbiome 

composition and function. We found consistent negative associations between Pb exposure during 
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the second and third trimester of pregnancy and several assessments of gut microbiome composition 

and function at 9-11 years old. Associations between prenatal Pb and the gut microbiome later in 

childhood tended to be strongest for second trimester exposure, providing support for the second 

trimester of pregnancy in particular as a critical window of exposure. 

The focus of this analysis was on the association between prenatal Pb exposure and the gut 

microbiome later in childhood. There are many other potential exposures that may influence the 

composition and function of the gut microbiome between the prenatal exposure and the gut 

microbiome at 9-11 years, including continued exposure to Pb, diet, antibiotic use, animal exposure, 

child BMI and many others. However, none of these factors were included in this analysis because 

they are not confounders, as they are either 1) not associated with prenatal Pb exposure, or 2) 

potentially on the causal pathway between prenatal Pb exposure and the gut microbiome later in life. 

The underlying mechanism of association between prenatal Pb exposure and the gut 

microbiome later in childhood could work in multiple ways. Because the gut microbiome is shaped in 

part by the host immune system, (Petersen et al., 2019; Wong et al., 2022) prenatal Pb exposure may 

alter the trajectory of immune system development, which can influence gut microbial composition 

through the life-course. Another possible mechanism is via the maternal gut microbiome. The infant 

gut microbiome is primarily colonized by bacteria that are transferred from the mother at birth. 

(Ferretti et al., 2018) Pb exposure in adults also influences gut microbiome composition,(Eggers et 

al., 2019) thus Pb induced changes in the maternal gut microbiome during pregnancy may be 

transferred to children at birth, and carried on into childhood, and even later in life.(Gschwendtner et 

al., 2019) Another potential mechanism may be that maternal Pb exposure is transferred to children 

through breastmilk, an established Pb exposure pathway (Klein et al., 2017). In that case, postnatal 

Pb exposure through breastmilk would be along the causal pathway between prenatal Pb exposure 

and the gut microbiome. Furthermore, all of these mechanisms may be working together. Further 

mechanistic studies are needed to better understand this complex relationship. 
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In previously published analyses of prenatal Pb exposure and the gut microbiome in studies 

with relatively small sample sizes, other researchers have seen similar results. In analysis of a birth 

cohort based in Detroit, MI (n=146), Sitarik et al, identified associations between prenatal Pb 

exposure, measured in baby teeth, and decreased abundance of several species of Bacteroides within 

the gut microbiome at 1 month and 6 months of age.(Sitarik et al., 2020) They identified B. caccae as 

being negatively associated with second trimester Pb exposure specifically. We also identified a 

decreased abundance of B. caccae in association with Pb exposure in the second trimester using 

TWAS, and B. caccae was also heavily weighted in WQSRSRH for both trimesters of prenatal Pb 

exposure. B. caccae are common fiber degraders in the human gut microbiome, with mixed health 

effects. (Wexler, 2007; Chen et al., 2021; Yang et al., 2022; Zhang et al., 2022) This consistent 

association of prenatal Pb exposure and decreased B. caccae abundance both early and late in 

childhood, from different populations in different countries, is strong evidence of association in this 

relatively new field.  

In another epidemiologic study using data from a Canadian cohort (n=70), Shen et al, found 

that prenatal Pb exposure, measured in maternal blood, was associated with increased abundance of 

Fusobacteriota in the gut microbiome at 6-7 years of age.(Shen et al., 2022) They did not find a 

significant association between prenatal Pb and alpha or beta diversity. While the associated gut 

microbes identified in this analysis and the study by Shen et al, were not the same, it is important to 

note that links between prenatal Pb and the gut microbiome many years later in childhood were 

identified, even in these two small data sets. This suggests that there are likely true underlying links 

between prenatal Pb exposure and the gut microbiome in childhood. Differences in bacterial taxa 

associated may be due to differences in the study participants, or differences in sample and data 

processing procedures.  

Of all the taxa in this analysis, Alistipes indistinctus was the only one identified by both 

WQSRSRH and TWAS to have a negative association with Pb exposure in the second and third 
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trimesters. A. indistinctus is a common member of the human gut microbiome, and relatively newly 

identified.(Nagai et al., 2010) Little is known about the health implications of A. indistinctus. 

However, one study has identified it as protective against liver fibrosis.(Shao et al., 2018), and 

another identified it as a keystone species for restoring a healthy gut microbiome in patients with 

non-alcoholic fatty liver disease.(Wu et al., 2022)  Overall, the Alistipes genus has been shown to 

have both beneficial and detrimental health effects in humans.(Parker et al., 2020) Continued 

investigation of the health implications of A. indistinctus are necessary to understand the links 

between prenatal Pb exposure and downstream health status via the microbiome. 

In the analysis of microbial gene pathways from the most highly weighted taxa in the WQSRSRH 

analysis, approximately 1/3 of the gene pathways were shared between the taxa associated with 

second and third trimester Pb exposure. With a few exceptions, the pathways that were common 

among these bacteria are used for nucleic acid biosynthesis and other essential functions for bacterial 

life.(Tsuchiya et al., 2018)  The pathways that were not shared were more likely to be used in amino 

acid biosynthesis, fermentation, and other metabolic pathways. Because these more varied pathways 

provide a wider range of functional capabilities, they are more likely to influence host health, 

although their direct influence is not yet fully understood.  

While this study added to the growing field of evidence around the negative relationship 

between metal exposure and the human gut microbiome, there are some limitations to consider. 

Because this was a pilot study, sample size was limited, which limited our power to detect 

associations. However, because results were primarily in the negative direction across multiple 

analytical approaches, and over 85% of the beta estimates from the WQS repeated holdouts were 

negative, we have increased confidence in reporting a negative result. Samples from this pilot study 

were also analyzed in two batches. Our strategy for reducing batch effects limited the breadth of 

microbiome data we could include in the analysis; however, similar prevalence thresholds are 

frequently used as data reduction steps in microbiome data analysis. Another statistical limitation was 
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the use of prenatal Pb exposure as an outcome in the WQSRSRH models rather than a predictor. This 

model structure was necessary due to WQS format. The implications of this limitation are minimal 

however, as this analysis was used to determine association, not causation. Lastly, the use of 

maternal blood Pb during pregnancy to measure prenatal Pb exposure is not ideal, as it is not a direct 

measure of fetal Pb exposure. 

In future analyses based off this work, we hope to examine additional and more nuanced 

relationships between prenatal environmental metal exposures and the gut microbiome in childhood. 

We plan to do additional sample collection in this cohort that will expand the sample size for future 

analyses. Furthermore, we are developing additional methodological approaches to examine 

relationships between chemical exposures and the gut microbiome, and their combined effect on 

downstream health. 

In conclusion, this pilot study found a consistent negative association between prenatal Pb 

exposure and the gut microbiome in late childhood. These results support a growing body of 

evidence that human Pb exposure may alter gut microbial composition and function, leading to 

downstream health implications. More studies with larger sample sizes are needed to better 

understand this relationship.  
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1 Figure Legends 

Figure 1. WQSRSRH estimates for the association of the gut microbiome mixture with prenatal 
Pb exposure in the a) second and c) third trimester of pregnancy. Small grey jitter dots 
represent the WQSRS estimates from each repeated holdout. The violin plot around those points 
show the density of holdout estimates at each interval. Average percent weight for each taxa 
within the WQS index are shown for the b) second and d) third trimester Pb exposure. The 
green line indicates the importance threshold for weights above random chance. Taxa that are 
labeled in blue are above the threshold for both trimesters of exposure.  

Figure 2. Venn diagram of the top 20 most abundant microbial gene functions from the highly 
weighted taxa in the WQSRSRH analysis.  
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Figure 3. Volcano plot of estimates and p-values from the taxa wide association analysis 
(TWAS) of bacterial abundance in association with a) second and b) third trimester Pb 
exposure. Blue dots are taxa associated in the negative direction and black dots are associated in 
the positive direction.  

 

2 Tables 

Table 1. Characteristics of the analytical study population by Pb exposure in the second and third 
trimester of pregnancy.  

 Total Quartile 1 Quartile 2 Quartile 3 Quartile 4 

Exposure N = 123 
Mean (SE)  

n (%) 
Mean (SE) 

n (%) 
Mean (SE) 

n (%) 
Mean (SE) 

n (%) 
Second Trimester Pb 
(ug/L) 

33.6 
(2.1) 

13.9 
 (0.5) 

22.2 
 (0.4) 

32.9  
(0.9) 

65.5  
(4.3) 

Covariates      
Child Sex 123     

Male 74 (60.2) 10 (58.8) 19 (59.4) 19 (65.5) 26 (57.8) 
Female 49 (39.8) 7 (41.2) 13 (40.6) 10 (34.5) 19 (42.2) 

Maternal SES      
Lower 66 (53.6) 7 (41.2) 16 (50.0) 16 (55.2) 27 (60.0) 

Medium 45 (36.6) 8 (47.0) 12 (37.5) 11 (37.9) 14 (31.1) 
Higher 12 (9.8) 2 (11.8) 4 (12.5) 2 (6.9) 4 (8.9) 

Maternal age at 
pregnancy (years) 

28.5 (0.5) 28.9 (0.5) 27.2 (0.5) 29.8 (0.6) 28.3 (0.5) 

Maternal BMI during 
pregnancy (kg/m2) 

27.2 (0.4) 26.6 (0.4) 27.8 (0.4) 27.1 (0.3) 27.0 (0.5) 

Child age at gut microbial 
sample collection (years) 9.7 (0.7) 9.7 (0.1) 9.5 (0.1) 9.6 (0.1) 

 
 9.8 (0.1) 

 

Exposure N = 123 
Mean (SE)  

n (%) 
Mean (SE) 

n (%) 
Mean (SE) 

n (%) 
Mean (SE) 

n (%) 
Third Trimester Pb (ug/L) 34.9  

(2.1) 
14.6  
(0.5) 

23.6 
(0.5) 

36.4  
(1.1) 

66.4  
(4.4) 

Covariates      
Child Sex 123     

Male 74 (60.2) 14 (77.8) 15 (53.6) 21 (61.8) 24 (55.8) 
Female 49 (39.8) 4 (22.2) 13 (46.4) 13 (38.2) 19 (44.2) 

Maternal SES      
Lower 66 (53.6) 8 (44.4) 15 (53.6) 24 (70.6) 19 (44.2) 

Medium 45 (36.6) 7 (38.9) 11 (39.3) 10 (29.4) 17 (39.5) 
Higher 12 (9.8) 3 (16.7) 2 (7.1) 0 (0.0) 7 (16.3) 

Maternal age at 
pregnancy (years) 

28.5 (0.5) 29.6 (0.5) 28.4 (0.5) 27.5 (0.5) 28.7 (0.5) 

Maternal BMI during 
pregnancy (kg/m2) 

27.2 (0.4) 27.5 (0.4) 26.7 (0.3) 27.2 (0.5) 27.4 (0.4) 

Child age at gut microbial 
sample collection (years) 

9.7 (0.7) 9.8 (0.1) 9.5 (0.1) 9.86 (0.1) 9.6 (0.1) 
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Table 2: Estimates of association between alpha and beta diversity and prenatal Pb exposure. 
 Alpha Diversity (Shannon)* 

Beta (p-value) 
Beta Diversity (Bray-Curtis)# 
R2 (p-value) 

Second Trimester Pb -1.48 (0.38) 0.73 % (0.52) 
Third Trimester Pb -1.26 (0.45) 1.12 % (0.06) 
*Linear model adjusted for covariates, # PERMANOVA with adjusted covariates 
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