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Abstract: 
Genome-wide association studies have unearthed a wealth of genetic associations across many 
complex diseases. However, translating these associations into biological mechanisms 
contributing to disease etiology and heterogeneity has been challenging. Here, we hypothesize 
that the effects of disease-associated genetic variants converge onto distinct cell type specific 
molecular pathways within distinct subgroups of patients. In order to test this hypothesis, we 
develop the CASTom-iGEx pipeline to operationalize individual level genotype data to 
interpret personal polygenic risk and identify the genetic basis of clinical heterogeneity. The 
paradigmatic application of this approach to coronary artery disease and schizophrenia reveals 
a convergence of disease associated variant effects onto known and novel genes, pathways, and 
biological processes. The biological process specific genetic liabilities are not equally 
distributed across patients. Instead, they defined genetically distinct groups of patients, 
characterized by different profiles across pathways, endophenotypes, and disease severity. 
These results provide further evidence for a genetic contribution to clinical heterogeneity and 
point to the existence of partially distinct pathomechanisms across patient subgroups. Thus, the 
universally applicable approach presented here has the potential to constitute an important 
component of future personalized medicine concepts. 
 

Introduction 
Understanding the molecular basis of complex diseases, that result from the joint contribution 
of many genomic variants in conjunction with environmental factors, remains one of the major 
challenges of contemporary medical research. Genome-wide association studies (GWAS) 
identified hundreds of disease susceptibility loci across a spectrum of complex diseases1,2, but 
it remains challenging translate these associations into insights on molecular 
pathomechanisms. These challenges are rooted in the highly polygenic nature of complex 
diseases with small effect sizes of individual variants3, with most variants residing in the non-
coding space of the genome with unknown function4,5. In addition, the high level of 
heterogeneity in symptoms, severity, and treatment response likely reflects differences in the 
underlying genetic basis6 of patient populations  that are presently considered as homogeneous 
groups.  
Thus, there is currently a critical gap between our insights into the disease association of 
individual genetic variants and the aggregated impact of these variants on biological processes 
and clinically relevant parameters. This gap constitutes one of the major obstacles on the road 
towards the implementation of personalized medicine and the operationalization of genetic 
information in clinical decision making7. 
A key step towards resolving this problem was the development of transcriptome-wide 
association studies (TWAS). This approach combines genotype-based prediction of individual 
and tissue specific gene expression levels based on all SNPs within a large cis window of each 
gene with disease association testing. This strategy leverages either GWAS summary statistics8 
or performs the association testing directly on cohorts with available disease/trait status 
information9. TWAS offers the great advantage of aggregating trait heritability using 
biologically meaningful concepts (gene regulation) and entities (genes), while at the same time 
dramatically reducing the multiple testing burden to discover novel gene-trait associations. At 
present, available strategies rely on gene level aggregation and do allow for further genetic risk 
aggregation on the individual level.  
In parallel, distinct types of polygenic risk score (PRS) concepts were developed to resolve 
genetic heterogeneity among patients and identify individuals at higher risk for a particular 
diagnosis or trait expression. These concepts rely on the aggregation of SNP-trait association 
weights on the level of all SNPs below a certain association cutoff, the individual gene10 or 
pathway11,12 and enable systematic testing for PRS association with various other traits of 
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interest. This approach of stratifying individuals according to genetic disease risk provided 
increased detection power to discover associations between different types of PRS and 
intermediate phenotypes or clinically relevant endpoints11,13,14 such as disease severity15.  
Conversely, patient stratification on the clinical and endophenotype level found ample 
evidence for distinct clinical subgroups, such as e.g. in heart failure16, type 1 diabetes17, or 
recently for MDD and suggested distinct genetic liability profiles of overall PRS between these 
phenotypically defined groups18. 
Alternative strategies to genetically resolve heterogeneity in clinical and intermediate 
phenotype variables leveraged genetic correlations with other traits to discover evidence for 
patient subgroups with specifically higher correlation for a particular trait of interest. However, 
the latter did not detect the presence of such groups in most analyzed traits such as SCZ, MDD 
or diabetes19,20.  
Current approaches to genotype-based patient stratification rely on univariate genetic scores 
for a priori defined traits or specific hypothesis driven genes/pathways, resulting in a 
dichotomous classification of patients.  
These strategies are supervised in nature and require detailed insights on potential disease 
mechanisms, rendering an unbiased discovery of subgroups and potential group specific 
genetic liabilities difficult. Moreover, traditional PRS based stratification approaches are 
agnostic to the underlying biological mechanisms, rendering the biological interpretation of 
patient strata challenging. 
To overcome these current limitations, we sought to operationalize personal genetic profiles to 
stratify patients into biologically distinct subgroups in an unbiased and unsupervised manner 
and specifically address the question: How does heterogeneity in polygenic risk factor 
distribution contribute to heterogeneity in clinical parameters, severity, and treatment response 
across patient populations?  
We therefore develop the CASTom-iGEx framework (Supplementary Fig. 1) that builds on 
an improved gene expression imputation method and on the concept of pathway activity 
association studies. We utilize this analytical approach to identify genes and pathways 
associated with complex diseases, providing novel associations when applied to coronary 
artery disease (CAD) and schizophrenia (SCZ). Finally, we leverage these results to perform 
unbiased, multivariate stratification of the patient population into distinct subgroups. We show 
that these groups differ with respect to the distribution of disease liability across disease 
relevant biological processes, intermediate phenotypes, and clinical outcome. 
 

Results 
Imputation of gene and pathway level activities  

We first sought to better understand which genes and biological processes constitute targets of 
aggregated polygenic effects across individuals suffering from genetically complex diseases. 
We implemented an improved method to predict cell type specific gene expression from 
individual level genotype data (PriLer) and perform transcriptome and pathway wide 
association analyses (Supplementary Fig. 1-6, Supplementary Tables 1 see Methods and 
Supplementary Text for details).  The PriLer algorithm leverages matched transcriptome and 
genetic data as well as prior biological relevance of genetic variants. It iteratively adapts the 
relevance (weights) of all variants in a machine learning framework to model the cis-genetic 
component of gene expression. Importantly, PriLer allows to trace the impact of individual 
SNPs from their GWAS association signal to the final gene expression contribution. 

Paradigmatic application of this method to coronary artery disease (CAD) using 19,026 CAD 
cases and 321,916 control individuals from the UK Biobank (UKBB) across 11 tissues from 
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the GTEx project identified 180 genes across 83 loci (FDR ≤ 0.05, Supplementary Fig. 7). Of 
these, 48 genes across 33 loci were not previously implied in CAD21 (e.g. NME7 and NFU1) 
(Fig. 1a, Supplementary Data 2). Importantly, the integration of GWAS signal, epigenetic 
annotation, and gene regulatory information effectively aids the priorization of disease relevant 
and functionally relevant SNPs consistent with all layers of information (Fig. 1b).  
Replication analysis of these results based on a subset of the CARDIoGRAM cohorts21 
including 13,279 CAD cases and 13,402 revealed high sign reproducibility of 82% (one-sided 
sign test P=4.35e-38) and an additional nominal reproducibility at 0.05 of 50% (Fig. 1c). 
Jointly, these analyses underscore the reliability of the PriLer approach to conducting TWAS 
studies and its improved capacity to pinpoint biologically relevant genetic variants contributing 
gene expression regulation (Supplementary Fig. 3e, 6).  
In order to aggregate weak genetic effects further, we extended the concept of TWAS to the 
pathway/gene set level and performed a pathway level association study (PALAS). This 
methodology involves aggregating predicted gene-level scores into continuous pathway 
activity level scores at the individual level, using a predefined set of pathways from GO 
biological processes22, Reactome23 and WikiPathways24 (see  Methods). Extensive validation 
of this approach on permuted data from CAD patients confirmed the well calibrated nature of 
this approach (Supplementary Fig. 8). This strategy identified 567 significant pathways across 
all tissues to be associated with CAD (FDR ≤ 0.05), with most pathways detected in artery 
aorta (Supplementary Fig. 9a, Supplementary Data 3).  
Importantly, the PALAS methodology detected substantially more CAD associated pathways 
compared to more traditional pathway enrichment strategies such as hypergeometric testing of 
TWAS significant genes or MAGMA25 that each rely on summary statistics (Supplementary 
Fig. 9b). This increase in detection power resulted predominantly from the capacity of this 
approach to aggregate over weak association effects (Fig. 1d). For 45% of genome wide 
significant pathways, the PALAS p-value is lower than that of any included gene based on 
TWAS. Similarly, 31% of the identified pathways did contain not a single individually genome 
wide significant gene and thus also show an aggregation effect.  Detailed analysis of well-
known confounders in gene set analysis26 such as LD and gene-gene correlation confirmed that 
increased detection power did not result from these factors (Supplementary Fig. 10) with 
results being moderately sensitive to training sample size (Supplementary Fig. 11).  
Following further priorization (Methods), we identified 45 CAD associated pathways showing 
an aggregation effect, of which 21 that did not contain a single individually significant gene 
below the FDR cutoff, and hence considered novel (Fig. 1d). Following a similar priorization 
strategy for the remaining pathways that are disrupted by at least one significant gene identified 
63 pathways dysregulated by 23 distinct genes (Supplementary Fig. 9c).  

Importantly, this approach recapitulated the key biology of CAD while at the same time 
discovering new biological themes (Fig. 1e, Supplementary Fig. 9d, e.g. Death Receptor 
Signaling or peptidyl-tyrosine phosphorylation). Replication analysis using the 
CARDIoGRAM cohorts21 confirmed high reproducibility of the results with 86% of pathway 
associations replicating based on direction of effect (one-side sign test P = 10e−63) as well as 
22%-54% (dependent on tissue) based on nominal significance in the CARDIoGRAM dataset 
(Fig. 1c). 
In summary, these results indicate the individual level convergence of a polygenic disease 
architecture driven by many small effect variants on biological processes in CAD. Moreover, 
they underscore the added value of the CASTom-iGEx pipeline, providing a strategy to 
successively aggregate polygenic signal from SNPs to genes to pathways. 
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Deconstructing genetic heterogeneity in patient populations 
Based on these results, we asked whether gene and pathway level liability profiles would be 
equally distributed across the patient population or rather cluster within specific patient 
subgroups, indicative of distinct genetically driven pathomechanisms.  
To test this hypothesis, we performed unsupervised clustering based on imputed gene level 
scores from each CAD patient (n = In a) for each tissue separately, correcting for ancestry 
contribution. (see Methods). This analysis identified between 3 and 5 groups of CAD patients 
(Fig. 2a, Supplementary Fig. 12a) that largely overlap for clustering results from different 
tissues (Supplementary Fig. 12b). Against this background and the relevance of liver in CAD 
pathophysiology, we focused on patient stratification based on liver profiles. Careful evaluation 
of patient group structure revealed that the latter was not driven by single genes, but rather by 
a combination of CAD associated genes from multiple independent loci (Supplementary Fig. 
12c, Supplementary Tables 2). Moreover, analysis of well known confounding factors 
showed that group structure was not was not driven by age, sex or ancestry contributions (see 
the detailed analysis of the latter factors in Supp. Text “Investigation of ancestry contribution 
to clustering structure“ and Supplementary Fig. 13, 14). 
Strikingly, comparison of CAD polygenic risk scores (PRS) across groups revealed that the 
clustering results were highly distinct from PRS which were equally distributed across groups 
(Fig. 2d). These observations highlight the distinct layer of information captured by the 
CASTOM-iGEx stratification strategy. 
To evaluate the generalizability and reproducibility of this patient stratification approach, we 
projected the imputed gene level score profiles from 9 independent CARDIoGRAM cohorts 
onto the clustering structure discovered on the UKBB dataset (see Methods). Subsequently, we 
determined the fraction of CARDIoGRAM CAD cases assigned to each cluster. This analysis 
revealed a virtually identical distribution of CAD cases across the clusters compared to the 
original UKBB dataset (Fig. 2b). Moreover, Spearman correlation analysis of the predicted 
gene expression profiles from the individual CARDIoGRAM cohorts and the UKBB dataset 
showed excellent concordance (cor. > 0.7, Fig. 2c), with WTCCC being the most consistent 
cohort (cor. > 0.88) and was not driven by a single locus (Supplementary Fig. 13e).  
Subsequently, we determined the predicted differences in gene expression and pathway activity 
between all groups. We tested 36,397 genes for cluster specific association of predicted 
expression levels, identifying 887 genes-cluster associations across all tissues originating from 
50 tissue-specific loci (Supplementary Tables 2), as well as 236 unique genes across all 
tissues originating from 16 loci (Supplementary Fig. 15a, FDR ≤ 0.01). PALAS analysis of 
7,978 pathways across 11 tissues identified 271 unique pathways that exhibited a significantly 
different (FDR ≤	0.01) liability distribution across patient groups (Supplementary Fig. 15b). 
Detailed evaluation of pathway association statistics across groups showed that cluster-specific 
gene and pathway association statistics were well-calibrated (Supplementary Fig. 16a-e). 
In order to further validate the molecular consequences of this increased genetic liability 
towards the de-regulation of genes and pathways, we employed an independent population-
based cohort with genotyping as well as transcriptome data from whole blood (SHIP-
TREND27). Projection of the respective individuals from the SHIP-TREND cohort onto the 
UKBB derived clustering structure using imputed gene expression profiles confirmed a 
distribution across the groups similar to the UKBB and CARDIoGRAM cohorts 
(Supplementary Fig. 17a). Differential gene level analysis between groups using the 
measured gene expression data confirmed 58% of predicted differentially expressed genes from 
imputation (Wilcoxon-Mann-Whitney (WMW) corrected FDR ≤ 0.05) based on sign 
concordance (64 out of 111 genes) and 18% on the nominal significance level in whole blood, 
with a general Pearson correlation of 0.38 (P=3.5e-5) (Supplementary Fig. 17b). Importantly, 
major drivers of the clustering were confirmed in the measured genes expression such as HLA-
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C in the MHC region, TMEM116 or PSRC1 genes (Supplementary Fig. 17d). This analysis 
revealed additional group specific transcriptome alterations indicative of genetically driven 
gene expression perturbations beyond cis-effects (Supplementary Fig. 17e). Groupwise 
pathway activity level effects showed an excellent correlation between predicted effects based 
on UKBB individuals and measured effects based on SHIP individuals (RSpearman=0.37, 
p=0.000396, Supplementary Fig. 17c).  
These analyses support the existence of fundamental differences in genetic liability towards 
specific biological processes across individuals, suggesting genetically (partially) distinct 
patient subtypes.  
 

Genetically defined patient groups differ in disease relevant endophenotypes and clinical 
parameters 
In order to understand the potential biological and phenotypic relevance of differences in 
pathway level liabilities, we performed association analysis of the latter pathways (PALAS) 
with 637 phenotypes from the UKBB. This analysis identified 212 endophenotypes (FDR ≤ 
0.05) that were significantly connected to at least one group-specific and CAD associated 
pathway.  
Based on these observations, we tested the hypothesis that the identified CAD patient groups 
would also differ on the phenotypic level with respect to any of the 212 endophenotypes, each 
connected to pathways with group-specific liabilities as well as 33 clinical phenotypes (see  
Methods). This analysis identified 36 cluster-specific endophenotype associations (FDR ≤ 
0.05, Supplementary Tables 3) and 19 unique endophenotypes, all with high relevance to 
CAD biology (Fig. 2e, Supplementary Fig. 18a-b) and directly associated with the detected 
differences in underlying biological processes.   
In particular, CAD group 1 and group 2 showed a specific reduction in Golgi Associated 
Vesicle Biogenesis, endocytosis, and endosome biology (Fig. 2f), concomitant with a 
significant increase of circulating LDL on the patient endophenotype level (Fig. 2e,g). This 
observation is consistent with the notion that vesicles filled with LDL are taken up by the cells 
via receptor-mediated endocytosis mechanisms28. Accordingly, circulating LDL level exhibit 
a strong genetic association with endocytosis related pathways (Supplementary Fig. 18b). 
Similarly, group 1 showed a significant increase in fatty acid and general lipid metabolic 
processes that were also significantly associated with circulating LDL levels and consistent 
with overall higher LDL and Cholesterol levels in patients of group 1 (Fig. 2e-g). Lastly, 
patients in group 1 exhibited an increase in immune cell populations, concomitant with a 
predicted increase in genes related to T cell proliferation (Fig. 2f,g).  
We evaluated whether these differences in liabilities across genes, biological processes and 
endophenotypes were associated with differences in clinical parameters such as disease 
severity and/or trajectory (Supplementary Tables 4). To that end we leveraged additional 
clinical phenotypes collected on 2,383 CAD patients (GerMIFSV in CARDIoGRAM), 
evaluated between patient groups following their projection onto the UKBB clustering as well 
as 33 clinical parameters collected in UKBB. This analysis revealed that the projected patients 
of group 1 in GerMIFSV had a significantly higher number of vessels affected by CAD, 
indicative of a more severe disease course (Fig. 2h). In contrast, group 2 showed a higher 
incidence of hyperlipidemia (Fig. 2i). These observations are consistent with the overall higher 
levels of key CAD related endophenotypes (LDL, APOB) and elevated genetic liability 
towards the perturbation of lipid metabolism and endocytosis related pathways in group 2 
(Supplementary Fig. 18b).  
In contrast, group 3 showed comparatively low APOB and (LDL) cholesterol levels (Fig. 2e,f), 
an increased predicted activity of the N-acetyltransferase pathway (Supplementary Fig. 15b), 
previously implicated in cardiac dysfunction29. In addition, group 3 patients exhibited an 
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increase in glutathione derivative biosynthetic processes, related to the cellular capacity to 
compensate against reactive oxygen species as well as a reduction in predicted gene activities 
related to ventricular system development (Fig. 2f, Supplementary Fig. 15b). Clinically, 
patients in group 3 demonstrate an increased frequency of chronic obstructive pulmonary 
disease and a decreased age of stroke (Fig. 2k, Supplementary Tables 4). 
Conversely, patients assigned to group 4 were subject to an increased genetic liability towards 
many immune related pathways such as T cell activation or immunoglobulin mediated immune 
response (Fig. 2f), all of which were negatively associated with markers of inflammatory 
processes such as C-reactive protein (CRP, Supplementary Fig. 18b). In line with this 
observation, group 4 patients showed decreased CRP levels compared to all other groups (Fig. 
2g) and an increased frequency of peripheral vascular diseases and a slightly higher age of 
stroke (Fig. 2j,k). These observations suggest an increased relevance of inflammation related 
processes in CAD specifically in this subgroup of patients that is linked to distinct clinical 
characteristics. 
Finally, group 5 showed the lowest levels CAD related endophenotypes, (Fig. 2e,f) as well as 
the lowest frequency of clinically relevant outcome parameters and other diseases (Fig. 2h-j). 
These observations suggest that group 5 represents the healthiest group of CAD patients. 
Simultaneously, group 5 exhibits the lowest genetic liabilities towards CAD associated 
biological processes but not with respect to PRS (Fig. 2d). Although not significant, we also 
observed a trend of increased CRP levels in group 5 (Fig. 2e,g) connected to endocytosis and 
glutathione biosynthesis liabilities (Fig. 2f, Supplementary Fig. 18b). Interestingly, 
glucosamine consumption reduced CRP levels in group5 individuals, compared to all the other 
groups, where no decrease or even an opposite trend was observed (Supplementary Fig. 18c-
d). This analysis suggests a possible cost-effective therapeutic strategy to decrease CRP for 
patients with precise genetic liabilities.  
In order to further validate these observations, we leveraged the independent SHIP-Trend 
cohort and confirmed the observed groupwise differences in endophenotypes with respect to 
LDL distribution and CRP as well as additional differences in Carotid intima-media thickness 
(Supplementary Fig. 17f).  In contrast, random partitioning of patients into groups enabled 
very limited detection of endophenotypic differences in individual partitions (Supplementary 
Fig. 16f). 
In summary, the application of the unsupervised stratification strategy implemented in the 
CASTOM-iGEx framework suggests the existence of distinct CAD patient subtypes not 
identifiable by traditional PRS based approaches. These subgroups do not only differ with 
respect to their genetic risk distribution across biological processes, but also exhibit significant 
divergence in their disease relevant clinical and physiological parameters connected to these 
molecular differences. 
 
Identification of key biological processes impaired in SCZ 
Going beyond well characterized CAD, we decided to evaluate the capacity of CASTOM-iGEx 
to obtain insights into the biology of a more enigmatic illness. To that end, we focused on SCZ, 
for which only limited insights into pathomechanisms, contributing endophenotypes, and 
disease subgroups are available. While the existence of clinical subtypes of SCZ patients is 
well known30, it is at present unclear, whether or not this phenotypic heterogeneity might result 
from a distinct genetic basis and potentially distinct biological mechanisms. To address these 
questions, we applied the CASTOM-iGEx pipeline to 36 European cohorts from Psychiatric 
Genomic Consortium (PGC) wave 231 for a total of 24,764 cases and 30,655 controls, 
leveraging 9 GTEx tissues and DLPC (dorsolateral prefrontal cortex) gene expression data 
from the CommonMind consortium as training data32. 
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Similar to CAD, PALAS analysis identified 255 (Reactome), 692 (GO) and 125 
(WikiPathways) unique pathways associated with SCZ (FDR ≤ 0.05), most detected in DLPC 
tissue (Supplementary Fig. 19a, Supplementary Data 6). Overall, 38% of the significant 
pathways showed an aggregation effect, with pathway level significance exceeding those of all 
participating genes (Supplementary Fig. 19b). Following prioritization and exclusion of genes 
located in the MHC locus (Fig. 3a, Supplementary Fig. 19c), this group (n=45, 
Supplementary Data 6) contained several genes sets not implied in SCZ through GWAS, but 
by other sources of evidence. These included genes related to Alzheimer’s disease33, 
degradation of the extracellular matrix, ErbB, and mTOR signaling related to myelination34 
(Fig. 3a). Similarly, we identified genetic evidence for TCA cycle, proteasome degradation, 
and impairment of the pyruvate dehydrogenase complex (Fig. 3a). Several pathways reflect 
clinically well-established comorbidities such as Insulin Signaling (e.g. Diabetes) or pathways 
in Pathogenesis of Cardiovascular Disease (Fig. 3a). Interestingly, we also identified genes 
enriched for de novo loss-of-function (LoF) mutations (Supplementary Fig. 19d) through rare 
variants in SCZ patients based on exome sequencing in multiple SCZ family studies32.  This 
observation further supports the hypothesis of convergence between rare and common variants 
that affect the same genes and hence could be related to analogous pathomechanisms35.  
Importantly, a systematic analysis of this gene aggregation strategy (Supplementary Fig. 19e, 
Supplementary Text) revealed that the significance increment originated from the aggregation 
of distinct patients’ liability profiles that converge onto the same genetic targets, providing an 
explanation why this approach enables the implication of additional molecular processes in 
disease biology.  
 
Deconstructing heterogeneity among SCZ patients 
Building on these results, we evaluated the hypothesis, whether or not genetic heterogeneity 
across gene and pathway level liability profiles would give rise to distinct SCZ patients 
subgroups. Following a similar strategy as applied for CAD (Methods), we detected 3 groups 
of SCZ patients based on clustering of 5,678 gene T-scores from DLPC (Supplementary Fig. 
20, Supplementary Fig. 21a). Detailed analysis of potential confounders revealed minimal 
impact of ancestry and cohort membership on clustering structure as well as on detected gene 
associations (Supplementary Fig. 21c-e, Supplementary Fig. 22). 
In total, we identified 594 cluster-specific genes (FDR 0.01) out of 26,836 tested across the 10 
tissues distributed across 34 independent loci (Supplementary Fig. 21b, Supplementary 
Tables 5). The reproducibility of the observed clustering structure and identified group specific 
genes was high based on spearman correlation (> 95) of groupwise gene-expression profiles 
and distribution of patients across groups (Supplementary Fig. 21f-g). 
Similarly, we identified 256 (+128 WikiPathway / CMC gene-set) unique pathways out of 
6,120 (+3,571 WikiPathway / CMC gene-set) with differential liability profiles (Fig. 3b, 4a, 
Supplementary Fig. 23, Supplementary Data 7). Given the absence of large deeply 
phenotyped cohorts for SCZ, we turned to a different strategy for the identification of 
groupwise differences in endophenotypes and interpretation of pathway level liability profiles. 
Prior to application of SCZ, we carefully benchmarked this approach in CAD (see  Methods, 
Supplementary Fig. 24).  
These analyses resulted in 72 endophenotypes (out of 1000, see Materials & Methods) that 
differ in at least one SCZ patient group (Fig. 3b, Supplementary Tables 6). Jointly, these 
results support the notion of fundamental differences in endophenotype profiles across SCZ 
patient strata that were linked to distinct liabilities across multiple biological processes: 
Group 1 showed decreased estimated white blood cell counts and increased neutrophil to 
lymphocyte ratio (NLR) as well as lower estimated CRP levels, suggesting a lower 
inflammatory state. In line with these findings, group 1 showed decreased liability towards 
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immune related pathways such as T-cell differentiation, Cytokines and Inflammatory Response 
and Complement Activation (Fig. 4a,b). Moreover, group 1 exhibited a decreased liability 
towards the development of depression (Fig. 4a, bottom) and an overall better estimated 
cognitive performance based on various indicators (Fig. 4b, Supplementary Fig. 25). This 
was accompanied by a lower predicted expression of presynaptic genes, genes related to 
synaptic density, and mitochondria as well as an increase in genes related to oxidative damage 
(Fig. 4a).   Interestingly, group 1 also showed an increase in fractional anisotropy in the corpus 
callosum based on MRI36 and an opposite effect in group 3 was observed (Fig. 4b).  Previously, 
the latter was reported to be decreased in SCZ patients compared to controls. In summary, we 
conclude that group 1 represents a population of SCZ patients with a less severe disease status.  
However, group 1 was characterized by a significantly higher predisposition to metabolic 
syndrome (MetS) with higher levels of the 5 risk factors used to define MetS, including 
elevated cholesterol and triglyceride levels (Fig. 4c). It is well known that overall SCZ patients 
have an increased risk for MetS37, but unclear whether this comorbidity would result from a 
distinct genetic risk factor profile. In line with this observation, group 1 showed altered genetic 
liability with respect to insulin signalling related genes (Fig. 4a). These results supplement 
previous clinical observation on the existence of a MetS subgroup with a genetic and biological 
basis.  
Conversely, group 3 captures a patient group of severe SCZ, with increased inflammatory and 
substantially reduced cognitive performance parameters (Fig. 4a, Supplementary Fig. 25). 
These differences on the endophenotype level are reflected in a reduced expression of 
proteasome degradation, interferon II signalling, plasma membrane, and endoplasmatic 
reticulum (ER) related genes (Fig. 4b). In contrast, genes related to cytokine and inflammatory 
response, complement activation as well as related to the presynaptic compartment and 
postsynaptic density were upregulated (Fig. 3b, 4a).  
Jointly, these observations suggest the existence of at least two SCZ patient populations with 
distinct endophenotypes and consistent biological liability profiles as well as another group 
that represents an intermediate between the two. 
In order to validate these observations, we turned to a smaller but clinically phenotyped 
longitudinal cohort of SCZ patients (PsyCourse)38. Following the prediction of gene expression 
levels and projection of n=556 SCZ patients onto the PGC-SCZ patient derived clustering 
structure, we reproduced again 3 groups of patients with similar proportions (Supplementary 
Fig. 26). Comparison of differences in n=30 clinical phenotypes revealed a significantly longer 
duration of illness in group 3 compared to group 1 (p= 0.01) and a lower age of first treatment 
(p=0.02) indicative of an increased disease severity in group 3 (Fig. 4d).  In addition, group 3 
showed a significant reduction in one of the cognitive performance indicators (tmt_A_rt) 
compared to group 2 anda borderline significant a reduction in of an independent symbol test 
assessing cognitive performance (dg_sym, Fig. 4d, p=0.055). 
In order to probe the possibility to operationalize insights the CASTOM-iGEx stratification 
strategy in the context of stratified medicine, we performed a drug repositioning analysis from 
pathways signatures39 (Methods). Based on the reversion signature principle40, we identified 
drugs that perturb cluster-specific up- or -down regulated pathways with an opposite effect on 
the transcriptionally derived pathway response. We found that treatments reverting the pathway 
signature for group 2 and group 3 predominantly were members of to the nervous system class 
based on Anatomical Therapeutic Chemical (ATC) classification system (Supplementary Fig. 
27a). Conversely, none of the  drugs associated to group 1 were related to nervous system 
treatments but instead were divided among other 4 ATC classes, in particular the 
cardiovascular system (Supplementary Fig. 27a). Jointly, these independent results further 
support the clinical relevance of the observed patient stratification structure.  
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In conclusion, CASTom-iGEx patient stratification methodology detected distinct patient 
groups exhibiting different genetic liabilities that translate into divergent clinical parameters 
across different complex diseases.  

Discussion 

Here, we investigated how heterogeneity in polygenic risk factor distribution can contribute to 
heterogeneity in clinical parameters, severity, and treatment response across patients suffering 
from complex diseases.  
We start to resolve this central problem on the road to stratification medicine by developing a 
multilayered machine learning approach that relies on the stepwise aggregation of genetic 
signal onto biological relevant entities (genes and pathways) on a per individuum level. We 
introduce the concept pathway level association studies and highlight the added value of this 
strategy in terms of identifying biologically directly interpretable, tissue specific associations 
and increased detection power. We show that a substantial number of pathway associations 
result from small, additive effects missed otherwise. 
We show that aggregation of genetic liability through tissue specific gene expression enables 
the identification of distinct patient subgroups. This approach enables the unsupervised 
stratification of patients that exhibit distinct genetic liabilities across biological process into 
subgroups with diverse endophenotypic and clinical profiles. Importantly, this level of 
biologically and clinically relevant multivariate stratification was not achieved by traditional 
PRS analysis, highlighting the added value of the CASTom-iGEx approach.  
Our results show that the effects of common disease associated genetic variants converge onto 
distinct cell type specific genes and molecular pathways within subgroups of patients. Most 
importantly, we extensively evaluate well known confounders in genetic stratification analyses 
and show that our discovered patient grouping is not compromised by the former.   
We show the general feasibility of unbiased patient stratification by applying the CASTOM-
iGEx pipeline to two fundamentally distinct complex diseases. Moreover, we demonstrate the 
added value of the biological concept informed genetic patient stratification through detailed 
clinical and endophenotypic characterization of the discovered patient strata.  
In particular, we identify 5 groups of CAD patients with fundamentally distinct risk and disease 
relevant endophenotype profiles. This includes a healthier population, a population with 
reduced levels of blood-circulating LDL, and a decreased frequency of hyperlipidemia 
concomitant with higher predicted activities of vesicle mediated transport.  
Finally, we identify a patient group that exhibits a stronger role of inflammatory processes, 
adding a genetic foundation to the debated role of inflammation in CAD. Similarly, 
stratification analysis of schizophrenic individuals revealed substantial heterogeneity in risk 
factor distribution related to pathomechanisms that have long been implicated to play a key 
role in SCZ. These include genes and pathways related to inhibitory and excitatory 
neurotransmission affecting excitatory/inhibitory balance in cortical microcircuits, glutamate 
metabolism as well as the so far barely recognized involvement of lipoprotein metabolism. 
These analyses also uncovered the existence of a SCZ patient group with substantially 
increased genetic loadings for better cognitive performance and lower liability for 
inflammatory processes, while at the same time showing a higher genetic risk profile for 
metabolic syndrome  
These results showcase the general utility of the CASTom-iGEx approach in the deconstruction 
of phenotypic and clinical heterogeneity across patient populations and eventually facilitate 
precision medicine approaches. While the current results represent an important next step along 
this road, several key challenges remain. 
First, the CASTom-iGEx strategy was only applied in the context of individuals with Caucasian 
ancestry. Application of European ancestry trained models to individuals with Indian ancestries 
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showed overall poor performance and replication of results (Supplementary Fig. 28), 
consistent with previous observations41,42 and requires adaption to a trans-ancestry setting. 
However, the latter likely requires not only tailoring of statistical models but also generation 
of new cohorts: While most GWAS hits replicate across populations, there exists substantial 
variability in effect sizes41 and direction of effects for subthreshold associations, concomitant 
with limited transferability of PRS across populations42. The latter observations are consistent 
with considerations within the omnigenic model of complex traits, suggesting lower trans-
population conservation of genes peripherally related to the phenotype of interest. 
As consequence, the generalizability of gene risk score (GRS) based models such as CASTom-
iGEx to a trans-ancestry setting through adapted statistical methods43 remains unclear and 
requires the careful calibration using ancestry specific and trans-ancestry GRS models. 
However, this endeavor requires in any case more diverse cohorts of matching genotype and 
gene expression data of disease relevant tissues of sufficient size across distinct populations44.  
Second, the approach presented here constitutes only one step forward towards the use 
biological and translational operationalization of common variant distribution, as it can only 
be truly effective when combined with other tools and data modalities. Environmental and 
lifestyle factors dramatically influence disease risk and disease course. Thus, it will be one of 
the critical next steps to integrate genetic based insights such as those provided by CASTom-
iGEx with deep patient phenotyping information in the context of an unsupervised multi-modal 
patient clustering framework. In particular, integrating the present approach with multi-omic, 
imaging, clinical and exposome derived data modalities using e.g., network fusion methods 
represent promising avenues to increase the predictive power of patient stratification, 
specifically towards the prediction of treatment response.   
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Fig.1: Genes and pathways associated with CAD.  

a. Manhattan plot showing Z-statistic across 11 tissues, colored dots refers to genes with tissue 
specific FDR ≤ 0.05. Acronyms in parenthesis indicate the initials of the tissue considered (AS 
= Adipose Subcutaneous, AVO = Adipose Visceral Omentum, AG = Adrenal Gland, AA = 
Artery Aorta, AC = Artery Coronary, CS = Colon Sigmoid, CT = Colon Transverse, HAA = 
Heart Atrial Appendage, HLV = Heart Left Ventricle, L = Liver, WB = Whole Blood). b. PriLer 
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model for NFU1 in adipose visceral omentum. Each dot represents a variant having PriLer 
regression coefficient different from zero ordered on the x-axis according to its corresponding 
genomic position and colored based on PriLer coefficients values. Panels from the bottom to 
the top indicate: 1) genomic position of NFU1 with dashed lines representing TSS +/- 200kb 
window, 2) regression coefficient from PriLer model, 3) number of gene regulatory elements 
in the PriLer model that a variant intersects, 4) -log10 p-value from matched GWAS in UKBB 
(Methods). c. Reproducibility of gene levels T-scores (left) and pathway scores (right) via 
meta-analysis of CARDIoGRAM cohorts. X-axis shows the fraction of significant genes in 
UKBB that have the same effect sign (Z-statistic) in CARDIoGRAM meta-analysis, p-values 
are computed from one-sided sign test (∗ = P ≤ 0.05, ∗∗ = P ≤ 0.01, ∗ ∗ ∗ = P ≤ 0.001 , ∗ ∗ ∗∗ 
= P ≤ 0.0001). The fraction of genes concordant and nominal at a p-value threshold of 0.05 is 
shown in the yellow bar. d. Number of significant pathways (PALAS FDR ≤ 0.05) with at least 
one gene reaching better significance than the pathway (ivory), with all genes in the pathway 
less significant but with at least one gene having TWAS FDR ≤ 0.05 (green), and all genes less 
significant and not passing TWAS FDR 0.05 threshold (light blue). e. Reactome Death 
Receptor Signaling in artery aorta. The pathway significance is indicated by the dashed 
horizontal line, the coloured squares show genes included in that pathway and the 
corresponding TWAS p-value (y-axis) and the dots indicate the matched GWAS p-value of 
SNPs regulating those genes with colour reflecting PriLer regulatory coefficients. f. Among 
pathways more significant than any included gene, 45 prioritized pathways based on the 
following criteria: computed from more than 5 and less or equal than 200 t-score genes or more 
than 2 if pathway coverage is higher than 10%, originally including less than 200 genes and 
reaching at least 0.0001 as nominal significance. PALAS Z-statistic is shown in the x-axis color 
coded by tissue origin. Each pathway barplot contains the gene pathway coverage. The pathway 
name in bold reflects pathways without any significant gene (FDR > 0.05). 
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Fig.2: CAD patients genetically driven stratification from imputed gene expression in 
Liver. 
a. First 2 components of uniform manifold approximation and projection (UMAP) from gene 
T-scores in liver for CAD patients. Genes are clumped at 0.9 correlation, separately 
standardized and PCs corrected, and multiplied by Z-statistic CAD associations. Each dot 
represents a patient colored by the cluster membership. b. Prediction of clustering structure 
on 9 external CARDIoGRAM cohorts. Y-axis shows the fraction of cases assigned to each 
cluster in UKBB dataset and each external cohort for which the clustering structure was 
projected. The dashed lines indicate the fraction value for UKBB model clustering. c. For 
each group, Spearman correlation of WMW estimates in UKBB and each external cohort 
only from genes that are significantly associated with that group across all tissues. d. Left: 
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Distribution of CAD polygenic risk score (PRS) for all UKBB individuals based on CAD 
GWAS summary statistics from UKBB CAD GWAS. Right: Distribution of CAD PRS 
across CAD cases divided by clustering group.  e. Mean value of selected group-specific 
pathways in each group rescaled to 0-100 range. f. Among 212 endophenotypes measured in 
UKBB with at least one CAD associated and group specific pathway, forest plot shows 
significantly different ones (FDR ≤ 0.05) in at least one group (gri versus remaining patient) 
using Generalized Linear Model (GLM), indicating regression coefficient (βGLM) with 95% 
Confidence Interval (CI). Full dot means that βGLM is significant (0.05 threshold) after BH 
correction performed separately for each group across all endophenotypes. The panel refers 
to continuous phenotypes, binary and ordinal categorical phenotypes are in Fig. S18. g. Mean 
value of selected group-specific endophenotypes in each group rescaled to 0-100 range. h. 
CAD severeness across projected clusters in GerMIFSV cohort. Y-axis indicates the 
percentage of patients with a certain number of vessel affected (grey shades). X-axis indicates 
the projected group. i-j. Percentage of patients in UKBB clustering with comorbidities ((i) 
hyperlipidemia, (j) peripheral vascular disease). k. Distribution of age of stroke for patients in 
UKBB. In (h-k) nominal p-values from group-wise GLM is shown at the top of the bar/violin 
plot. Boxplot elements include median as central line, 1st and 3rd quartiles as box limits, 1.5 
interquartile ranges from 1st and 3rd quartiles as corresponding whiskers.  
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Fig.3: Impaired biological processes in SCZ. 
a. PALAS Z-statistic results for a selection of pathways. Among pathways more significant 
than any included gene and without any gene in the MHC locus, the top panel shows a subset 
of the 45 prioritized pathways based on the following criteria: computed from more than 5 and 
less or equal than 200 t-score genes or more than 2 if pathway coverage is higher than 10%, 
originally including less than 200 genes and reaching at least 0.0001 as nominal significance. 
PALAS Z-statistic is shown in the x-axis color coded by tissue origin (dark blue = DLPC in 
CMC, light blue = a brain region in GTEx). The bottom panel shows a selection of significant 
SCZ pathways in WikiPathway collection. The pathway name in bold reflects pathways 
without any significant gene (FDR > 0.05). b. Wilcoxon-Mann-Whitney (WMW) estimates for 
241 group-specific pathways (FDR ≤ 0.05,	Reactome and GO) including at least one gene in 
the MHC locus and considering only the most significant tissue per-pathways when repeated. 
The clustering is performed on SCZ patients in DLPC imputed gene expression, The row 
annotation on the left indicates the corresponding SCZ PALAS Z-statistics. The acronym in 
parenthesis in the pathway names refers to the tissue considered (DLPC = Dorsolateral 
Prefrontal Cortex in CMC, CEI = Cells EBV-transformed lymphocytes, BFBC = Brain Frontal 
Cortex BA9, BCeH = Brain Cerebellar Hemisphere, BCbg = Brain Caudate basal ganglia, BC 
= Brain Cortex, BCe = Brain Cerebellum, BHi = Brain Hippocampus, BHy = Brain 
Hypothalamus). 
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Fig.4: SCZ patients genetically driven stratification from imputed gene expression in 
DLPC. 
a. Mean value of selected group-specific pathways (Reactome and GO, WikiPathways and 
CMC Gene Set) in each group rescaled to 0-100 range. b. Forest plot of a selection of gene 
risk-scores (gene-RS) endophenotypes with FDR ≤ 0.05 and cluster reliable measure (CRM) > 
500 in at least one group. X-axis shows the regression coefficient with 95% CI for the grouping 
variable (βGLM). Full dot indicates that βGLM is significant after BH correction, performed 
separately for each group across all the endophenotype. Black dot indicates that the group-
specific association is also reliable based on CRM threshold of 610. The top panel shows results 
in terms of blood count and blood biochemistry UKBB phenotype classes. c. Group-specific 
spider plot related to Metabolic Syndrome phenotypes. Mean value of group-specific gene-RS 
endophenotype related to metabolic syndrome across all cohorts. Grey chart refers to all control 
combined in PGC cohorts. In each endophenotype, SCZ groups plus controls group are rescaled 
to 0-100 range. d. Forest plot testing measured clinical differences across projected groups in 
SCZ PsyCourse cohort. The test based on GLM is performed for each pair of groups (label on 
top). Dot indicates significance (p ≤	0.05). tr. out/in – treatment outpatient/inpatient. 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.10.23289788doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.10.23289788
http://creativecommons.org/licenses/by-nd/4.0/


 

 
References 
 
1 McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, 

uncertainty and challenges. Nat Rev Genet 9, 356-369 (2008). 
https://doi.org:10.1038/nrg2344 

2 Gallagher, M. D. & Chen-Plotkin, A. S. The Post-GWAS Era: From Association to 
Function. Am J Hum Genet 102, 717-730 (2018). 
https://doi.org:10.1016/j.ajhg.2018.04.002 

3 Visscher, P. M. et al. 10 Years of GWAS Discovery: Biology, Function, and 
Translation. Am J Hum Genet 101, 5-22 (2017). 
https://doi.org:10.1016/j.ajhg.2017.06.005 

4 Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-
wide association summary statistics. Nat Genet 47, 1228-1235 (2015). 
https://doi.org:10.1038/ng.3404 

5 Bernstein, B. E. et al. An integrated encyclopedia of DNA elements in the human 
genome. Nature 489, 57-74 (2012). https://doi.org:10.1038/nature11247 

6 McClellan, J. & King, M. C. Genetic heterogeneity in human disease. Cell 141, 210-
217 (2010). https://doi.org:10.1016/j.cell.2010.03.032 

7 Genkel, V. V. & Shaposhnik, II. Conceptualization of Heterogeneity of Chronic 
Diseases and Atherosclerosis as a Pathway to Precision Medicine: Endophenotype, 
Endotype, and Residual Cardiovascular Risk. Int J Chronic Dis 2020, 5950813 (2020). 
https://doi.org:10.1155/2020/5950813 

8 Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association 
studies. Nat Genet 48, 245-252 (2016). https://doi.org:10.1038/ng.3506 

9 Gamazon, E. R. et al. A gene-based association method for mapping traits using 
reference transcriptome data. Nat Genet 47, 1091-1098 (2015). 
https://doi.org:10.1038/ng.3367 

10 Horne, B. D. et al. Generating genetic risk scores from intermediate phenotypes for use 
in association studies of clinically significant endpoints. Ann Hum Genet 69, 176-186 
(2005). https://doi.org:10.1046/j.1529-8817.2005.00155.x 

11 Darst, B. F. et al. Pathway-Specific Polygenic Risk Scores as Predictors of Amyloid-
beta Deposition and Cognitive Function in a Sample at Increased Risk for Alzheimer's 
Disease. J Alzheimers Dis 55, 473-484 (2017). https://doi.org:10.3233/JAD-160195 

12 Choi, S. W. et al. PRSet: Pathway-based polygenic risk score analyses and software. 
PLoS Genet 19, e1010624 (2023). https://doi.org:10.1371/journal.pgen.1010624 

13 Werner, M. C. F. et al. Indicated association between polygenic risk score and 
treatment-resistance in a naturalistic sample of patients with schizophrenia spectrum 
disorders. Schizophr Res 218, 55-62 (2020). 
https://doi.org:10.1016/j.schres.2020.03.006 

14 Pardinas, A. F. et al. Interaction Testing and Polygenic Risk Scoring to Estimate the 
Association of Common Genetic Variants With Treatment Resistance in Schizophrenia. 
JAMA Psychiatry 79, 260-269 (2022). 
https://doi.org:10.1001/jamapsychiatry.2021.3799 

15 Chatterjee, N., Shi, J. & Garcia-Closas, M. Developing and evaluating polygenic risk 
prediction models for stratified disease prevention. Nat Rev Genet 17, 392-406 (2016). 
https://doi.org:10.1038/nrg.2016.27 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.10.23289788doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.10.23289788
http://creativecommons.org/licenses/by-nd/4.0/


16 Tromp, J. et al. Novel endotypes in heart failure: effects on guideline-directed medical 
therapy. Eur Heart J 39, 4269-4276 (2018). https://doi.org:10.1093/eurheartj/ehy712 

17 Liley, J., Todd, J. A. & Wallace, C. A method for identifying genetic heterogeneity 
within phenotypically defined disease subgroups. Nat Genet 49, 310-316 (2017). 
https://doi.org:10.1038/ng.3751 

18 Nguyen, T. D. et al. Genetic heterogeneity and subtypes of major depression. Mol 
Psychiatry 27, 1667-1675 (2022). https://doi.org:10.1038/s41380-021-01413-6 

19 Han, B. et al. A method to decipher pleiotropy by detecting underlying heterogeneity 
driven by hidden subgroups applied to autoimmune and neuropsychiatric diseases. Nat 
Genet 48, 803-810 (2016). https://doi.org:10.1038/ng.3572 

20 Howard, D. M. et al. Genetic stratification of depression in UK Biobank. Transl 
Psychiatry 10, 163 (2020). https://doi.org:10.1038/s41398-020-0848-0 

21 Nelson, C. P. et al. Association analyses based on false discovery rate implicate new 
loci for coronary artery disease. Nat Genet 49, 1385-1391 (2017). 
https://doi.org:10.1038/ng.3913 

22 Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene 
Ontology Consortium. Nat Genet 25, 25-29 (2000). https://doi.org:10.1038/75556 

23 Fabregat, A. et al. Reactome pathway analysis: a high-performance in-memory 
approach. BMC Bioinformatics 18, 142 (2017). https://doi.org:10.1186/s12859-017-
1559-2 

24 Martens, M. et al. WikiPathways: connecting communities. Nucleic Acids Res 49, 
D613-D621 (2021). https://doi.org:10.1093/nar/gkaa1024 

25 de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-
set analysis of GWAS data. PLoS Comput Biol 11, e1004219 (2015). 
https://doi.org:10.1371/journal.pcbi.1004219 

26 de Leeuw, C. A., Neale, B. M., Heskes, T. & Posthuma, D. The statistical properties of 
gene-set analysis. Nat Rev Genet 17, 353-364 (2016). 
https://doi.org:10.1038/nrg.2016.29 

27 Volzke, H. et al. Cohort Profile Update: The Study of Health in Pomerania (SHIP). Int 
J Epidemiol 51, e372-e383 (2022). https://doi.org:10.1093/ije/dyac034 

28 Soccio, R. E. & Breslow, J. L. Intracellular cholesterol transport. Arterioscler Thromb 
Vasc Biol 24, 1150-1160 (2004). 
https://doi.org:10.1161/01.ATV.0000131264.66417.d5 

29 Hong, K. U. et al. Acetylator Genotype-Dependent Dyslipidemia in Rats Congenic for 
N-Acetyltransferase 2. Toxicol Rep 7, 1319-1330 (2020). 
https://doi.org:10.1016/j.toxrep.2020.09.011 

30 American Psychiatric Association. & American Psychiatric Association. Task Force on 
DSM-IV. Diagnostic and statistical manual of mental disorders : DSM-IV. 4th edn,  
(American Psychiatric Association, 1994). 

31 Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-
associated genetic loci. Nature 511, 421-427 (2014). 
https://doi.org:10.1038/nature13595 

32 Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for 
schizophrenia. Nat Neurosci 19, 1442-1453 (2016). https://doi.org:10.1038/nn.4399 

33 Koutsouleris, N. et al. Exploring Links Between Psychosis and Frontotemporal 
Dementia Using Multimodal Machine Learning: Dementia Praecox Revisited. JAMA 
Psychiatry 79, 907-919 (2022). https://doi.org:10.1001/jamapsychiatry.2022.2075 

34 Mei, L. & Nave, K. A. Neuregulin-ERBB signaling in the nervous system and 
neuropsychiatric diseases. Neuron 83, 27-49 (2014). 
https://doi.org:10.1016/j.neuron.2014.06.007 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.10.23289788doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.10.23289788
http://creativecommons.org/licenses/by-nd/4.0/


35 Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in 
schizophrenia. Nature 604, 502-508 (2022). https://doi.org:10.1038/s41586-022-
04434-5 

36 Gasparotti, R. et al. Reduced fractional anisotropy of corpus callosum in first-contact, 
antipsychotic drug-naive patients with schizophrenia. Schizophr Res 108, 41-48 (2009). 
https://doi.org:10.1016/j.schres.2008.11.015 

37 Vancampfort, D. et al. A meta-analysis of cardio-metabolic abnormalities in drug naive, 
first-episode and multi-episode patients with schizophrenia versus general population 
controls. World Psychiatry 12, 240-250 (2013). https://doi.org:10.1002/wps.20069 

38 Budde, M. et al. A longitudinal approach to biological psychiatric research: The 
PsyCourse study. Am J Med Genet B Neuropsychiatr Genet 180, 89-102 (2019). 
https://doi.org:10.1002/ajmg.b.32639 

39 Napolitano, F., Sirci, F., Carrella, D. & di Bernardo, D. Drug-set enrichment analysis: 
a novel tool to investigate drug mode of action. Bioinformatics 32, 235-241 (2016). 
https://doi.org:10.1093/bioinformatics/btv536 

40 Iorio, F. et al. Discovery of drug mode of action and drug repositioning from 
transcriptional responses. Proc Natl Acad Sci U S A 107, 14621-14626 (2010). 
https://doi.org:10.1073/pnas.1000138107 

41 Sakaue, S. et al. A cross-population atlas of genetic associations for 220 human 
phenotypes. Nat Genet 53, 1415-1424 (2021). https://doi.org:10.1038/s41588-021-
00931-x 

42 Wang, Y. et al. Theoretical and empirical quantification of the accuracy of polygenic 
scores in ancestry divergent populations. Nat Commun 11, 3865 (2020). 
https://doi.org:10.1038/s41467-020-17719-y 

43 Li, Z. et al. METRO: Multi-ancestry transcriptome-wide association studies for 
powerful gene-trait association detection. Am J Hum Genet 109, 783-801 (2022). 
https://doi.org:10.1016/j.ajhg.2022.03.003 

44 Mathieson, I. The omnigenic model and polygenic prediction of complex traits. Am J 
Hum Genet 108, 1558-1563 (2021). https://doi.org:10.1016/j.ajhg.2021.07.003 

 

Acknowledgments: We thank all members of the Ziller, Gagneur and Schunkert labs for their 
support and critical feedback. We also thank Bernhard Baune and Monika Stoll for providing 
critical feedback on the manuscript. 
This research has been conducted using the UK Biobank Resource under application numbers 
34217 and 25214. We thank all participants, researchers, and support staff who make the study 
possible. Bona fide researchers can apply to use the UK Biobank data set by registering and 
applying at http://ukbiobank.ac.uk/ register-apply/. 
The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the 
Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, 
NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained 
from: dbGaP accession number phs000424.v7.p2 on 11/28/2018. 
This study used data from the CommonMind consortium provided through NIMH. Data for 
this publication were obtained from NIMH Repository & Genomics Resource, a centralized 
national biorepository for genetic studies of psychiatric disorders. Data were generated as part 
of the CommonMind Consortium supported by funding from Takeda Pharmaceuticals 
Company Limited, F. Hoffman-La Roche Ltd and NIH grants R01MH085542, 
R01MH093725, P50MH066392, P50MH080405, R01MH097276, RO1-MH-075916, 
P50M096891, P50MH084053S1, R37MH057881, AG02219, AG05138, MH06692, 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.10.23289788doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.10.23289788
http://creativecommons.org/licenses/by-nd/4.0/


R01MH110921, R01MH109677, R01MH109897, U01MH103392, and contract 
HHSN271201300031C through IRP NIMH. Brain tissue for the study was obtained from the 
following brain bank collections: the Mount Sinai NIH Brain and Tissue Repository, the 
University of Pennsylvania Alzheimer’s Disease Core Center, the University of Pittsburgh 
NeuroBioBank and Brain and Tissue Repositories, and the NIMH Human Brain Collection 
Core. CMC Leadership: Panos Roussos, Joseph Buxbaum, Andrew Chess, Schahram 
Akbarian, Vahram Haroutunian (Icahn School of Medicine at Mount Sinai), Bernie Devlin, 
David Lewis (University of Pittsburgh), Raquel Gur, Chang-Gyu Hahn (University of 
Pennsylvania), Enrico Domenici (University of Trento), Mette A. Peters, Solveig Sieberts 
(Sage Bionetworks), Thomas Lehner, Stefano Marenco, Barbara K. Lipska (NIMH). The full 
list of PGC Schizophrenia working group members including affiliations can be found in Table 
S7. 
Funding: This work was supported by grants from the BMBF eMed program grant 01ZX1504 
to MZ, the Max-Planck-Society and BMBF eMed program grant 01ZX1706 to MZ, HS. and 
JG. TGS and PF are supported by the Deutsche Forschungsgemeinschaft (German Research 
Foundation; DFG) within the framework of the projects http://www.kfo241.de and 
http://www.PsyCourse.de (SCHU 1603/4-1, 5-1, 7-1; FA241/16-1).  
TGS received additional support from the German Federal Ministry of Education and Research 
(BMBF) within the framework of the BipoLife network (01EE1404H), IntegraMent 
(01ZX1614K), e:Med Program (01ZX1614K) and the Dr. Lisa Oehler Foundation (Kassel, 
Germany). TGS was further supported by the grants GWPI-BIOPSY (01EW 2005) and 
MulioBio (01EW 2009) from ERA-NET Neuron (BMBF). UH was supported by European 
Union’s Horizon 2020 Research and Innovation Programme (PSY-PGx, grant agreement No 
945151). SP received support from the NARSAD Young Investigator Grant. 

 

Author contributions: Conceptualization: MZ, LT; Methodology: LT, MZ; Investigation: LT, 
SM, LJT, TFMA, MS, AT, BMM, HS; Visualization: LT, Funding acquisition: MZ, JG, HS; 
Critical Resources: MB, PF, TG, HV, ST, UH, PGC, Supervision: MZ, Writing: LT, MZ 
Competing interest: F.I. receives funding from Open Targets, a public-private initiative 
involving academia and industry, and performs consultancy for the joint AstraZeneca-CRUK 
functional genomics centre and for Mosaic Therapeutics. TFMA is a salaried employee of 
Boehringer Ingelheim Pharma outside the submitted work. 
 

Code availability: 
The software pipeline is based on R and is available at 
https://gitlab.mpcdf.mpg.de/luciat/castom-igex. The trained tissue specific PriLer models on 
GTEx v6p and CMC release 1 reference panels are available at 
https://doi.org/10.6084/m9.figshare.22347574.v2. TWAS and PALAS summary statistics for 
CAD and SCZ can be found at https://doi.org/10.6084/m9.figshare.22495561.v1.  

 
Data availability:  
The UKBB data are privacy protected and access can be requested through the UKBB data 
portal. The GTEx data are available through dbGAP accession number phs000424.v7.p2. The 
PGC data are privacy protected and can be accessed through a secondary analysis proposal 
sponsored by a PGC-SCZ working group PI member that needs to be approved by the working 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.10.23289788doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.10.23289788
http://creativecommons.org/licenses/by-nd/4.0/


group. The German cohorts of CARDIoGRAM consortium is privacy protected and can only 
be accessed through collaboration with PIs of the consortium, e.g. HS. The PsyCourse Study 
data are privacy protected but can be accessed by submitting a research proposal (see 
http://www.psycourse.de/openscience-en.html). The genotype and gene expression data from 
the CommonMind consortium is privacy protected and can be accessed via the CommonMind 
knowledge portal: http://dx.doi.org/10.7303/syn2759792. The SHIP-Trend study genotype 
data is privacy protected and can be accessed through the study PIs: https://www.maelstrom-
research.org/study/ship. The PsyCourse data is privacy protected and can be accessed via an 
analysis request proposal through the study website: http://psycourse.de/openscience-de.html. 
 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.10.23289788doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.10.23289788
http://creativecommons.org/licenses/by-nd/4.0/

