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SUMMARY 

 

Glucocorticoids (GCs) are used as anti-inflammatory and immunosuppressive drugs in many 

immune mediated diseases, but their use in sepsis and shock is controversial. This is caused in 

part by a lack of information regarding the responding cell types and GC-regulated genes in 

vivo. We used public blood transcriptomic datasets and GC-induced query genes to obtain 2 

robust gene expression correlation signatures of GC induction, either in the absence or in the 

presence of severe inflammation. GC signature 1 originated from circadian cortisol with 

biases for gene expression in NK cells and neutrophils. GC signature 2 originated from GC in 

severe inflammation, mainly with biases for gene expression in monocytes and neutrophils. 

Many genes upregulated by GC treatment in septic shock and burn shock were also present as 

high-ranking genes in GC signatures, which pointed to their direct regulation by GC. Robust 

GC signatures were also obtained from dataset collections of monocytes and neutrophils, 

separately, and predicted cellular effects. Additionally, gene induction by GC was put into a 

wider framework of gene expression in circulating monocytes and neutrophils in health and 

systemic inflammation. We present and interpret a large number of GC-regulated genes in 

different blood cells and tissues, and select 2 whole blood transcriptomic biomarker gene sets, 

GC-1 and GC-2, for monitoring cortisol action in health, and in severe inflammation, 

respectively. GC signature 2 was found in sepsis and many other inflammatory diseases, both 

from treatment with GC, and from endogenous GC. 
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INTRODUCTION 

Use of glucocorticoids in therapy 

Endogenous cortisol links the endocrine and immune system, and has an important role in 

regulating inflammatory events. Synthetic glucocorticoids (GCs) are widely used in medicine 

because of their strong anti-inflammatory and immunosuppressive mode of action. Systemic 

corticosteroid therapy is routinely used in autoimmune diseases such as rheumatoid arthritis 

(RA) and systemic lupus erythematosus (SLE), during flares in MS, during severe 

exacerbation in pulmonary diseases such as COPD and asthma, and as cortisol replacement in 

Addison’s disease (Chan et al., 2020; Johannsson et al., 2015; Reichardt et al., 2021; Strehl et 

al., 2019). GCs with reduced systemic bioavailability are also used in active inflammatory 

bowel disease (IBD) (Dubois-Camacho et al., 2017). A controversy is present concerning the 

use of GCs in the treatment of acute inflammation such as found during septic and burn shock 

as well as in ARDS and COVID-19 (Djillali Annane et al., 2017; Briegel et al., 2018; Carlet 

et al., 2020; Chan et al., 2020; Vandewalle & Libert, 2020; Venet et al., 2015). Clinical trials 

have shown a beneficial effect of GC treatment in shortening septic shock duration, but 

inconsistent results have been published regarding survival at 180 days (Annane et al., 2018; 

Venkatesh et al., 2018). The use of GC as additional therapy in septic shock is now 

recommended if vasopressor therapy is not effective enough in maintaining target blood 

pressure (Evans et al., 2021). Considering the physiological importance of endogenous GCs 

and the wide use of systemic GC therapy, biomarkers for monitoring GC activity at the 

cellular level are very useful (Alder et al., 2018; Chan et al., 2020; Russell, 2018). Blood 

transcriptomics is an important technology for obtaining such biomarkers, and has been used 

to develop an 8 gene biomarker of GC exposure especially in RA and SLE (Hu et al., 2018). 

Blood transcriptomics has also been used to classify heterogeneity in sepsis (Leligdowicz & 

Matthay, 2019; Tsakiroglou et al., 2023), but without using GC-induced genes, as biomarkers, 

to assist in classification. Furthermore, the use of GC-induced genes for monitoring the 

cellular effects of GC therapy in septic and burn shock has not been adequately applied.  

Objective 

Our objective here was to use large collections of blood transcriptomics datasets to obtain 

GC-driven gene signatures in the absence or presence of severe systemic inflammation, such 

as found in sepsis, ARDS, and trauma. Secondly, profiling signature gene expression based on 
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cell type and inflammatory state was performed to help select suitable biomarkers for 

monitoring cortisol activity in different illnesses. 

Cortisol, GR, and cellular effects  

Cortisol is a steroid hormone and the major end product of the HPA (Hypothalamic Pituitary 

Adrenal) axis, which plays an important role in the body’s stress response. Different stresses, 

both physical or emotional, stimulate the HPA axis and thereby transiently increase systemic 

ACTH and cortisol concentrations (Herman et al., 2016; Oster et al., 2017). Moreover, 

circadian stimulation of the HPA axis results in increasing cortisol concentration during late 

sleep, before sunrise, peaking around the sleep wake transition at 6h-10h, and bottoming in 

the evening, early night between 22h-2h (Oster et al., 2017). Changes in cortisol concentration 

affect blood cell trafficking and mobilization, resulting in stress and circadian rhythm related 

shifts in different immune cell percentages (Ince et al., 2019; Olnes et al., 2016; Sautron et al., 

2015; Shimba & Ikuta, 2020). In sepsis and critical illness more generally, the central HPA 

axis is first transiently activated, but then becomes suppressed as indicated by low plasma 

ACTH concentration. However, plasma cortisol levels remain elevated partially due to 

increased production and mainly due to decreased breakdown in liver and kidney (Boonen et 

al., 2013; Langouche et al., 2023; Van den Berghe et al., 2022). Cortisol availability is further 

increased by different peripheral adaptations such as decreased hepatic synhesis of GC carrier 

proteins resulting in more free cortisol. Intracellular cortisol availability in target tissues might 

also be increased by enhanced inactive cortisone to cortisol enzymatic conversion (Langouche 

et al., 2023; Van den Berghe et al., 2022). Early research indicated that high cortisol levels 

occurring in septic shock might still be inadequate in relation to the severity of the disease 

(Annane et al., 2000). This insufficiency was referred to as CIRCI (critical illness-related 

corticosteroid insufficiency), and was caused by adrenal insufficiency together with tissue 

corticosteroid resistance, and characterized by a strong proinflammatory response (Marik et 

al., 2008). Presently, CIRCI is hard to diagnose, but might still require treatment with GC (D. 

Annane et al., 2017; Djillali Annane et al., 2017). Recently, it has been argued that a form of 

CIRCI might only occur in prolonged critical illness (Téblick et al., 2022), and that CIRCI is a 

poor rationale for the use of GC in septic shock (Langouche et al., 2023; Téblick et al., 2022; 

Van den Berghe et al., 2022). In this view, high doses of GC in septic shock would not 

remedy insufficiency due to GC resistance in CIRCI, but improve blood pressure as a 

pharmalogical effect (Langouche et al., 2023; Van den Berghe et al., 2022).  
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Natural (cortisol in humans) and synthetic (e.g. dexamethasone) GCs are lipophilic molecules, 

that can traverse cell membranes. Cellular effects of GCs can be genomic (transcriptional) 

mediated by the glucocorticoid receptor (GR), or non-genomic (transcription independent), 

involving GR or other putative GC receptors (Escoter-Torres et al., 2019; Timmermans et al., 

2019). In the absence of GC ligand, the glucocorticoid receptor (GR) is a part of a matured 

protein heterocomplex in the cytoplasm (Escoter-Torres et al., 2019; Petta et al., 2016; 

Timmermans et al., 2019). Upon ligand binding, GR translocates to the nucleus, and binds as 

a monomer, dimer or tetramer to half site or pseudo-palindromic GREs (glucocorticoid 

response elements) in DNA, which are situated in promoters and enhancers, to activate its 

target genes (Escoter-Torres et al., 2019; Gerber et al., 2021; Johnson et al., 2021; Petta et al., 

2016; Strickland et al., 2022; Timmermans et al., 2019; Vettorazzi et al., 2021). Important GR 

gene targets for activation produce anti-inflammatory factors, such as DUSP1/MKP-1, 

NFKBIA/IkBalpha, TSC22D3/GILZ, and TNFAIP3/A20 (Oh et al., 2017). GR physically 

interacts with c-Jun of AP-1 (Diamond et al., 1990; Yang-Yen et al., 1990), and with the p65 

subunit (RelA) of NF-kB (Caldenhoven et al., 1995; Ray & Prefontaine, 1994; Scheinman et 

al., 1995). These protein-protein interactions are important for mutual antagonism between 

anti-inflammatory GR and inflammatory NF-kB and AP-1 activity, as reviewed (Petta et al., 

2016). GR also functions in repression of gene transcription, which requires direct DNA 

binding of the GR to GREs (Escoter-Torres et al., 2020). The exact mechanisms of gene 

repression, including a possible role of tethering of GR to DNA-bound AP-1 or NF-kB, are 

being investigated (Escoter-Torres et al., 2019; Fadel et al., 2023; Gerber et al., 2021; 

Strickland et al., 2022; Vettorazzi et al., 2021). Many effects of GCs on neutrophils, 

monocytes, and monocyte-derived macrophages, are thought to relate to the cell biology of 

different phases of the local inflammatory response to injury and infection, where a pro-

inflammatory phase triggered by DAMPS and PAMPS, is followed by a resolution phase, and 

a tissue repair phase (Desgeorges et al., 2019; Ehrchen et al., 2019; Ronchetti et al., 2018). 

GCs affect monocytes, and monocyte-derived macrophages depending on their differentiation 

and activation status, suppressing the pro-inflammatory phenotype, and stimulating the anti-

inflammatory phenotype by increasing their phagocytosis of apoptotic cells (Desgeorges et 

al., 2019; Ehrchen et al., 2019). Phenotypic effects of GCs on immune cells can be deduced, 

to some degree, from their transcriptomes and epigenomes. Transcriptomes of different 

isolated blood cells and primary cell types, treated in vitro with GC, are highly cell type-

dependent, and predict testable phenotypic effects (Franco et al., 2019). Such transcriptomes 

are potentially valuable data for development of selective therapies (Buttgereit, 2021; Franco 
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et al., 2019), which would also be true for cell specific transcriptomes induced by GC in vivo, 

as accessible by a gene expression correlation approach.  

Trauma and sepsis 

Protective responses to mild or moderate trauma are thought to become exaggerated and 

destructive after massive trauma, of the type that was unsurvivable before the advent of 

medicine (Lord et al., 2014). Severe trauma leads to rapid systemic inflammation, which is 

excessive and commonly referred to as SIRS (systemic inflammatory response syndrome). 

Pro- and anti-inflammatory processes occur together, as studied at the level of blood plasma 

cytokines/chemokines and the leukocyte transcriptome (Xiao et al., 2011). Patients who 

survive SIRS and early MOF (multiple organ failure) are still at low risk of developing PICS 

(persistent inflammation, immunosuppression and catabolism syndrome) (Gentile et al., 2012; 

Hesselink et al., 2020). After severe injury, systemic exposure to DAMPS leads to activation 

of complement and coagulation pathways, and to activation of innate immune cells. 

Therefore, trauma can lead to remote organ injury and sepsis (Huber-Lang et al., 2018; Lord 

et al., 2014; Pottecher et al., 2019). Sepsis is defined as a life-threatening organ dysfunction 

caused by a dysregulated host response to infection (Singer et al., 2016). The degree of organ 

dysfunction is represented by a SOFA (sequential organ failure assessment) score (Singer et 

al., 2016). Patients who survive early multiple organ failure from SIRS in sepsis often develop 

chronic critical illness involving PICS (Darden et al., 2021). For therapy of sepsis, the 

immunology of the host response is very important besides the nature of the infection (Jarczak 

et al., 2021). Sepsis is heterogenous, for example in the relative presence of 

hyperinflammation and immune suppression which may also change over time, and a major 

effort is ongoing in patient stratification, including the use of blood leucocyte transcriptomics, 

to possibly improve effects of standard and future therapies (Leite et al., 2024; Leligdowicz & 

Matthay, 2019; Pelaia et al., 2023; Stanski & Wong, 2020; Tsakiroglou et al., 2023; van der 

Poll et al., 2021; Van Der Poll et al., 2017). Sepsis starts with detection of PAMPs from 

pathogens, and DAMPs from tissue damage, causing a systemic inflammatory response. 

Several pro-inflammatory mechanisms become deregulated including activation of 

complement and coagulation, immune cells, endothelial cells, and platelets. On the other 

hand, immunosuppressive responses are induced in parallel including lymphocyte apoptosis, 

reduced antigen presentation by APCs, and macrophages shifting to an alternative (M2) 

activation state (Hotchkiss et al., 2016; Jarczak et al., 2021; van der Poll et al., 2021; Van Der 

Poll et al., 2017; Wiersinga & van der Poll, 2022). 
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Monocytes and neutrophils in severe inflammation 

Low surface expression of HLA-DR on blood monocytes is an important marker for 

immunosuppression in sepsis, in surgery, and in cancer (Hibbert et al., 2018; Venet & 

Monneret, 2018), and correlates negatively with serum cortisol concentrations (Kim et al., 

2010; Mengos et al., 2019; Tulzo et al., 2004). Monocytes found in sepsis are more 

phagocytic, and less responsive to endotoxin stimulation (endotoxin tolerant), but express 

higher levels of cytokines and interleukins compared to monocytes from healthy controls 

(Shalova et al., 2015). They display an activation pattern that is similar as found in 

macrophages as judged by gene expression analysis (Liepelt et al., 2020; Washburn et al., 

2019). Recently, single cell sequencing has allowed a better description of monocyte 

heterogeneity in sepsis, ARDS, and COVID-19, and different monocyte cellular states have 

been identified, some of which are strongly expanded (Jiang et al., 2020; N. Liu et al., 2021; 

Reyes et al., 2020; Reyes et al., 2021; Schulte-Schrepping et al., 2020; Wang et al., 2021; 

Wen et al., 2020). In case of COVID-19, a gene expression signature of GC treatment has 

been identified for monocytes (Knoll et al., 2024), but not yet for ‘sepsis monocytes’. 

Neutrophils in severe systemic inflammation, such as found after trauma and in sepsis, are 

dysfunctional which is associated with the susceptibility to infections, and cause of tissue 

damage. The functions of neutrophils in acute inflammation act as a double edged sword. At 

the one hand, neutrophils are essential in pathogen defense and tissue repair, but on the other 

hand deregulated neutrophils are involved in collateral damage to host healthy tissue 

(Hesselink et al., 2019; Kovtun et al., 2018; Leliefeld et al., 2016; Mortaz et al., 2018). 

Neutrophils isolated from the blood of sepsis or ARDS patients are functionally altered 

including reduced chemotaxis, and delayed apoptosis. Interestingly enough no change in 

phagocytic capacity was found for these cells (Demaret et al., 2015; Juss et al., 2016). 

Different neutrophil populations occur in severe systemic inflammation, based on cell surface 

markers, nuclear shape, cellular density, and functional characteristics (Hellebrekers et al., 

2018; Hesselink et al., 2019; Leliefeld et al., 2016; Mortaz et al., 2018; Pillay et al., 2012; 

Shen et al., 2017). Severe systemic inflammation results in the appearance of low density 

neutrophils (LDNs), with different origins, including degranulated neutrophils, immature 

neutrophils, granulocytic MDSCs, and pro-inflammatory/primed LDNs (Hesselink et al., 

2019). Transcriptomic studies, on bulk neutrophils or single cells in systemic severe 

inflammation including severe COVID-19 (Aschenbrenner et al., 2021; de Kleijn et al., 2012; 

Demaret et al., 2015; Juss et al., 2016; Kwok et al., 2023; Kwok et al., 2020; Reusch et al., 
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2021; Schulte-Schrepping et al., 2020; Sinha et al., 2022; Vieira Da Silva Pellegrina et al., 

2015) have not evaluated the identification of co-expressed GC-induced genes.  

Result, importance  

Here we used a meta-analysis to overcome some of the limitations of identifying 

glucocorticoid-induced genes in single blood transcriptomics datasets. Different GC inducible 

query genes were used on defined dataset collections, applying an expression correlation 

search to obtain large, robust signatures of glucocorticoid-driven gene expression. Signature 

genes were profiled for cell type-dependent expression, induction by GC in vitro, as well as 

for circadian expression, and upregulation during mild and severe inflammation. Signature 1 

of glucocorticoid-driven gene expression in blood in the absence of severe inflammation, was 

largely derived from responses to circadian cortisol in NK cells and neutrophils. A set of 

genes (GC-1) selected from this signature was suitable for use as a blood transcriptional 

biomarker for the involvement of cortisol in the absence of severe inflammation. Signature 2 

of glucocorticoid-driven gene expression in blood in severe inflammation, mainly originated 

from “severe inflammatory” neutrophils, among others characterized by upregulation of 

ARG1 encoding arginase 1, and from monocytes including M2 alternatively activated 

macrophage-like monocytes. Many GC signature genes were specifically upregulated upon 

GC treatment in septic and burn shock. A selection of genes (set GC-2) was used to 

demonstrate the presence of GC signature 2 in a wide range of inflammatory illnesses, 

originating both from exogenous and endogenous GC, which indicated a general importance 

of GCs in immunosuppression. This analysis extends the description of GC action on different 

immune cells and tissues in vivo, and gene set GC-2, derived from GC signature 2, will 

potentially be a useful biomarker for stratification of sepsis and other inflammatory diseases, 

and for monitoring of cellular responses to GC in severe inflammation.   

 

METHODS 

Datasets 

This study made use of data in the public domain. Microarray gene expression data were 

downloaded from the NCBI GEO database (Barrett et al., 2013) and loaded into R, using 

Biobase and GEOquery packages from the Bioconductor software repository (Huber et al., 

2015; Sean & Meltzer, 2007). Expression matrices from GSE expression sets were put into 
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GEO DataSet (GDS) format-like expression tables (i.e. dataframes with ID_REF and 

IDENTIFIER columns for platform probe ID and gene symbol, respectively, and followed by 

sample value columns). If gene symbols were not directly provided with the platform, other 

platform probe identifiers were used to obtain matching gene symbols, via HGCN custom 

downloads, using the approved gene symbols from HGNC (Seal et al., 2023). RNA-

sequencing phenotypic data were downloaded from NCBI GEO using GEOquery. The 

corresponding expression data were downloaded from the GEO website, and put into a GDS 

expression table-like format. Processed microarray and RNA-seq expression data were also 

downloaded from the ArrayExpress website (Athar et al., 2019), and read into R, along with 

the corresponding sample and data relationship (sdr) files, and array design files. Microarray 

and RNA sequencing data from ArrayExpress were also put into a GDS expression table-like 

format, using HGCN custom downloads in case of missing gene symbol columns in 

expression tables or platform. 

 

Dataset collections  

 

Collections of datasets were assembled based on experimental description as provided in the 

accompanying metadata. Dataset collections varied in size, from whole blood in the absence 

of severe inflammation (40 and a subset thereof, 15), whole blood in the presence of severe 

inflammation (38 and a subset thereof, 15) (Table S1, sheet 15) to smaller sizes in case of 

separated monocytes and neutrophils  (6-11), PBMCs (7), and tissues muscle, skin, and fat (5-

11). (Table S3, sheet 13). Gene expression tables, or subsets thereof, were left unchanged, 

without transformation of the original values except in a few cases where mentioned in results 

and supporting information for different collections. The original values mostly came in either 

base 2 logarithmic or linear scales. Single microarray platform IDs correspond with probe in 

Illumina or probeset in Affymetrix datasets, and are hereafter named probe for simplicity. The 

number of probes present in the ID-REF column corresponding to a single gene varies 

depending on microarray platform, whereas in case of  the RNA-seq expression tables, each 

gene was uniquely represented by a single observation (row).  

 

Single gene expression correlation profiles from single datasets in a collection 

 

Pearson correlation coefficients between the different probe expression values corresponding 

with a single query gene and all other gene probes in an expression table were calculated. A 
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given query gene was used to obtain ranked expression correlation profiles for different 

datasets in a collection using the corresponding gene query probes present in each gene 

expression table from a collection. The number of profiles acquired per query gene depended 

on the presence of genes and corresponding probe numbers on dataset platforms.  

 

Averaging correlation coefficients in meta-analysis 

 

Pooling correlation coefficients in meta-analysis, as used here of Pearson correlation 

coefficients of expression values for a pair of genes in different transcriptomic datasets, can 

be performed differently; either after Z transform, weighting, taking mean, and transformation 

of weighted mean value back to average correlation coefficient according to Fisher, or by 

taking mean of weighted correlations coefficients directly (Alexander, 1990; Field, 2005). 

Weighing of different studies is applied according to within and between study variances, or 

according to study sample size, depending on method. Both methods are sufficiently accurate 

in obtaining an estimate, when population correlations vary (Field, 2005). Here, average 

correlation coefficients were directly taken as mean, without weighing by sample size, not to 

give too much weight to a few large datasets, and to have equal contributions of all datasets, 

which are potentially unique with respect to biased sampling of illnesses and other conditions. 

Average correlations obtained from meta-analysis were primarily used for ranking, and less as 

estimates of  “true” correlations.  

 

Average gene expression correlation profile in a dataset collection 

 

An average gene expression correlation profile per query gene in a dataset collection was 

derived by first selecting different profiles for consistent results between probes, and between 

datasets, and using maximally one probe per dataset. Since probes for a single gene on a 

microarray platform can perform differently, also with some probes being inadequate, it was 

important to select for each microarray dataset the query probe giving the largest average 

overlap with the correlation results of all other datasets. Profiles were pre-filtered by setting a 

low threshold (5) for average overlap of the 200 highest ranking genes with all other profiles. 

Not all datasets gave correlation hits, and this may depend on the quality of specific probes on 

different platforms, number of samples in a dataset, or type of experiment. In case of smaller 

dataset collections of separated monocytes, neutrophils, PBMCs and tissues, all available 

profiles were used to select a single profile for each dataset using largest average overlap with 
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all other profiles, without the pre-filter, to use all datasets in the collection. Next, average 

correlation profiles were obtained by aggregation of probes per gene in each selected profile 

using the maximal correlation value with the query gene, and then taking the mean correlation 

value for all genes in the contributing profiles for ranking, without applying Fisher Z 

transform, or weighing by dataset sample sizes. Genes present below a threshold number of 

supporting datasets (6 in case of collections of size 15) were discarded from the combined 

profile. Since inadequate gene probes, if present, will have higher correlation values with the 

query (closer to 0), than corresponding adequate gene probes, in case of actual negative 

correlation, this averaging method is best suited for the positive correlation part of the 

profiles. To reliably determine the negative correlation end of ranked average gene expression 

correlation profiles, probes can also be aggregated per gene taking the minimal correlation 

value. An annotated R script which can be used for multiple gene queries 

(selectcollections.R), and 2 dataset collections, whole blood in the absence of severe 

inflammation (n= 15), and whole blood in the presence of severe inflammation (n= 15) are 

provided to reproduce results of average correlation profiles for single genes using these same 

collections (Table S1, sheets 1 and 5). This also replicates the results seen using the larger 

collections (n= 40, and n = 38) (Table S1, sheets 8  and 12).  

 

Multi-gene signatures  

 

Multiple average gene expression correlation profiles obtained on a given dataset collection, 

for different co-expressed query genes, can be combined again to give a single robust result 

for a chosen gene set. In case of using GC-induced gene queries this resulted in multi-gene 

signatures of GC-driven gene expression. Suitable GC-induced query gene combinations were 

chosen based on highly similar correlation profiles, which introduced cell type biases in case 

of blood, or were more balanced for correlation profiles. Ranked gene expression correlation 

profiles for whole blood GC signatures 1 and 2 with different cell type biases (Table S1) can 

be reproduced using precalculated results obtained with R script (selectcollections.R) on 

dataset collections of whole blood in the absence of severe inflammation (n= 15), and whole 

blood in the presence of severe inflammation (n= 15), using the provided R script 

(signaturescollections.R). Both R scripts are in folder “code” in GitHub repository 

(https://github.com/ArthurJohannes/GCblood_repo). 
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Relating gene expression correlation profiles 

 

Average gene expression correlation profiles were compared for reciprocal ranking of genes 

in related profiles to determine the existence of clusters of correlated gene expression by 

meta-analysis. Using the method described above, reciprocal average correlation values 

between gene pairs (a,b and b,a) were only identical if identical corresponding gene probes 

were used, which mostly applies to RNA sequencing data, and when using the same (all) 

datasets in the dataset collection for both genes. Ranking gene expression correlation values 

in profiles obtained either on a single dataset or from meta-analysis, results in different 

reciprocal rankings for gene pairs (rankings for a,b and b,a  are different), and asymmetric 

matrices of gene rankings. An “inside” gene in a large tight co-expression cluster may have 

higher ranking (closer to 1) in a profile of an “outside”  gene than the other way around. This 

allows easier grouping of the “outside” gene with the large cluster which can be useful, and 

indicate (marginal) gene induction in case of such clusters resulting from specific gene 

induction. Initial ordering of rows and columns was guided by hierarchical clustering using 

the corresponding matrix of reciprocal average correlation coefficients. The order of rows of 

gene profiles and genes in profiles (columns) was then modified and set to indicate relevant 

gene groups such as co-expression clusters, and also genes with shared inductions but found 

outside tight co-expression clusters for the induction, and possibly in other co-expression 

clusters. The latter groupings were aided by sorting genes present in marker gene profiles 

according to ranking, and reciprocally, sorting profiles for their ranking of marker genes.  

The final chosen setting kept order of genes in rows and columns identical. An annotated R 

script (reciprocalcollections.R), and precalculated results obtained for 19 genes including sets 

GC-1 and GC-2, using the R script described earlier (selectcollections.R) replicates similar 

matrices as shown for larger dataset collections on blood in the absence of severe 

inflammation (n= 40), and on blood in the presence of severe inflammation (n = 38) (Figure 

3A, 3B). Both R scripts are in folder “code” in GitHub repository 

(https://github.com/ArthurJohannes/GCblood_repo). 

 

Using gene sets and modules 

 

Different methods exist to summarize expression values of co-expressed genes in a single 

composite score. Using arithmetic mean expression of all genes in a module is inadequate 

considering the large differences in relative expression levels between genes. Gene module 
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expression values can be determined for single samples, using the geometrical mean 

expression of genes in a module (Petri et al., 2019), using eigengenes (Langfelder & Horvath, 

2008), single sample GSEA (Barbie et al., 2009), the percentage of upregulated or 

downregulated genes in a module, compared to a control group, and using normalized 

expression, such as averaging fold change for individual genes compared to median 

expression in a control group (Altman et al., 2021; Chaussabel & Baldwin, 2014; Chaussabel 

et al., 2008), and such as mean of Z-scores for each gene in a set (Petri et al., 2009). While 

mean of Z-scores, possibly followed by rescaling, might be optimal, to compare module 

expression between samples in a single experiment, it does not indicate fold change. For a 

balanced use of GC inducible genes in gene sets GC-1 (n= 7) and GC-2 (n= 9), it was 

important to account for differences in ratios of maximal and minimal expression for different 

genes in the set, and also for the presence of microarray platform background levels which 

varied with specific gene probes, and which also depended on the method used in data 

processing. Datasets were first converted to linear scale, if necessary. When using gene 

modules with microarray data, only adequate and identical gene probes were used in case of 

Affymetrix GPL570, or Illumina GPL10558 microarray platforms, or else gene probes with 

highest expression levels in the experiment. Gene expression values in a sample were divided 

by expression range (max-min) of the corresponding gene in the whole dataset, and then 

multiplied by a constant (sum of gene expression ranges in module divided by number of 

genes in module) to keep expression values closer to starting values. In case of microarray 

data, the resultant gene expression values were subtracted with their minimal value to avoid 

potentially large contribution of background for specific probes. The arithmetic mean was 

then taken for resultant values of all genes in the module per sample, as a measure of gene 

module expression. Module expression values were plotted as binned dot plots with boxplot 

overlay, excluding the boxplot outlier points, on the log2 scale, and using similar Y axis 

interval sizes to allow for a better comparison between datasets. Annotated R scripts and 

corresponding datasets are provided in a GitHub repository folder to reproduce results of gene 

module expression in burn shock (plotmodulesgse77791.R, GSE77791, microarray GPL570 

(Plassais et al., 2017)) (Figure S14 C), severe malaria (plotmodulesgse34404.R, GSE34404, 

microarray GPL10558 (Idaghdour et al., 2012)) (Figure S15 F), and obtain results of single 

gene, and gene module expression in sepsis (plotgenesgse154918.R, 

plotmodulesgse154918.R, GSE154918, RNA-seq (Herwanto et al., 2021)) 

(https://github.com/ArthurJohannes/GCblood_repo/tree/main/plotting). 
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Using R and figures preparation 

 

Data were analyzed using R programming language for statistical computing and graphics, in 

RStudio IDE desktop. The gGPLot2 R package (Wickham, 2016) was used for plotting. For 

aligning plots, use was made of the R packages grid (Murrell, 2002), gridExtra (Auguie et al., 

2017), and package gtable contained in gGPLot2. Package pheatmap (Kolde, 2019) was used 

for hierarchical clustering of correlation matrices, using Euclidean distance (not directly using 

correlation dissimilarity as a distance), and clustering method complete, and for custom 

annotation. R packages xlsx (Dragulescu, 2012), and readxl (Wickham et al., 2019) were used 

for writing and reading Excel files, or WPS spreadsheet files. Tables were edited in WPS or 

Excel spreadsheets. Figure PDFs were arranged and edited in Inkscape (Inkscape project, 

2020), or created with BioRender.com. 

 

RESULTS 

Obtaining 2 blood transcriptomic signatures of GC induction  

Two different gene expression correlation clusters originating from induction by GC were 

observed in many blood transcriptomic datasets, one in health, and another in severe 

inflammation, for example, in health for datasets GSE11761, GSE14642, and GSE57065 

(Cazalis et al., 2014; Radom-Aizik et al., 2009a, 2009b), and in critical illness and sepsis for 

datasets GSE9960 (Tang et al., 2009), and GSE57065 (Figure S1). Exploratory work using 

programmatically selected datasets from a large collection of 375+  blood transcriptomic 

datasets indicated that 2 corresponding gene expression correlation signatures could be 

obtained in meta-analysis: One in the relative absence of severe inflammation (signature 1), 

the other in the presence of severe inflammation (signature 2). A gene set  (n = 227) of 

candidate GC-regulated genes was derived from high-ranking genes in these earlier signatures 

of GC-driven gene expression in vivo (Table S2). To obtain reproducible, corresponding gene 

expression correlation signatures, 2 whole blood dataset collections were assembled based on 

experimental description. The dataset collection in the absence of severe inflammation (n = 

40) included health and vaccination, and also excluded diseases where GC usage in treatment 

is common, such as SLE, RA, and MS. The collection in the presence of severe inflammation 

(n = 38) mainly included datasets on sepsis (Table S1). Gene expression correlation rankings 

for all datasets in a single collection were first obtained for a single GC inducible query gene. 

An averaged correlation ranking for a single query gene used a single best gene probe for 
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each dataset. Results for different suitable query genes were grouped according to cell type 

bias, and again averaged to obtain multigene expression correlation signatures, namely 2 in 

the absence of severe inflammation, and 3 signatures in the presence of severe inflammation 

(Figure 1A and B, Table S1). In case of lymphocyte bias, only a single query gene DDIT4 

was used on both collections allowing for a direct comparison of the corresponding signatures 

(Figure 1B, Table S1). Several query genes such as VSIG4 and ADAMTS2 (both monocyte 

bias), and OLAH (neutrophil bias) only showed strong GC-driven gene expression correlation 

in the presence of severe inflammation, whereas other query genes could be used on both 

collections (Figure 1B). The cell type biased signatures obtained either in the absence of 

severe inflammation (n =3), or in the presence of severe inflammation (n= 4) are together 

referred to as GC signatures 1 and 2, respectively. Repeating the procedure on 2 

subcollections of 15 datasets each yielded highly similar GC signatures 1 and 2 as shown 

(Figure 1B, Table S1). Genes PIK3IP1, FBXO32, BTG1, and DUSP2 were typically present 

in lymphocyte-biased signatures of GC-driven gene expression in whole blood and also in 

PBMCs in the absence of severe inflammation (Table S1 and S3). Since muscle, skin, and fat 

represent well known and important tissue targets for GCs, we also applied the procedure to 

corresponding datasets collections. Distinct but partially overlapping correlation signatures of 

circadian GC-driven and molecular CLOCK-driven gene expression were readily obtained for 

these tissues (Table S3). In contrast, CLOCK-driven gene expression was not detected in 

whole blood and isolated blood cells. High ranking GC signature genes in muscle included 

transcription factors FOXO3 and FOXO1, and GLUL (encoding Glutamate-Ammonia Ligase) 

as expected, in skin BCL6 and FOXO1, and in fat, ERRFI1, RHOB, and ITPKC (encoding 

Inositol-Trisphosphate 3-Kinase C) (Table S3). A good overall signature of GC-driven gene 

expression in blood and tissues was obtained by ranking genes by frequency of their presence 

in the first 2000 genes in 16 separate GC signatures (Table S2). More than 1000 candidate 

GC-regulated genes were indicated by further comparison with in vitro upregulated DEGs. 

Among most frequently upregulated genes were negative regulators of MAPK and NF-kB 

signaling (DUSP1, TSC22D3, NFKBIA), and transcription factors KLF9, ZBTB16, CEBPD, 

PER1, and ETS2, as expected (Table S2). 

Many high ranking genes in whole blood GC signatures are induced by GC in vitro 

The signature genes found by correlation search may come from variable differential gene 

expression due to upregulation by GCs, or more indirectly due to shifts in cell type 

percentages caused by cortisol in healthy people (GC signature 1), or the appearance of 
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specific cell types in severe inflammation (GC signature 2). Therefore, it was important to 

determine which signature genes could be observed as DEGs in vitro, and at the same time 

determine the cell types involved at basal and induced gene expression levels. A total gene set 

of high ranking and/or recurrent genes in whole blood GC signatures 1 and 2 was selected to 

contain best candidate genes for induction by GC as detailed (Table S2, sheet3). Genes in this 

set (n = 489) were compared with 9 sets of in vitro GC-induced DEGs, taken at a cut-off of 2 

fold induction and with unadjusted p-value < 0.05, in different immune cells and PBMC 

preparations (Figure 1C, 1D, and Table S2). Overlap with different DEG sets was in the range 

of 5-31 %  and higher with myeloid cells than with lymphoid cells in experiment GSE112101 

(Franco et al., 2019), suggesting a relatively high contribution of monocyte and neutrophil 

gene expression to the GC signatures-derived gene set (Figure 1C). Frequent DEGs were well 

represented in whole blood GC signatures (Figure 1D). Genes FKBP5, SESN1, and TSC22D3 

were present in all DEG sets (Table S2). The DEG sets excluded 249 potentially GC-induced 

genes while 86 genes were detected only once in these experiments. Signature genes that were 

absent in DEGs included a limited number of NK-expressed genes (PRF1, GZMB, etc.). 

These genes originated from the DDIT4 query-derived signature obtained in the absence of 

severe inflammation, and were likely due to increased NK percentages. The high proportion 

of genes in the GC signatures-derived gene set upregulated by GC in vitro (49 %) indicated 

that the signatures largely originated from GC gene induction rather than from accompanying 

shifts in cellular blood count. 

Basal gene expression and induction by GC in different cell types in vitro  

In a next step, a large number of GC signature genes and different marker genes, used as 

controls, were directly compared for basal expression levels in separated blood cells, and for 

their induction by GC in vitro. Gene expression was profiled using RNA-seq experiment 

GSE60424 on separated immune cells from different illnesses, (Linsley et al., 2014) 

excluding sepsis, RNA-seq experiment GSE112101 which studies GC gene induction in vitro 

in different cell types, including isolated immune cells (Franco et al., 2019), RNA-seq 

experiment GSE109439 on GC gene induction in vitro in monocytes and macrophages (Wang 

et al., 2019), and microarray experiment GSE100531 on GC gene induction in M1 

macrophages (Gharib et al., 2019). Basal level expression data from experiment GSE60424 

and GSE112101 were largely similar as expected, although with some differences, e.g. in case 

of CXCR4, TSC22D3, and FLT3 (Figure S2). A limited number of genes (n= 19) were 

selected for subsequent expression profiling, including most genes used as queries to obtain 
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whole blood GC signatures 1 and 2, as well as additional genes used in 2 gene sets GC-1 and 

GC-2 drawn up for possible biomarker use (see below) (Figure 2A). Gene ZBTB16 was 

preferentially expressed in B and NK cells, IRS2 was highly expressed in neutrophils, and 

KLF9 had low basal expression in neutrophils in both experiments GSE112101 (Franco et al., 

2019) and GSE60424 (Linsley et al., 2014) (Figure 2B, and Figure S2). Genes CD163, 

VSIG4, and ADAMTS2 were specifically expressed in monocytes, FLT3 and MAOA 

preferentially in monocytes, ADORA3 in both monocytes and neutrophils, while OLAH, 

DAAM2, and ARG1 were preferentially expressed in neutrophils (Figure 2B). Basal 

expression of ADAMTS2 and FLT3 was higher in monocytes than in monocyte-derived 

macrophages, while expression of CD163, VSIG4, MAOA, and ADORA3 genes was higher 

in macrophages instead. In vitro upregulation by GC in different separated immune cells and 

in macrophages was visible at least once for these 19 genes, sometimes even in cell 

separations with very low/absent basal expression, as in case of CD163 in B cells and VSIG4 

in T cells, probably due to small amounts of contaminating myeloid cells (Figure 2B). Gene 

ARG1 was upregulated by GC in neutrophils (Figure 2B).  

Frequent GC activity in septic plasma in neutrophil reporter assays 

GC treatment in vitro will result in many upregulated and downregulated genes, also 

depending on duration of treatment. The 19 selected genes were upregulated by in vitro GC 

treatment of PBMCs in 3 experiments from 6h to 72h (Hu et al., 2018; Maranville et al., 2013; 

Seah et al., 2022), with the exception of MAOA  (Figure 2C left panel). Downregulation of 

HLA-DR marker gene expression by GC was visible, in agreement with the known 

transcriptional effect of GC on monocytes in vitro (Tulzo et al., 2004). Inhibition by GC of 

early gene activation in PBMCs (Figure 2C left panel), occurring in vitro, agreed with 

inhibition of pro-inflammatory signal transduction by GC, involving MKP-1 (DUSP1), and 

GILZ (TSC22D3), as described for monocytes (Ehrchen et al., 2019). Khaenam et al., (2014) 

reported a set of 30 gene transcripts responsive to septic plasma in neutrophil reporter assays, 

which they used to predict sepsis severity. This set contained 9 genes also prominently present 

in the GC signatures reported here, including well-known GC inducible genes such as KLF9 

and FKBP5. Many other GC-regulated genes were also induced by sepsis plasma, including 

13 out of the 19 pre-selected genes used here for expression profiling (Figure 2C right panel), 

indicating relatively high concentrations of GC compared to control plasma. Strong induction 

could be observed at a high frequency of approximately 50 in 73 unique sepsis plasma, above 

the maximal induction level seen in the healthy control plasma. Since potential GC usage was 
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not reported for these experiments (Khaenam et al., 2014), it could not be determined whether 

this frequent GC activity might also be endogenous, or just always derived from exogenous 

GC in treatment. Sepsis plasma from neutrophil reporter assay experiment GSE49756 also 

showed additional immunomodulatory activities corresponding with induction by interferon 

gamma, as well as NF-kB-dependent induction, as shown by upregulation of marker gene 

IL1B (Figure 2C right panel). 

Circadian GC, and GC in severe inflammation, drive different patterns of gene 

expression in blood, monocytes, and neutrophils 

To examine differential expression correlation of GC signature genes in health and in severe 

inflammation more precisely, we used reciprocal ranking of genes in expression correlation 

profiles, directly comparing the 19 preselected genes. Separate collections of monocyte and 

neutrophil transcriptomic datasets were assembled, also based on the absence or presence of 

severe inflammation, according to provided metadata and experimental description. 

Collections of (sub)datasets in the absence of severe inflammation included only healthy 

controls in case of both monocytes (n= 8), and neutrophils (n= 6), while collections in the 

presence of severe inflammation included datasets mainly on sepsis for either monocytes (n= 

11) or neutrophils (n= 10) (Table S3). Different correlation patterns were present dependent 

on the presence or absence of severe inflammation in blood, and also in isolated monocytes 

and neutrophils (Figure 3). In blood, in the absence of severe inflammation, expression of 

genes MAOA, ADORA3, and CD163 was more correlated with cell type specific expression 

(reticulocytes, eosinophils, and classical monocytes, respectively), while genes ADAMTS2, 

and AMPH, failed to yield good average gene expression correlation profiles, due to detection 

limits (Figure 3A). In the presence of severe inflammation, expression was more correlated, 

with the exception of the gene encoding CXCR4 (Figure 3B). From this analysis, using 

additional gene expression correlation, and differential expression data, we selected GC-1 

(ZBTB16, KLF9, DDIT4, TSC22D3, PER1, IRS2, CXCR4), and GC-2 (VSIG4, ADAMTS2, 

FLT3, MAOA, AMPH, ADORA3, MACIR, OLAH, DAAM2) gene sets for possible use as 

whole blood transcriptomic biomarkers in health, and severe inflammation, respectively, as 

detailed (Figure S3, and Figure S4). In the absence of severe inflammation, clustering was 

best visible for set GC-1, and also FKBP5, which was tighter in monocytes than in blood 

(Figure 3A, 3C), likely due to a lower cellular complexity. Datasets on isolated monocytes 

and neutrophils often showed evidence of contaminating cells, confounding gene expression 

correlation results to some extent. ARG1 expression correlated with other high ranking GC 
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signature genes in neutrophils in severe inflammation, but not in monocytes (Figure 3D, 3F). 

High expression correlation between VSIG4 and ADAMTS2 was also visible for neutrophils 

in severe inflammation (Figure 3F), likely due to monocyte contamination. A comparison of 

RNA-seq datasets with circadian sampling in health (Braun et al., 2018), and in bacterial 

infection and sepsis (Herwanto et al., 2021) indicated tighter clustering for genes in set GC-2 

in the latter (Figure 3G, 3H). Large differences in relative mRNA abundance (appr. > 1000 x) 

existed between the 19 genes based on TPM, and normalized count values, with TSC22D3, 

and CXCR4 mRNA being more abundant, and in severe inflammation, also enhanced 

expression of IRS2, FKBP5, CD163, and ARG1 mRNA was found (Figure 3G, 3H). 

Gene induction in vivo by endogenous GC and experimental GC treatment in health  

The presence of 2 signatures of GC-driven gene expression in blood in health and in severe 

inflamamtion might result from different relative induction levels of GC target genes, 

primarily depending on the concentration and duration of the GC stimulus, or alternatively, 

might be more conditional on the absence or presence of severe inflammation, and the 

accompanying cell types. To first address these alternative possibilities, GC-upregulated gene 

expression in vivo was compared using 3 informative PBMC gene expression datasets. 

Experiment GDS3704 (Bouwens et al., 2010), using PBMC samples taken 6h apart, did not 

show large shifts in cell percentages between time points, as indicated by similar NK and 

monocyte marker gene expression levels (Figure 4A). As a consequence, GC signature genes 

represented a high proportion of upregulated DEGs at the earlier timepoint (Table S4 sheet 1). 

Both monocyte and lymphoid cell expressed gene clusters were visible among GC signature 

DEGs (Figure S5), with tight clustering of set GC-1 genes, and also FKBP5 (Figure 4C). 

Genes VSIG4, ADAMTS2, CD163, and AMPH were not detectably upregulated, while other 

monocyte expressed GC-induced genes, such as FLT3, ALOX15B, GPER1, and 

MARVELD1 could be detected as DEGs in this experiment (Figure 4A, and Table S4 sheet 

1). In contrast, experimental in vivo GC treatment in health (Carlet et al., 2010; Olnes et al., 

2016) caused large shifts in cell percentages in PBMCs with increased NK and decreased 

monocytes at earlier time points (Figure 4A), as described (Olnes et al., 2016). In these 

experiments, VSIG4, ADAMTS2, and AMPH were co-upregulated upon in vivo GC 

treatment (Figure 4A, 4D), indicating that detectable induction of these genes in PBMCs was 

not strictly conditional to severe inflammation, and more a consequence of GC stimulus 

strength above circadian levels. 
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Gene induction in vivo by endogenous and therapeutic GC in sepsis and burn shock  

Recent blood (cell) transcriptomic data, taken together, describe a large number of GC 

inducible genes in blood in therapy with GC (see introduction). In case of septic shock, 204 

genes expressed in blood were reported to be modulated by GC treatment (Wong et al., 2014), 

and 175 genes in case of burn shock (Plassais et al., 2017). However, likely GC target genes 

in upregulated DEGs were not identified by these studies, beyond a limited number (n = about 

5) using IPA (Ingenuity pathway analysis) (Plassais et al., 2017). Another dataset GSE106878 

on GC treatment of septic shock, was published by Kolte and co-workers (2019), but without 

full listing or identification of GC upregulated DEGs (Kolte, 2020). Here we compared 

upregulated DEGs from these 3 whole blood microarray datasets on GC treatment in septic 

and burn shock, and checked their in vitro upregulation by GC in monocytes and neutrophils 

(Franco et al., 2019), and their ranking in GC signatures 2, and signatures of GC-driven gene 

expression from isolated neutrophils and monocytes in severe inflammation. Extensive 

overlap was found, thus extending the number of likely GC-induced genes (n > 150) among 

upregulated DEGs, including set GC-1 and set GC-2 genes, with the exception of CXCR4 in 

set GC-1 (Table S4). In GC-treated septic and burn shock, shifts in cell type percentages 

caused by GC treatment were limited (Figure 4B), likely resulting in a large proportion of GC 

inducible genes in the upregulated DEGs. As in case of PBMCs in health (Figure 4A), set 

GC-2 was not useful to monitor circadian GC action in whole blood (Figure 4B). A time 

course experiment of whole blood gene expression in health (GDS2767 (Baty et al., 2006)), 

showed upregulation of several GC-1 set genes including CXCR4, but not GC-2 set genes. An 

increase in NK cell percentages was found in the morning (Figure 4B). To determine whether 

the presence of GC signature 2 in severe inflammation would always be related exclusively to 

GC treatment, we examined gene expression correlation patterns in untreated patient groups. 

Correlation patterns in GC-untreated burn and septic shock data were also indicative for GC 

signature 2, for example by high ranking of GC-2 set genes in ZBTB16, ADAMTS2, CD163, 

and ADORA3 profiles (Figure 4E, 4F). This analysis showed a specific effect by endogenous 

GC before treatment, on blood gene expression in severe inflammation, which might depend 

on the presence of an increased GC stimulus compared to circadian GC in health.  

Using gene set GC-1 as a transcriptional biomarker for circadian cortisol  

Major sources of intra-individual variability in cellular blood count in health are circadian 

rhythm (Ackermann et al., 2012), and exercise (Gustafson et al., 2017). As a result, relative 

gene expression changed in a circadian fashion, which was in close relation to circadian 
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changes in differential (relative) blood counts. Well visible circadian expression in 

longitudinal respiratory viral challenge experiment GSE73072 (Liu et al., 2016) was used as a 

co-selection criterion for set GC-1 (Figure S3B), to minimize the confounding effect of 

circadian change in cell type percentages. This experiment sampled whole blood, during 

several days, mostly at 3 time points per twenty-four hours for a larger number of individuals, 

using a microarray platform. C1QA gene expression in non-classical / intermediate 

monocytes was upregulated during inflammation in influenza, compared to marker genes used 

for neutrophils (Figure 5, row 1 panels) and classical monocytes (Figure 5, row 2 panels). 

Gene induction also marked ongoing inflammation, for example, in case of IL1B, interferon 

alpha inducible genes OASL and IFI27, and interferon gamma inducible GBP1 (Figure 5). 

Expression of all 7 genes in set GC-1  was visibly circadian (Figure S3B), with highest 

expression at early day as shown for DDIT4 (mostly expressed in NK cells), and TSC22D3 

(mostly neutrophil) (Figure 5). Several GC signature 1 genes were upregulated during 

inflammation (eg SOCS1, NFIL3, CLEC4E, PELI1, TNFAIP3), but not genes selected in set 

GC-1 (Figure S3B). A composite value of gene expression in the set (see methods) was used 

to visualize circadian cortisol action in health, which also continued during mild 

inflammation, but from a lower basal level. Some variability in mean and range of DDIT4, 

TSC22D3, and set GC-1 expression between healthy individuals was apparent, which may 

relate to small individual differences in circadian cortisol phase, longer lasting individual 

differences in cellular percentages (as a confounder) or to actual individual differences in 

strength of GC induction (Figure 5). In conclusion, gene set GC-1 was suitable for 

longitudinal monitoring of circadian GC activity in whole blood, and was not induced by 

systemic mild inflammation caused by uncomplicated respiratory viral infection. 

Specific gene induction in severe inflammation compared to mild inflammation 

GC inducible gene expression was upregulated during severe inflammation but not during 

mild inflammation, as in case of set GC-1 genes which retained circadian expression in 

experimental respiratory viral infection. For a better view of GC signature gene expression in 

severe inflammation, it was important to first differentiate gene expression in mild and severe 

inflammation more generally. Therefore, datasets on mild respiratory viral infection (Zhai et 

al., 2015), and sepsis (Burnham et al., 2017), were directly compared for gene expression 

correlation, and differential expression with healthy controls, using identical Illumina gene 

probes. Longitudinal data on mild seasonal respiratory viral infection, agreed well with 

experimental viral challenge (GSE73072, (Liu et al., 2016), as visible for interferon alpha 
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inducible genes OASL, and IFI27, still upregulated at day 6 after first symptoms, especially in 

influenza, as reported by Zhai et al., (2015), (Figure 6B). Differential expression correlation 

between disease days 0-6 in mild respiratory viral infection, and sepsis was determined for 

marker genes for different cell types and specific inductions. Gene expression correlation 

clusters originating in inflammation were conserved to different degrees in respiratory viral 

infection and sepsis. More conserved clustering included marker genes for induction by 

interferon alpha and gamma, genes CASP1 and CASP4, and other genes indicated in red 

(Figure 6A). Different or new clustering in severe inflammation included GYG1 with 

CEACAM1 and MMP8 in neutrophils, and C1QA/B/C genes with PPARG and VSIG4 in 

monocytes, as indicated in black (Figure 6A right panel). STAT3-dependent inductions of 

SOCS3, and SBNO2 were associated with inflammation, and development, respectively. 

Gene expression clusters corresponding to classical monocytes, and non-classical / 

intermediate monocytes were visible in mild inflammation, and related clusters corresponding 

to MS1 and MS3 monocyte states (Reyes et al., 2020) in sepsis (Figure 6A). Combined 

correlation and differential expression analysis of genes AZU1 and MMP8 indicated that 

neutrophils with banded nuclei were not increased during mild inflammation, while these 

immature neutrophils were increased in severe inflammation (Figure 6A, 6C, 6D), consistent 

with emergency granulopoiesis occurring in sepsis (Kwok et al., 2023). Gene GYG1 encoding 

glycogenin, used as a marker for glucose metabolism mainly in neutrophils, was more 

upregulated at a higher frequency in sepsis than in mild inflammation (Figure 6C, 6D). Other 

genes, highly upregulated in severe inflammation, but not in mild inflammation, included GC 

signature 2 genes OLAH (mainly in neutrophils), ADAMTS2, and VSIG4 (both in 

monocytes), as well as genes not regulated by GCs such as FAM20A, and METTL7B (Figure 

6C, 6D). Inductions involving interferon were also visible in sepsis, but from a relatively 

lower basal level, possibly due to large shifts in global gene expression.   

Gene induction by GC in myeloid cells in health and during severe inflammation 

In addition to GC signatures 1 and 2, signatures of GC-driven gene expression were also 

obtained for monocytes, and neutrophils, in each case distinguishing between the presence or 

absence of severe inflammation according to description (Table S1, Table S3). These 

signatures predicted wide ranging effects of GCs on cell biology. Based on gene functional 

categories, this included modulation of phagocytosis and cell motility, modulation of 

secretory pathway activity, increased sphingolipid synthesis, and uptake of apoptotic cells 

(efferocytosis) by monocytes during severe inflammation (Figure S6). Specific gene sets for 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2023.05.10.23289779doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.10.23289779


23 
 

monocytes and neutrophils were derived by combining relevant GC signatures (Table S2) 

increasing the total number (n = 625) of candidate GC-regulated genes recovered from blood 

and separated cells (Table S2). Comparing with in vitro data showed 50 % of these genes 

being upregulated by GC at least once in 9 experiments (Table S2). To relate differences in 

GC-regulated gene expression to inflammation status, we used the monocyte and neutrophil 

dataset collections, that were aided by data on in vitro inducibility in myeloid cells by 

interferons and interleukins (GSE190594; (Green et al., 2023), GSE131990; (Devlin et al., 

2020), GSE146438; (Gorby et al., 2020)), and in vivo differential expression in health, 

interferon treatment in MS, and sepsis (GSE60424; (Linsley et al., 2014), GSE133822; 

(Washburn et al., 2019), GSE123729; (Coulibaly et al., 2019)). Isolation of monocyte and 

neutrophils from whole blood generally resulted in early gene activation, as was evident from 

increased expression of immediate early genes, and the presence of corresponding gene 

expression correlation clusters (Figure S7, S8, S9, S10). Whole blood gene expression data 

were used instead to determine in vivo expression of such genes in neutrophils, in case of 

mainly neutrophil-derived gene expression clustering. Gene expression originating from 

contaminating cells was identified by using suitable marker genes (Figure S7, S8, S9, S10). 

An overview shows the presence of different myeloid cell types and gene inductions as seen 

in homeostasis, inflammation, and in severe inflammation (Figure 7). Gene expression 

correlation clusters corresponding to neutrophils with banded nuclei and (meta)myelocytes 

were visible in collections of control neutrophils (Figure S9), and neutrophils in severe 

inflammation (Figure S10), respectively. Intermediate / non-classical monocytes were present 

in the absence of severe inflammation (Figure S7). A gene expression correlation cluster of 

C1QA/B/C genes, OLFML2B, SLCO2B1, VSIG4, MSR1, MRC1 (encoding M2 macrophage 

marker CD206), and LYVE1 (macrophage marker in mononuclear phagocytes), in severe 

inflammation, indicated the presence of M2 macrophage-like monocytes (Figure S8). Gene 

induction involving interferons alpha and gamma was well visible in dataset collections of 

control neutrophils and monocytes (Figure S7, S9), likely due to a low frequency of samples 

with mild inflammation occurring in the control groups. Gene induction in monocytes and 

neutrophils during mild inflammation, not involving interferon, included marker gene IL1B 

(NF-kB-dependent, likely induced by cytokines IL1B and/or TNF), and other genes of which 

several with known STAT3-dependent induction (eg marker gene SOCS3, likely induced by 

cytokines G-CSF and/or IL6) (Figure S7, S9). Inductions involving interferon remained 

present during severe inflammation, for example in case of OASL (IFN alpha), GBP2 (IFN 

gamma), and CASP1 (possibly both IFN-induced and NF-kB-dependent) (Figure S8, S10). 
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Upregulation of C1QA/B/C genes and RGL1 in monocytes, and CEACAM1 in neutrophils, 

no longer involved induction by interferon (Figure S8, S10), as was also observed for whole 

blood data (Figure 6A). Broadly correlated expression of genes IL1B, GK, NAMPT, and 

SOD2 in monocytes and neutrophils, as seen in mild inflammation (Figure S7, S9), was also 

present in severe inflammation (Figure S8, S10). Changes in gene expression during sepsis, 

relative to healthy controls, were generally much larger in neutrophils than in monocytes, also 

in many cases of shared upregulation, as visible in dataset GSE60424 (Linsley et al., 2014). 

Neutrophils reached higher relative expression levels of genes GYG1, HK3, PGD, and LDHA 

in glucose metabolism (Figure S10), than did monocytes, whereas monocytes reached higher 

relative expression levels of PPARG (Figure S8). Specific and strong upregulation in 

monocytes, only in severe inflammation, occurred for genes OLFML2B, EDNRB and 

LYVE1, the latter also constitutively expressed in neutrophils (Figure S8). A number of genes 

with absent / low basal expression in health and mild inflammation was strongly upregulated 

in both monocytes and neutrophils during severe inflammation, including gene FAM20A 

(Figure S8, S10). FAM20A is prominently present in an IL-10 driven gene signature in vitro, 

in monocytes ((GSE59184 (Montoya et al., 2014), GSE43700 (Teles et al., 2013), GSE47122 

(Italiani et al., 2014), GSE146438 (Gorby et al., 2020); GEO2R, and supporting data (Figure 

S8)), M2c macrophages (Lurier et al., 2017), and IL-10 induced tolerogenic dendritic cells 

(GSE44719 (Banchereau et al., 2014), GSE45466 (Braun et al., 2013); GEO2R, (Avancini et 

al., 2023)). These experiments using IL-10 indicated STAT3-dependent induction of 

FAM20A in vitro, but the relevant inducer(s) in vivo remained unknown. Larger clusters of 

GC-regulated gene expression, beyond the genes shown earlier (Figure 3C, 3D, 3E, 3F), were 

evident from the data on separated monocytes and neutrophils (Table S7, S8, S9, S10). Genes 

MFGE8 in monocytes, and PFKFB2 in neutrophils, upregulated in severe inflammation, 

indicated a regulatory role for GCs in efferocytosis, and glucose metabolism, respectively.  

Frequent upregulation of set GC-2 genes early and late after severe injury 

In case of severe injury, longitudinal data provide a precise time point for the start of severe 

inflammation. Such data might show whether start of gene induction by GC would correlate 

with the ordered appearance of different cell types. From the dataset on genomic storm 

occurring after critical injury (Xiao et al., 2011), neutrophil bands appeared in circulation 

immediately after injury, while later, immature neutrophils likely corresponded with 

myelocytes and metamyelocytes originating from emergency granulopoiesis (Figure 8, upper 

panels). Longitudinal changes in relative gene expression in neutrophils, and monocyte were 
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visible, such as a decrease in expression of MME (CD10), a marker gene for old mature 

neutrophil, and of CD86, a marker gene for antigen presenting monocyte (Figure 8, row 2 

panels). Gene marker PPARG for macrophage-like monocyte became upregulated compared 

to healthy control (Figure 8, row 2 panels). Induction by GC of genes in set GC-2 was 

frequently visible before, and after appearance of cells from emergency granulopoiesis, both 

in monocytes (eg VSIG4, ADAMTS2), and in neutrophils (eg OLAH, DAAM2). Although 

induction of GC-2 genes was frequently observed, a contribution of GC in treatment remained 

possible, since GC usage was not reported by Xiao et al (2011). VSIG4 expression peaked 

earlier than ADAMTS2, suggesting a different course for monocyte subtypes after injury 

(Figure 8, row 3 panels). Taking a similar approach as in case of selecting gene sets GC-1 and 

GC-2, several relevant gene sets for monitoring inflammation were selected using whole 

blood gene expression correlation and differential gene expression data, as detailed (Figure 

S11, and Figure S12). A gene set SIM (for Severe Inflammatory Myeloid cells, including 

GYG1, n = 16) was selected from a large group of highly upregulated genes in severe 

inflammation, especially in neutrophils, unrelated to GC induction (Figure S11). A related set 

FAM20A (n = 4) consisted of genes co-induced specifically in severe inflammation, also 

unrelated to GC induction (n = 4) (Figure S11). Gene sets were also used corresponding to 

induction by interferon gamma (n = 23, including GBP1), and interferon alpha (n = 8, 

including OASL), which were frequently upregulated in mild and in severe  inflammation 

(Figure S12). Additionally, a gene set corresponding to T cells (n = 13, including LEF1, with 

bias for naive T cell) (Figure S13), was used to follow decreased percentages of T cells during 

inflammation. Upregulation of SIM set genes occurred immediately after injury, closely 

followed by upregulation of the FAM20A set, while relative expression of module T cells in 

blood was decreased instead. Relative expression of T cell module and SIM set was still 

different from healthy controls at week 4, indicating continued systemic severe inflammation 

in a number of patients. Combined expression of genes in set GC-2 was increased in most 

patient blood samples, expression of gene module interferon gamma was relatively 

unchanged, while expression of module interferon alpha was decreased (Figure 8, lower 

panels).  

Upregulation of GC-2 biomarker set expression by treatment with exogenous GC  

Set GC-2 was tested as a transcriptomic biomarker using whole blood data with documented 

GC treatment. For a more complete description of systemic inflammation, gene sets T cell, 

SIM, FAM20A (n = 4), interferon gamma, and interferon alpha were used again as additional 
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features. Adequate gene probes were selected for each gene in case of Affymetrix GPL570 

and Illumina GPL10558 platforms, (Table S5), confirmed by expression correlation clustering 

using representative datasets (Figure S13). In case of set GC-1, gene PER1 was not included 

in gene set expression comparison, because of a single suboptimal probe present on the 

Illumina microarray platforms. Gene modules / sets were used as transcriptomic biomarkers 

using a measure of combined gene expression in the set (see methods). Expression value 

distributions were skewed and often with many outliers in case of the inducible modules 

(Figure 9). Increased expression of GC-1 and GC-2 sets was visible upon systemic GC 

treatment in burn- and septic-shock (Figure 9A, 9B). Increases in GC-1 and GC-2 expression 

in SLE and RA patients being treated with GCs (Figure 9C, 9D) agreed with results by Hu et 

al. (2018), who used an 8 gene molecular signature to monitor GC responses upon GC 

treatment. Upregulation of set GC-2 relative to GC-1 was much stronger in GC-treated burn 

shock and septic shock, than in SLE or RA. Expression of SIM and FAM20A gene sets was 

high in burn shock and septic shock, but relatively unchanged by GC treatment (Figure 9A, 

9B). Interferon alpha and gamma modules were upregulated in SLE as expected (Figure 9C), 

while a marked decrease was visible in case of burn shock (Figure 9A), possibly related to 

more general shifts in gene expression in myeloid cells. 

Upregulation of GC-2 set by endogenous cortisol during severe inflammation in 

different diseases.  

Next, whole blood transcriptomic data covering many different diseases, and preferably 

including healthy controls, were examined by plotting gene set expression value distributions 

for patient groups. To allow a better comparison between datasets, the same adequate probes 

were used again in case of Affymetrix GPL570 and Illumina V3, and V4 (GPL10558) 

platforms (Table S5). Value distributions were plotted in the same range of 9 log2 units for all 

datasets, and datasets were grouped together by assay platform, including RNA-seq (Figures 

S14, S15, S16, S17, S18). The distributions for different sample groups were ordered within 

an experiment, and tentatively between experiments using the same platform, and between 

platforms, for use in an overview (Figure 10). Upregulation of SIM set genes was high in 

severe injury, sepsis, SIRS, severe COVID-19, Kawasaki disease, severe malaria, infectious 

diarrhea, lung cancer, active tuberculosis, IBD, and SJIA, very low in mild seasonal 

respiratory viral infection, and absent in latent tuberculosis, and asthma, with strength of 

differential expression and frequency of cases depending on disease (Figure 10, and Figures 

S14, S15, S16, S17, S18).  Upregulation of FAM20A (n = 4) set genes generally accompanied 
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upregulation of the SIM set genes, and was absent in mild respiratory viral infection, latent 

tuberculosis, and asthma. Expression of gene module IFN gamma was relatively high during 

active tuberculosis, active sarcoidosis, and leishmaniasis, while gene induction by IFN alpha 

was relatively high in acute respiratory viral infection, mild influenza, rotaviral diarrhea, and 

SLE, as expected (Figure 10). Upregulation of set GC-2 was relatively high in sepsis, and in 

severe COVID-19, besides GC-treated burn shock, and was also detected in additional 

diseases that are frequently treated by GC, namely severe asthma (exacerbation), JIA, SJIA, 

sarcoidosis, and IBD, besides SLE and RA (Figure 10, and Figures S14, S15, S16, S17, S18). 

Upregulation of set GC-2 was also seen in severe inflammation, in diseases that are not 

commonly treated with GCs, such as severe malaria, and infectious diarrhea, as well as in 

examples of diseases with explicitly documented absence of GC treatment, besides burn 

shock, namely in case of acute Kawasaki disease, and sepsis (Figure 10). Gene expression 

clustering of 19 GC-induced example genes, including set GC-2 was compared between 

healthy controls, severe malaria, infectious diarrhea, GC-untreated Kawasaki disease, and 

another example of GC-untreated septic shock (GSE110487, RNA-seq, (Barcella et al., 

2018)), to check co-upregulation of the set. Relatively strong clustering of most GC-2 set 

genes, depending on disease, (Figure S19) indicated that GC-2 set genes were indeed co-

regulated, as in case of GC-untreated septic shock and burn shock (Figure 4B, 4E, and 4F). 

This analysis showed a transcriptomic signature of endogenous cortisol during severe 

inflammation for different diseases. 

Adjustment of GC biomarker sets for different diseases 

Gene sets GC-1 and GC-2 partially overlapped with existing whole blood transcriptomic 

biomarkers for guiding GC replacement therapy in Addisons disease (Sævik et al., 2021), and 

pharmacodynamic monitoring of therapeutic GC in SLE, and RA (Hu et al., 2018; Northcott 

et al., 2021). To adjust biomarker gene sets for application in different diseases, we compared 

correlation characteristics, and fold upregulation for all reported genes separately, using 

whole blood RNA-seq datasets. These data encompassed the effect of circadian GC in health 

(GSE113883 (Braun et al., 2018)), GCs in sepsis (GSE154918 (Herwanto et al., 2021)), and 

in gastroenteritis (GSE69529 (DeBerg et al., 2018)), systemic GC usage in SLE (GSE72509 

(Hung, Pratt, Sundararaman, Townsend, et al., 2015)), RA (GSE117769 by Goldberg and co-

workers, 2018), severe asthma (GSE207751 by Ginebaugh and co-workers, 2022), JIA, SJIA, 

IBD (GSE112057 (Mo et al., 2018)), and severe COVID-19 (GSE171110 (Lévy et al., 2021), 

GSE157103 (Overmyer et al., 2021), GSE206264 (López-Martínez et al., 2023)), as well as 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2023.05.10.23289779doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.10.23289779


28 
 

the effect of high endogenous GC in GC-untreated severe COVID-19 (GSE168400 (Amado-

Rodríguez et al., 2022), GSE197204 (López-Martínez et al., 2023)) (Table S6). Gene 

expression correlation profiles were obtained (Table S6), compared to each other (Figures 

S20, S21, S22, S23, S24), and checked for the presence of GC signature genes (Table S6, and 

Figure S25). Fold induction was determined by comparing with healthy controls, where 

available, and by examining gene expression value distribution range in disease (Table S6, 

and Figure S25 ). This analysis also highlighted inadequate annotation of gene ADORA3 on 

different assay platforms. Genes ADORA3 and TMIGD3 are chromosomal neighbors, and 

produce different (hybrid) transcripts and proteins (Ranjan et al., 2017), which are not always 

detected separately, or named correctly on different platforms. Platforms Affymetrix GPL570 

and Illumina GPL10558 each contain 2 ADORA3 probesets and no TMIGD3 annotated 

probesets. Both platforms detect different transcripts according to Ensemble (Harrison et al., 

2024), one corresponding with ADORA3, and expressed in eosinophils, another containing 

TMIGD3 sequence, and GC inducible. The specific probesets used in set GC-2 for both 

platforms corresponded to TMIGD3 sequence. Best marker genes for circadian GC action in 

health included set GC-1, additional genes such as FKBP5 and ECHDC3, and partially 

overlapped with “time telling” genes used in predicting circadian phase in health (Braun et al., 

2018; Hughey, 2017; Laing et al., 2017), (Figure 11). Suitable marker genes for monitoring 

GC action in asthma, RA, and SLE were ZBTB16 (in set GC-1), set GC-2, and additional 

genes such as FKBP5, ALOX15B,  IL1R2, and ARG1, and included most previously reported 

GC biomarker genes for SLE and RA (Figure 11). MAOA expression in reticulocytes 

represented an occasional confounder for GC induction. In general, the occurrence of severe 

inflammation in disease, and associated variability in neutrophils, limited the choice of 

biomarker genes, especially in severe COVID-19 and sepsis, e.g. excluding IL1R2 (Figure 

11).  

DISCUSSION 

Aim of study and short summary of results 

In this study, we aimed to develop gene expression biomarkers for GC action on blood cells. 

We obtained gene signatures of GC induction by using correlated expression with several 

well-known GC target genes, used as queries, in meta-analysis of collections of public blood 

transcriptomic datasets. Different signatures were found depending on the absence or 

presence of severe inflammation, as in case of sepsis and critical injury. These 2 signatures, 

which both showed good overlap with GC upregulated genes in immune cells in vitro, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2023.05.10.23289779doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.10.23289779


29 
 

originated from in vivo expression, thereby providing an alternative starting point for selecting 

biomarker genes. GC signatures 1, with different cell type biases, originated from circadian 

gene induction by GC in lymphocytes, neutrophils, and monocytes. From this signature, we 

selected a set of genes (GC-1) as best biomarkers for GC action, for use on whole blood in the 

absence of severe inflammation. Set GC-1 could be used efficiently, to detect induction by 

endogenous circadian cortisol, and expression was not upregulated during mild inflammation. 

GC signatures 2, also with different cell type biases, originated from lymphocytes, and from 

alternatively activated monocytes and neutrophils in severe inflammation. Upregulation of 

key signature genes expressed in myeloid cells was visible in whole blood, upon GC 

treatment in burn shock, and septic shock. We demonstrate that expression of a selected set of 

GC signature 2 genes (GC-2) was well suited to detect gene induction in blood upon systemic 

GC treatment in SLE, RA, asthma, in septic shock, and in burn shock. GC signature 2 was 

found in many more different inflammatory illnesses, including Kawasaki disease, severe 

malaria, severe COVID-19, and gastroenteritis, resulting from both exogenous and 

endogenous GC. Use of set GC-2 indicated different frequencies and strength of induction in 

patients depending on illness. Using meta-analysis, we also provide an overview of gene 

expression, in homeostasis, inflammation, and severe inflammation in circulating monocytes 

and neutrophils, more generally. 

Meta-analysis of gene expression correlation is a useful method 

Differential gene expression in blood upon in vivo GC or ACTH treatment has been widely 

studied in humans and animals. The change in blood cell percentages caused by these 

treatments enormously complicates the interpretation of the transcriptomic data. Potential GC-

regulated DEGs in these experiments are usually identified from existing literature, or by 

comparing in vivo with in vitro gene induction results, for example in PBMCs (Hu et al., 

2018). More exceptionally, a set of co-expressed GC-induced genes in blood of ACTH 

injected pigs was directly identified by cluster analysis using a single experiment (Sautron et 

al., 2015). We noticed induction signals originating from circadian and stress-related changes 

in endogenous cortisol, and sometimes also from GC usage, leading to gene expression 

correlation profiles in many blood transcriptomic datasets, which provided a useful starting 

point for finding candidate GC-regulated genes. It indicated that a search would not 

necessarily be limited to GC administration experiments or studies with documented GC 

usage, and that Pearson’s correlation might be used in meta-analysis to obtain robust gene 

expression correlation profiles. In case of the initial GC signatures 1 and 2, datasets were 
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selected from a total number of 375+ blood transcriptomic datasets, based on the quality of 

correlation hits. Subsequent gene expression correlation profiles on whole blood were 

obtained in meta-analysis using transcriptomic datasets collections based on experimental 

description, to ensure that GC-driven gene expression was separately observed for circadian 

GC, and GC in severe inflammation. The recovery of known GR target genes in GC 

signatures, many recurrent candidate genes, and the large overlap with GC upregulated DEGs 

in blood cells in different in vitro and in vivo experiments showed that the approach was 

generally very effective. Likewise, a large overall signature of GC-driven gene expression in 

blood and tissues, corresponded well with GC upregulated DEGs in immune cells and cell 

cultures observed in vitro. A general advantage of using correlation is its independence from 

gene expression range and basal expression levels, or background signals often present in 

microarray data, allowing easier detection of GC-regulated genes at low-fold induction. A 

difficulty with correlation analysis was that GC-regulated DEGs may drop down in gene 

expression correlation profiles due to overriding alternative correlations, and thus escape 

detection.  

Circadian GC-driven gene expression  

Circadian gene expression in whole blood has been well documented in experiments on 

insufficient sleep and mistimed sleep (Archer et al., 2014; Arnardottir et al., 2014; Möller-

Levet et al., 2013). Circadian rhythms occurring in differential (relative) blood counts 

(Ackermann et al., 2012; Lange et al., 2022) can be expected to result in mainly cell type-

specific circadian gene expression in whole blood. Neutrophil and NK numbers go up at day 

time, monocyte numbers remain relatively unchanged, while T and B cell numbers go down 

at early day time, regulated by cortisol via the HPA axis, and catecholamines via the 

sympathetic nervous system (Lange et al., 2022). It is likely that higher percentages of NK cells 

and neutrophils, coinciding with higher gene induction by cortisol, lead to the corresponding cell type 

biases in blood-based GC signatures 1. Using dataset collections of separated monocytes, neutrophils, 

and PBMCs allowed detection of circadian GC-driven gene expression in different cell types more 

precisely. Several methods exist to predict the circadian phase from transcriptomic 

measurements of whole blood (Braun et al., 2018; Hughey, 2017; Laing et al., 2017) and 

monocytes (Wittenbrink et al., 2018). A glucocorticoid driven network links many of the top 

ranked biomarker genes for circadian phase in whole blood, indicating gene induction by 

circadian GC either via local circadian clocks or directly (Laing et al., 2017). In agreement, 

among the circadian expressed, best “time telling” genes in these studies were many genes 
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present here in GC signatures 1 and 2 (9/15 (Hughey, 2017); e.g. 13/76 (Laing et al., 2017); 

3/40 (Braun et al., 2018); e.g. 10/34 (Wittenbrink et al., 2018)). 

GC-driven gene expression in monocytes and neutrophils. 

It has been argued that a better understanding of cell type and tissue specific effects of GCs, 

would be important for adjusting or developing new therapies (Quatrini & Ugolini, 2021) . 

Highly cell type specific gene induction upon in vitro GC treatment was reported in isolated 

immune cells and in proliferating non-immune cell cultures, and the global effects of GC in 

different cells were compared at the molecular pathway level (Franco et al., 2019). Here, we 

traced in vivo effects of endogenous GC on the transcriptome of lymphocytes, monocytes, 

neutrophils, muscle, skin, and fat, by using expression correlation with GC-induced query 

genes in meta-analysis. The focus here was on monocytes and neutrophils, since they 

contributed most to the GC-driven signatures detected in whole blood. Generally stronger 

signatures present in severe inflammation compared to health, might reflect higher GC levels 

and induction in severe inflammation than during circadian rhythm. Circadian GC-driven 

gene expression in health, which would be laborious to document using alternative 

approaches, showed differences between monocytes and neutrophils, and mostly represented 

a subset of genes induced in severe inflammation. Finding VSIR, encoding VISTA, as a novel 

GC-regulated gene in neutrophils added to the importance given to VISTA as a possible 

therapeutic target in managing cytokine storms (ElTanbouly et al., 2021), Similarly, finding 

GPER1, encoding the GPCR estrogen receptor, as induced in monocytes, pointed to the anti-

inflammatory activity of estrogen on monocytes (Pelekanou et al., 2016), being modulated by 

cortisol. Gene expression correlation profiles for monocytes in severe inflammation shared 

many genes, reported as GR-targeted DEGs in monocytes and macrophages in vitro (Wang et 

al., 2019), or as GC-regulated DEGs in vivo, in isolated monocytes from giant cell arteritis 

patients (Estupiñán-Moreno et al., 2022). GC treatment of isolated monocytes triggers an 

extensive transcriptional program, directing monocyte to macrophage differentiation to an 

alternatively activated state with anti-inflammatory phenotype (Ehrchen et al., 2007; Ehrchen 

et al., 2019; Heideveld et al., 2018; Wang et al., 2019). GC treatment of monocyte-derived 

macrophages also induces alternatively activated macrophage subtypes with roles in wound 

repair, tissue remodeling and efferocytosis (Abdelaziz et al., 2020; Desgeorges et al., 2019; 

Ehrchen et al., 2019; Roszer, 2015). Important genes functional in tissue repair (ADAMTS2), 

(Ehrchen et al., 2019), and efferocytosis (C1QA/B/C, MFGE8), (Ehrchen et al., 2019) were 

present in gene expression correlation profiles from monocyte separations in severe 
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inflammation. Notable with respect to wound healing was regulation by GC of genes ANG, 

RNASE1, and RNASE4, encoding angiogenic factors. In this way, the response of blood 

mononuclear phagocytes to GC in severe inflammation resembled alternative activation. Due 

to tight gene expression correlation clustering caused by induction by GC, assigning gene 

expression to specific mononuclear phagocytic cell types, such as MS1 monocytes, non-

classical monocytes, macrophage-like monocytes, and/or myeloid dendritic cells remained 

difficult, and would require precise analysis of single cell RNA sequencing data on sepsis. 

Gene expression correlation profiles for neutrophils in severe inflammation also shared many 

genes, reported as upregulated DEGs in neutrophils treated by GC (Franco et al., 2019). The 

GC signatures from blood and isolated neutrophils indicated important effects of GCs on 

inflammatory neutrophils during severe inflammation, for example modulation of IL1 and 

IL18 signaling (e.g. by upregulation of IL1 decoy receptor IL1R2, IL18R1, and IRAK3), 

modulation of leukotriene chemotaxis and synthesis (upregulation of LTB4R encoding 

leukotriene B4 receptor, and upregulation of ALOX5AP/FLAP), and prostaglandin 

breakdown (upregulation of HPGD). Secretion of arginase 1, encoded by ARG1, has been 

implicated in immunosuppression by low density neutrophils in severe inflammation, and 

arginase derived from tumor infiltrating myeloid cells is an important factor in suppression of 

the cancer immune response (Grzywa et al., 2020; Mortaz et al., 2018). As ARG1 is also 

upregulated in neutrophils by in vivo dexamethasone treatment of severe COVID-19 (Sinha et 

al., 2022), and ARG1 is a GC receptor targeted gene in liver (Okun et al., 2015), our results 

strongly suggest it might be a GC target gene in neutrophils as well.  

Cell biology of monocytes and neutrophils in mild and severe inflammation 

A very large quantitative and qualitative difference existed between blood gene expression 

during inflammation in mild respiratory viral infection, and in severe inflammation. Blood 

gene expression, specific to severe inflammation, is likely ultimately due to gene induction by 

systemic DAMPs and MAMPs, as in trauma and sepsis (Raymond et al., 2017; Relja & Land, 

2020). Blood transcriptomics, including gene expression in monocytes and neutrophils, has 

been used to correlate gene expression with degrees of severity in COVID-19 (Wang et al., 

2022). Immature neutrophils originating from emergency myelopoiesis are a heightened 

characteristic in severe COVID-19 and sepsis (Aschenbrenner et al., 2021; Kwok et al., 2023; 

Schulte-Schrepping et al., 2020). Based on their complete absence, we suggest that data on 

experimental, and prospective, seasonal respiratory viral infection, may represent a clean 

example of systemic mild inflammation, without a transition to severe inflammation as 
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frequently occurring in COVID-19 patients. Mild inflammation as seen in uncomplicated 

respiratory viral infection was especially marked by inductions involving interferon, and also 

by upregulation of NF-kB-dependent IL1B, and STAT3-dependent SOCS3, as expected. 

Upregulation of GK, encoding glycerol kinase, expressed in correlation with ACSL1 and 

AQP9, mainly in neutrophils in mild inflammation, might indicate increased triacylglycerol 

synthesis in support of lipid body biogenesis, which is important in the production of 

inflammatory mediators from arachidonic acid (Melo & Weller, 2016; Weller, 2016). 

Upregulated expression of CDKN1C and C1QA/B/C genes was consistent with increased 

frequencies of intermediate monocytes present in blood in mild respiratory viral infection 

(Vangeti et al., 2023). Differential expression correlation of highly upregulated genes between 

inflammation in mild respiratory viral infection and in sepsis (as observed for CEACAM8 in 

neutrophils, and genes FCGR1A/B/C, and RGL1 in monocytes) indicated that genes may 

become targets for alternative induction pathways in sepsis, and hypothetically, switching 

from interferon to relatively strong induction by IL6. 

Using single-cell RNA sequencing, 4 different monocyte states have been defined in sepsis 

including a population similar to non-classical monocytes named MS3, expressing high 

FCGR3A (CD16), and a CD14 +, HLA-DR low subpopulation named MS1. MS1 expresses 

RETN, and IL1R2, is expanded in sepsis and COVID-19, and originates from altered 

myelopoiesis in bone marrow (Reyes et al., 2020; Reyes et al., 2021). Additional marker 

genes can be found for MS1, and for MS3 (e.g. CDKN1C, C1QA/B/C genes) in the study by 

Reyes et al. (2020). Here, the existence of different gene expression clusters in monocytes in 

severe inflammation, with either C1QA/B/C genes or CDKN1C (non-classical-like), 

suggested important heterogeneity in MS3 cells. Of relevance, a macrophage-like cell type, 

separate from non-classical monocytes, has been characterized by single cell RNA sequencing 

of cerebrospinal fluid and PBMCs in tuberculous meningitis, expressing C1QA/B/C genes, 

SLCO2B1, LYVE1, as well as VSIG4, MSR1, and OLFML2B (Mo et al., 2024). Here, we 

show upregulated co-expression of these genes in monocyte separations, including VSIG4 

and C1QA/B/C genes, and upregulation of macrophage marker genes LYVE1, and PPARG, 

indicating similar circulating macrophage-like cells, more generally in severe inflammation.  

Juss et al. (2016) have described a large number of highly upregulated genes in neutrophil 

separations in ARDS compared to healthy controls. We found that many of these genes were 

not at all upregulated during inflammation in mild respiratory viral infection. Other genes 

such as GYG1 were upregulated in mild inflammation, also, but at lower fold change and 
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lower frequency. This qualitative transcriptomic difference indicated the importance of 

distinguishing between mild and severe inflammation. Low density neutrophils (LDNs) 

containing immature and mature granulocytes expand in sepsis and COVID-19 (Mortaz et al., 

2018; Uhel et al., 2017), (Kwok et al., 2023; Reusch et al., 2021; Schrijver et al., 2019; 

Schulte-Schrepping et al., 2020). Immature granulocytes were indicated here also, by strong 

correlated upregulation of proliferation and azurophilic granule marker genes. Neutrophils 

and monocytes in severe inflammation shared upregulation of many genes, including genes 

co-expressed with FAM20A, and many GC-regulated genes. Upregulation of CD163 and 

MERTK seen in gene expression datasets in severe inflammation agreed with flow cytometric 

data of both monocytes and neutrophils in sepsis (Groselj-Grenc et al., 2008; Guignant et al., 

2013), and also indicated similar functional changes occurring in neutrophils and monocytes. 

Severe inflammation occurring in different illnesses 

Upregulated DEGs in myeloid cells in severe inflammation were analyzed by gene expression 

correlation analysis, to derive more specific features. A SIM (Severe Inflammatory Myeloid) 

gene set (n = 16) was selected from a large group of upregulated genes in severe inflammation 

in myeloid cells, and probably remained more heterogeneous with respect to gene regulation. 

This gene set was well suited to detect severe inflammation in patient samples for many 

different diseases. Within the large group of upregulated genes, a small subcluster of genes 

co-expressed with FAM20A in whole blood was used as a potentially informative biomarker 

gene set (n= 4). Besides FAM20A, genes METTL7B, and CYP19A1 in the set are also 

upregulated in IL-10 induced M2c macrophages (Lurier et al., 2017). METTL7B and ITGA7 

are neighboring genes on chromosome 12, which might suggest shared regulation of gene 

expression. It would therefore be interesting to determine if FAM20A (geneset) might qualify 

as a whole blood IL-10 induction biomarker in vivo. Another group of upregulated genes in 

severe inflammation in myeloid cells were GC inducible genes, from which gene set GC-2 

(MACIR/C5orf30, ADORA3, DAAM2, OLAH, ADAMTS2, FLT3, VSIG4, AMPH, MAOA) 

was selected. GC treatment in septic shock and burn shock induced many genes in GC 

signatures 1, and 2 above the expression level reached by endogenous GC. Previously, 

upregulated DEGs in GC treatment in septic shock were not discussed as potential GC target 

genes, possibly since IPA (Ingenuity Pathway Analysis) at the time showed down-regulation 

of glucocorticoid signaling pathways instead (Wong et al., 2014). A small number of well-

known GC target genes were reported as upregulated DEGs in GC treatment in burn shock 

(Plassais et al., 2017), but not identified within a larger cluster of co-expressed GC-regulated 
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genes. Furthermore, upregulation of set GC-2 was frequent in GC-untreated Kawasaki 

disease, severe malaria, severe COVID-19, and infectious diarrhea, which indicated induction 

by endogenous GC, and not just by exogenous GC in treatment. These results were in good 

agreement, with increased serum cortisol present in critical illness more generally, and also in 

Kawasaki disease (Aso & Satoh, 2021; Sano et al., 2010), severe malaria (Enwonwu et al., 

1999; Vandermosten et al., 2023), COVID-19 (Tan et al., 2020), and gastroenteritis (Rezai et 

al., 2022). Endogenous GC has been discussed as a possible factor in immunosuppression in 

sepsis (He et al., 2020; Vandewalle & Libert, 2020), although not commonly so (Fu et al., 

2023; Hibbert et al., 2018; Liu et al., 2022; Ono et al., 2018; Padovani & Yin, 2024; Torres et 

al., 2022; Venet & Monneret, 2018). On the other hand, myeloid cells have been widely 

implicated  in immunosuppression in  severe inflammation, in case of monocytes (Avendaño-

Ortiz et al., 2018; Mengos et al., 2019; Shalova et al., 2015), neutrophils (Darcy et al., 2014; 

Demaret et al., 2015; Hesselink et al., 2019; Mortaz et al., 2018; Reusch et al., 2021; 

Silvestre-Roig et al., 2019; Sinha et al., 2022), or both cell types (Reyes et al., 2021; Schrijver 

et al., 2019; Schulte-Schrepping et al., 2020; Uhel et al., 2017; Venet et al., 2021). Low 

expression of HLA-DR is typical for monocytes in sepsis, and is an important biomarker for 

immunosuppression (Cajander et al., 2013; Hibbert et al., 2018; Monneret & Venet, 2014; 

Torres et al., 2022). Low monocyte HLA-DR expression in septic shock, and after surgery 

was found to correlate with high serum cortisol in earlier reports, while treatment by GC in 

vitro downregulated HLA-DR (Kim et al., 2010; Tulzo et al., 2004). Here, we find a wide 

functional range of genes induced by GCs in circulating monocytes and neutrophils in severe 

inflammation. This likely pointed to an important role for endogenous GCs in 

immunosuppression in sepsis, via myeloid cells, which would be worthwhile to explore. 

Transcriptional biomarkers 

Blood gene transcriptional modules of co-expression can be used as a basis for biomarker 

discovery (Chaussabel & Baldwin, 2014; Chaussabel et al., 2008). Here, we selected 2 gene 

sets GC-1, and GC-2 for use as blood transcriptomic biomarkers for GC action on cells, based 

on expression correlation and differential expression analysis of many public datasets. 

Different sets of GC-induced genes have recently been selected for monitoring the response of 

blood cells to GC treatment in SLE, RA and Addison’s disease (Hu et al., 2018; Northcott et 

al., 2021; Sævik et al., 2021). Set GC-1 might represent a set suitable for use on whole blood 

in the absence of severe inflammation, similar to a set of 3 genes (TSC22D3, DDIT4, and 

FKBP5) proposed for guiding GC replacement therapy in Addison’s disease (Sævik et al., 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2023.05.10.23289779doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.10.23289779


36 
 

2021). Set GC-1 genes are among the high ranking DEGs in PBMCs in GC therapy of 

Addison’s disease reported in a separate study (Chantzichristos et al., 2021), supporting their 

potential use as biomarkers. In case of inflammatory illnesses, GC-1 set genes would become 

less suitable for straightforward use on whole blood or PBMCs due to changes in cell 

percentages, and large shifts in differential gene expression in specific cell types, especially 

neutrophils, which tend to obscure the existing induction signal. Hu and coworkers developed 

a set of 8 biomarker genes for GC activity (FKBP5, ECHDC3, IL1R2, ZBTB16, IRS2, 

IRAK3, ACSL1, DUSP1), based on differential expression seen upon GC treatment both in 

health and in SLE, which can be applied to whole blood using qPCR (Hu et al., 2018). An 

alternative set of 5 genes (VSIG4, ALOX15B, CD163, AMPH, IL1R2), based on expression 

correlation with GC usage in both PBMC and whole blood datasets on SLE, was also tested 

for biomarker potential (Northcott et al., 2021). These selections apparently originated from 

induction by GC, in neutrophils and monocytes, respectively. Here, set GC-2 combined 

several genes highly induced by GC in monocytes and neutrophils in severe inflammation, 

and was adequate for detecting effects of GC usage in both autoimmune diseases, and in 

sepsis and burn shock. If required, the present data analysis would also allow a precise 

selection of GC biomarker genes expressed in either monocytes or predominantly in 

neutrophils, as well as extension of set GC-2 depending on disease. The more limited choice 

of suitable genes in sepsis compared to SLE, RA, and asthma might be a consequence of 

strong additional inductions, besides by GC, occurring in sepsis, e.g. in case of genes IL1R2, 

IRAK3, and ARG1.  

Specific blood transcriptional endotypes in septic shock are associated with increased patient 

mortality in GC treatment, suggesting it would be important to account for heterogeneity 

using transcriptomics (Antcliffe et al., 2019; Wong et al., 2015; Wong et al., 2021). Serum 

IFN gamma / IL-10 ratio has also been proposed as a biomarker to help decide on GC 

treatment in septic shock (König et al., 2021). As impaired corticosteroid metabolism in 

sepsis is thought to be a factor in the outcomes of GC treatment (Annane et al., 2019), GC 

inducible genes TSC22D3 (encoding GILZ), and DUSP1 (encoding MKP1) are included with 

other biomarkers for stratification in clinical trial RECORDS on corticosteroid (GC + MC) 

sensitivity in sepsis (Fleuriet et al., 2023). In case of using whole blood transcriptomic data, 

set GC-2 would represent a more robust alternative biomarker, also in retrospective analysis, 

and for determining the transcriptomic effects of combined hydrocortisone (GC) and 

fludrocortisone (MC) treatment. In general, it would be worthwhile to relate set GC-2 
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expression to other measurements and clinical data, such as possibly immunosuppression by 

endogenous GC in sepsis, as well as by exogenous GC in treatment.  

Relevant gene module / biomarker combinations have been used for patient stratification in 

subclasses, for example in SLE, bacterial infection, severe RSV infection, and sepsis (Altman 

et al., 2021; Banchereau et al., 2016; Banchereau et al., 2012; Northcott et al., 2021; Rinchai 

et al., 2020). In contrast, gene modules have not been applied in most other studies on 

stratification of sepsis in endotypes as reviewed (Komorowski et al., 2022; Pelaia et al., 2023; 

Tsakiroglou et al., 2023). A smart combination of biomarker features, closely corresponding 

to gene transcriptional modules, would allow a basic description of patient immunological 

status in different inflammatory illnesses. Gene induction by GC will likely be a relevant 

feature, as well as, for example, inductions by interferon alpha and gamma in a larger 

biomarker panel. In future, such panels might then be used for initial classification, and for 

immune status monitoring, building on more easily understandable features, than in case of 

existing sepsis endotypes. 

LIMITATIONS 

GC-driven gene expression correlation profiles were determined here by the transcriptomic 

datasets present in a collection, and the GC-induced query genes used for obtaining a 

combined profile, both of which are choices, that can be made differently. Gene expression 

correlation offers an integral view of cellular processes, which are often not known to be 

connected. We were most interested in expression correlations with query genes directly 

caused by gene induction by GC, which necessitated a great deal of cross-checking of 

different gene expression profiles and comparison with in vitro and in vivo GC upregulated 

genes. In case of DEGs a common rule for cut-off is 2 fold change and adjusted p-value 

below 0.05, whereas selecting best candidate genes for GC induction from GC signatures 

remained difficult.  

Changing percentages of cell types in blood hugely complicates blood transcriptomic 

analysis, as noted by many authors. Here, we developed biomarker gene sets for use on whole 

blood, since whole blood is easier obtained than separated cells in clinical practice, and 

because many datasets on whole blood are already deposited in public databases and available 

for analysis. Expression levels of these biomarker sets, especially set GC-1 for circadian GC 

action likely remain sensitive to changes in cell percentages, limiting their usefulness. It 
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would be more accurate, and also easier, to develop GC transcriptomic biomarkers for use on 

data of separated cell (sub) types instead.  

Clearly, there is a limit to novel insights that can be gained from analysis of bulk 

transcriptomics as performed here, regarding monocyte and neutrophil cell biology in 

homeostasis and during inflammation. Analysis of public single cell sequencing data would 

have allowed mapping (abundant) expression of GC-induced genes and marker genes to 

specific cell subtypes more precisely. It might also reveal whether different inductions can co-

exist in the same cell, and infer trajectories. The main intention here was to place inductions 

by GC in a broader framework of gene expression in homeostasis, mild, and severe 

inflammation.  

 

LEGENDS 

Figure 1 

Obtaining GC-driven gene signatures and comparison with in vitro DEGs 

A work diagram for obtaining GC-driven gene expression correlation signatures using defined 

collections of transcriptomic datasets, as illustrated for a single whole blood collection. 

Datasets were selected by experimental description. Scrolls symbolize gene lists ordered by 

Pearson correlation values with query genes. B GC-driven gene expression correlation 

signatures obtained on 2 whole blood dataset collections and subcollections thereof, using 

appropriate query genes as indicated in grey. C Venn diagrams of total gene set derived from 

whole blood GC signatures 1 and 2, with 9 upregulated DEG sets from GC treatment of 

immune cells in vitro. PBMC (GSE110156, 6h, 1 mM prednisolone (Hu et al., 2018)), PBMC 

b (GSE33649 , 8h, 500 nM dexamethasone (Maranville et al., 2013)), macrophage 

(GSE61880, time series 1-24h, 100 nM dexamethasone (Jubb et al., 2016)), macrophage b, 

monocyte (GSE109439, 4h, 1 mM, triamcinolone acetonide (Wang et al., 2019)), monocyte b, 

neutrophil, CD4 T cell, and B cell (GSE112101, 2h and 6h, 22.7 microM methylprednisolone 

(Franco et al., 2019)). D frequency distribution of all GC-induced DEGs as present in total of 

9 DEG sets. Overlap of DEGs with total gene set derived from whole blood GC signatures as 

indicated. 

Figure 2  

In vitro gene induction by GC  
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Overview of  selected genes used for expression profiling, and in vitro induction by GC in 

PBMCs and immune cells. A Overview of 19 genes selected from GC-signatures. Query: 

genes used as expression correlation queries to obtain GC signatures 1 and 2 from 2 whole 

blood dataset collections. High in GC-sign.: high ranking of gene in GC signatures. 

Biomarker set: genes selected in GC-1 and GC-2 biomarker sets. B Induction in isolated 

immune cells (GSE112101, (Franco et al., 2019)). Ratio: ratio of total expression at time 0h 

comparing 4 types of blood cells (B, B cells; T, CD4 T cells; M, monocytes; N, neutrophils). 

Log2 FC: fold change after GC treatment; methylprednisolone 22.7 microM, 2h, and 6h 

versus vehicle control (pairwise for 4 donors). NS: pairwise p-value > 0.05  (left panel). 

Induction in monocytes (M), and macrophages (Mf) (GSE109439, (Wang et al., 2019)). 

Ratio: ratio of total expression at time 0h in monocytes and macrophages. Log2 FC: fold 

change after GC treatment; triamcinolone 1 mM, 4h versus vehicle control (right panel). C 

Induction by GC in PBMCs; GSE217320, (Seah et al., 2022) (a), GSE110156, (Hu et al., 

2018) (b), GSE33649, (Maranville et al., 2013) (c). Log 2FC: treatment versus vehicle 

controls; dexamethasone 2.5nM, 5nM, 50nM combined, 72h (a); prednisolone 1mM 6h (b); 

dexamethasone 0.5 mM 8h, and 24h (c) (left panel). Induction by sepsis plasma in isolated 

neutrophils; GSE49755 (d), GSE49756 (e), GSE49757 (f), (Khaenam et al., 2014) (right 

panel). Unadjusted p-values as indicated. Marker genes for antigen presentation (Ag. Pr.), NF-

kB-dependent expression (NF-kB), and early gene expression (early) are also included. 

Figure 3  

Differential expression correlation of genes induced by GC in health and severe inflammation 

Reciprocal ranking in gene expression correlation profiles for 6 dataset collections and 2 

separate RNA-seq datasets. A-B profiles for whole blood. Number of datasets with gene 

(SETS), and consistent gene expression correlation hits (CONS. H.), as indicated. Genes 

selected as biomarker sets GC-1, and GC-2 as shown. A whole blood in the absence of severe 

inflammation (40 sets in collection). B whole blood in the presence of severe inflammation 

(38 sets in collection). C-F profiles for myeloid cells. Genes in grey; expression below 

detection limit in all or most datasets, genes in red; profile originating from other 

contaminating cell types, or in vitro activation. C monocytes in the absence of severe 

inflammation (8 (sub)sets in collection). D monocytes in the presence of severe inflammation 

(11 (sub)sets in collection). E neutrophils / granulocytes in the absence of severe 

inflammation (6 (sub)sets in collection). F neutrophils / granulocytes in the presence of severe 

inflammation (10 (sub)sets in collection). G  whole blood, healthy, circadian sampling 
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(GSE113883, (Braun et al., 2018)), excluding one outlier individual no. 14. Genes MAOA 

and AMPH in grey; at detection limit. Log10 TPM: log of mean TPM values in all samples. 

H whole blood, sepsis, and uncomplicated infections (GSE154918,  (Herwanto et al., 2021)). 

Log10  N. C.; log of mean normalized counts in all samples for ill patients. Gene rankings in 

profiles color-coded in green from 1 (high) to 400 (low). Gene expression correlation profiles 

for each of 19 genes in Figure 2A  shown in rows.  

Figure 4  

In vivo gene induction by GC.  

Gene expression changes due to endogenous and exogenous GC in health, and in septic and 

burn shock. A DEGs in PBMCs by endogenous GC, and by experimental GC treatment in 

health. DEGs in 6h time difference, due to endogenous, circadian cortisol (GDS3704, 

(Bouwens et al., 2010)), (left panel). DEGs after dexamethasone (DEX) injection, compared 

with time 0h (GDS3864, (Carlet et al., 2010)) (middle panel). DEGs after hydrocortisone 

(HC) injection (GSE67255, (Olnes et al., 2016)). Doses 50 and 250 mg combined, and 

compared with time 0h (right panel). Gene names in red: tight correlation clustering observed 

with gene VSIG4 in dataset. Selected genes as also shown in Figure 2A, biomarker sets GC-1, 

and GC-2 as indicated, with added marker genes for expression in NK cells (NK), neutrophils 

(N), and monocytes (M). B DEGs in whole blood by endogenous GC in health, and by 

exogenous GC in burn shock and septic shock. DEGs between morning compared with rest of 

day, due to endogenous, circadian cortisol (GDS2767, (Baty et al., 2006)) (left panel). DEGs 

due to hydrocortisone treatment in burn shock (GSE77791, (Plassais et al., 2017)), comparing 

24h and 120h continuous GC treatment, with 24h and 120h placebo, and in septic shock 

(GSE106878, (Kolte, 2020)), comparing 24h GC treatment with 24h placebo (middle panels). 

DEGs due to GC treatment in septic shock as reported by Wong et al. (2014) (right panel). 

Marker genes added for expression in NK cells (NK), neutrophils (N), and monocytes (M).  

C-F reciprocal gene expression ranking in profiles from 4 single data (sub) sets. C  PBMCs in 

health, effect of endogenous GC (GDS3704, (Bouwens et al., 2010)), D PBMCs in health, 

effect of exogenous GC (GSE67255, (Olnes et al., 2016)), E whole blood, burn shock, subset 

no GC treatment, endogenous GC (GSE77791, (Plassais et al., 2017)).  F whole blood, septic 

shock, subset no GC treatment, endogenous GC (GSE106878, (Kolte, 2020)). Gene rankings 

in profiles color-coded in green from 1 (high) to 200 (low). Gene expression correlation 

profiles for each of 19 genes in Figure 2A  shown in rows. 
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Figure 5 

Circadian cortisol action detected using biomarker gene set GC-1  

Gene expression in time series of experimental respiratory viral infection, showing marker 

genes for cell type and inflammation, GC inducible genes DDIT4 and TSC22D3, and set GC-

1.  Panels rows 1 -5) Gene expression in 2 nonresponding (Nos 22 and 24) and 2 responding 

(Nos 12 and 13) individuals infected with H1N1 from experiment GSE73072 (Liu et al., 

2016). X-axis, time (h) relative to viral challenge at 0h. Y-axis, expression value at log 2 

scale. Row 1) marker genes for neutrophil-specific expression. Row 2) marker genes for 

classical monocyte-specific expression. Row 3) marker genes for non-classical / intermediate 

monocyte-specific expression. Row 4) marker genes for ongoing inflammation. Row 5) genes 

DDIT4 and TSC22D3, and combined value for 7 genes in set GC-1. Row 6) Gene expression 

in all 24 individuals infected with H1N1 from experiment GSE73072, nonresponding (n= 13), 

and responding (n= 11 ), showing C1QA, used as marker gene for inflammation, and set GC-

1. X-axis, 24h interval ticks in phase with maximal expression of GC-1. Y-axis, expression 

value at log 2 scale. 

Figure 6 

Specific gene expression in mild and severe inflammation 

Differential correlation and differential gene expression in whole blood in mild and severe 

inflammation. A) reciprocal gene ranking in 48 gene expression correlation profiles (rows) for 

mild seasonal respiratory viral infection (GSE68310, (Zhai et al., 2015) , subset days 0, 2, 4, 

and 6 after reporting ill), and for sepsis (E-MTAB-5273, (Burnham et al., 2017), subset sepsis 

and bacterial infection). Linear scale was used in obtaining correlation profiles, only shared 

gene probes for both datasets, and in case of 48 query genes, only single adequate gene 

probes. Genes profiles were put in same order, for easier comparison. Gene rankings in 

profiles shaded in green (high) to white (low). Marker genes for cell types and inductions as 

shown, including monocyte states MS1 and MS3 according to Reyes et al. (2020), PPARG 

(M2 monocyte / macrophage), IL1B (NF-kB-dependent expression), and SOCS3 (STAT3-

dependent expression). Origin of different correlation clusters in inflammation and in severe 

inflammation as indicated (origin, see main text). Genes (co)-induced by interferon, genes 

likely dependent on STAT3, and genes induced by GC as indicated (induction). B) 

longitudinal expression of interferon alpha inducible genes OASL and IFI27 in dataset 

GSE68310 on prospective, seasonal respiratory viral infection, either influenza, or not 
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influenza (B; baseline, D0, D2, D4, D6, D21; days after reporting ill, S; spring). C, D) gene 

expression distributions in ill and healthy sample groups for a selection of genes used in 

correlation comparison, and several additional relevant genes (e.g. IL10 en FAM20A). C) 

gene expression in dataset GSE68310 on prospective, seasonal respiratory viral infection, 

using ill sample groups;  0, 2, 4, and 6 days (ill) and healthy sample groups;  baseline, 21 

days, and spring (H). D) gene expression in dataset E-MTAB-5273 on sepsis in sample 

groups sepsis or bacterial infection (ill), and healthy (H). B, C, D) Y-axis values at log-2 

scale, with interval of 12 log-2 units for each panel. A partial BG subtraction of 150 units at 

linear scale was performed for GSE68310. Genes PRKY and RPS4Y were used as 2 controls 

showing signal in male samples, and BG noise level and distribution in female samples. 

Shown are box plots with added binned dot plots. Identical gene probes from platform 

GPL10558 used in C and D. 

Figure 7  

Comparing gene induction in myeloid cells, in homeostasis, inflammation, and severe 

inflammation. 

Gene induction in homeostasis, mild inflammation, and severe inflammation, in monocytes 

and neutrophils, shown for GC-induced genes (including biomarker sets GC-1 and GC-2), and 

for relevant marker genes induced during inflammation. The schematic combines results from 

correlation and differential expression analysis using different informative datasets (see main 

tekst). Circadian GC-induced gene expression was found during homeostasis in monocytes 

and neutrophils but with some differences, such as no detection of KLF9 and ZBTB16 in 

neutrophils, or IRAK3 in monocytes. Inflammation caused by mild respiratory viral infection, 

results in elevated blood cytokines, which induce gene expression in monocytes and 

neutrophils. Induction of marker gene IL1B is NF-kB-dependent, while induction of other 

genes involved interferon or known STAT3-dependent expression. Induction of IL1B, 

SOCS3, and OSM, as seen in separated monocytes and neutrophils was due to early gene 

activation by cell isolation procedure (marked: ? E). In case of neutrophils, in vivo induction 

could be seen for these genes using whole blood datasets, instead (marked: *). Gene induction 

involving interferon was visible in intermediate / non-classical monocytes (I/NC), e.g. for 

C1QA/B/C genes. Less frequent upregulation, and upregulation much lower than in severe 

inflammation, occurred for a number of genes (eg GYG1) as indicated by a dashed vertical 

arrow. Severe inflammation in trauma or sepsis results in systemic release of DAMPs and 

MAMPs, and cytokines, which broadly induced 2 patterns of gene expression, one more 
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similar to mild inflammation (A), the other more specific to severe inflammation (B). 

Macrophage-like monocytes (MFL) and immature neutrophils  (IMM) were cell types 

characteristic for severe inflammation. Several genes were highly upregulated in severe 

inflammation, including FAM20A, due to a unknown inducer (combination) marked X. 

Elevated GC resulted in strong gene induction depending on cell type. Genes expressed in 

monocyte state MS1, and in macrophage-like monocytes (MFL) in sepsis as indicated. 

 Figure 8 

Longitudinal gene expression during severe inflammation after trauma.  

Expression of marker genes, GC inducible genes, and relevant gene sets in whole blood, after 

trauma, and compared to healthy controls (GSE36809 (Xiao et al., 2011)).  Cell type specific 

expression and inductions of different genes as indicated in panels. Gene sets include SIM 

(severe inflammatory myeloid, n= 16), FAM20A_4 (n = 4), naive T cell (T cell, n= 13) , GC-

2 (GC- inducible, n= 9), induction by interferon gamma (IFN gamma, n=  23), and induction 

by interferon alpha (IFN alpha, n = 8 ). Expression values and time after injury shown at log 2 

scales (h, hours; d, days; w, weeks). Mean value for healthy controls (H) was set at zero. In 

case of GC- induced genes OLAH, DAAM2, VSIG4, and ADAMTS2, maximal expression 

values in healthy controls, which possibly still correspond to gene probe background levels, 

are indicated by horizontal lines. Expression values for gene sets were calculated using 

adequate gene probes, with subtraction of background / basal expression, and adjusting for 

different gene expression ranges as detailed in methods.  

 

Figure 9 

Distribution of gene sets expression in severe  inflammation and autoimmune disease  

Increase of GC-1 and GC-2 gene set expression upon GC treatment in patients with burn 

shock, septic shock, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). 

Included for comparison are gene sets T cell, set severe inflammatory myeloid (SIM), set 

FAM20A, (4 genes including FAM20A), and sets interferon gamma (IFN gamma), and 

interferon alpha (IFN alpha). Datasets used different assay platforms, and log fold change 

between expression values in one dataset are not directly comparable to log fold changes in 

other datasets. Y-axis values on log-2 scale, with interval of 9 log 2 units for each panel. 

Shown are box plots with added binned dot plots. A GSE77791 (Plassais et al., 2017), healthy 
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(H), severe burn shock (1-5 days, excluding 7 days samples (no GC), severe burn shock with 

hydrocortisone treatment (1-5 days, excluding 7 days samples (+ GC). B GSE106878 (Kolte, 

2020), septic shock placebo 0h (P0), septic shock hydrocortisone 0h (GC0), septic shock 

placebo 24h (P24), septic shock hydrocortisone 24h (GC24). C GSE110174 (Hu et al., 2018), 

healthy (H), SLE low and medium prednisone usage (l/m GC), SLE high prednisone usage 

(hGC), SLE unknown prednisone usage (uGC). D GSE117769 published by Goldberg and co-

workers (2018), healthy control (H), RA without GC treatment (no GC), RA with GC 

treatment (+ GC).  

Figure 10 

GC-2 gene expression is upregulated by endogenous and exogenous GC depending on disease 

Overview of gene expression in whole blood during different diseases and upon treatment 

with GCs using 5 relevant features; a gene set for severe inflammatory myeloid (SIM), a gene 

set of 4 induced genes including FAM20A (FAM (4)), a gene set GC-2 for induction by GC 

during severe inflammation (GC-2), and gene sets for induction by either interferon gamma 

(IFN-G), or interferon alpha (IFN-A). Gene set expression values were plotted in ranges of 9 

log 2 units and distributions compared within, and between experiments for platforms 

GPL570, GPL10558, and RNA sequencing data, and tentatively ordered according to 

deviation from healthy controls. Red arrows indicate maximal upregulation from healthy 

control for each gene set. Decreases in basal gene set expression, as frequently seen in case of 

interferon gamma and alpha induction in severe inflammation, may occur because of shifts in 

cell percentages, and do not necessarily indicate gene repression. Datasets, different 

platforms, and supporting figure panels as shown. 

Figure 11 

Evaluating biomarker genes of GC action in whole blood in different diseases 

Left panel, scoring suitable biomarker genes of GC action in whole blood in health, and 

different diseases, based on induction strength and correlation analysis using relevant RNA-

seq datasets (see main text). Included are all genes in set GC-1 and set GC-2, gene ARG1, and 

additional genes present in published GC biomarker gene sets. Grey marking, genes absent in 

single dataset, and taken from supplementary datasets; GSE69683 (asthma), GSE120178,  and 

GSE129705 (both RA), GSE139940, and GSE110685 (both SLE), and GSE161731 (subset 

bacterial pneumonia and sepsis). Asterisk for ADORA3, and MAOA; see main text. Middle 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2023.05.10.23289779doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.10.23289779


45 
 

panel, genes present in whole blood transcriptomic sets of “time telling” genes identified by 

machine learning. In a 15 genes set for monitoring the circadian clock in blood (Hughey, 

2017), (TT-1), in 234 genes identified as phase markers by Laing et al. (2017), (TT-2), and in 

a a set of 41 predictive genes for circadian state (Braun et al., 2018), (TT-3). Relative strength 

indicated from 1 to 4, based on coefficients in 2 principal components used for prediction 

(TT-1), number of times identified as circadian phase marker using 4 different methods (TT-

2), and high frequency of selection in predictor in different training samples (TT-3). Right 

panel, genes present in whole blood transcriptomic biomarker sets for guiding GC 

replacement therapy in Addison’s disease (Sævik et al., 2021), and monitoring response to 

GC treatment in SLE and RA (Hu et al., 2018), (SLE-1), and SLE (Northcott et al., 2021), 

(SLE-2). 

 

SUPPLEMENTAL INFORMATION 

 

Figure S1 

Different expression correlation clusters of cortisol-induced genes in health and severe 

inflammation. 

A, hierarchical clustering of a 20 gene expression correlation matrix from combined, related 

datasets GSE11761 and GSE14642 on PBMCs and exercise in healthy people (Radom-Aizik 

et al., 2009a, 2009b). Signal quality as indicated, with several probesets not (3) or barely (4) 

above background level. B, hierarchical clustering of a 20 gene expression correlation matrix 

from dataset GSE9960 on PBMCs of critically ill and sepsis patients (Tang et al., 2009). 

Adjusted differential gene expression comparing to GSE11761 and GSE14642 as indicated. 

C, same from dataset GSE57065 on whole blood of septic shock patients, subsetted for 

healthy controls (Cazalis et al., 2014). Signal quality as indicated with 6 probesets barely 

above background level. D, same from dataset GSE57065 subsetted for septic shock patients. 

Differential gene expression in blood from septic shock patients and healthy controls as 

indicated. Cluster 1, genes clearly present in an expression correlation cluster in health. 

Cluster 2, genes not (clearly) present in cluster 1 in health, and present in an expression 

correlation cluster in severe inflammation. Cell type of main gene expression as indicated. All 
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datasets are obtained from the same platform (GPL570, Affymetrix Human Genome U133 

Plus 2.0 Array), with good and identical probesets used for the correlation matrices. 

Figure S2 

Cell type specific expression and in vitro induction by GC of whole blood GC signature 

genes. 

Genes selected for profiling (n =227) were derived from an exploratory signature of GC-

driven gene expression in whole blood (see sheet 1 supporting table 2). Basal and upregulated 

gene expression by GC treatment of immune cells in vitro. GSE60424 basal, relative base 

level expression for different immune cell types as a ratio of total expression in 6 cell types 

shown (B cell, CD4 T, CD8 T, monocyte, neutrophil, NK, excluding sepsis samples; 

GSE60424, (Linsley et al., 2014). GSE112101 basal, relative base level expression in 4 cell 

types shown (B cell, CD4 T, monocyte, neutrophil; GSE112101, (Franco et al., 2019). 

GSE112101 induced, differential expression (Log2 FC, pairwise for 4 donors, NS: pairwise p-

value > 0.05 ) upon GC treatment for different cell types in experiment GSE112101 (4 cell 

types, 22.7 microM methylprednisolone, 2h and 6h, (Franco et al., 2019). GSE109439 basal, 

relative base level gene expression in monocytes and macrophages (GSE109439, (Wang et 

al., 2019). GSE109439 induced, differential expression upon GC treatment of monocytes and 

macrophages (GSE109439, 1 mM triamcinolone acetonide, 4h, (Wang et al., 2019). 

GSE100521 induced, differential expression of M1 macrophages repolarized to M2 with 

methylprednisolone, 100nM, 24h (GSE100521, (Gharib et al., 2019). Basal expression ratios 

are shaded blue. DEG values are log2 fold change of induced and base expression levels, with 

table cells shaded red (up regulation) and green (down regulation), accordingly. NS, not 

significant (p > 0.05); NA, gene not detected/absent from platform, or absent p-value. Log2 

fold change, and unadjusted p-values used for experiment GSE109439 according to Wang et 

al., (2019). Genes in exploratory GC signature 1, signature 2 or both as indicated, marker 

genes (32) included as expression controls. 

Figure S3 

Selection of gene set GC-1 for use as whole blood transcriptomic biomarker of GC action in 

health. 

Main criteria: 1) genes belonging to a “core” cluster of correlated expression of GC inducible 

genes in whole blood in the absence of severe inflammation. 2) balanced set between genes 
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preferentially expressed in neutrophil and lymphoid cells. 3) strong circadian upregulation of 

genes. 4) no upregulating during mild inflammation. A Reciprocal ranking in 56 gene 

expression correlation profiles (rows) obtained using an exploratory collection of 62 blood 

transcriptomic datasets excluding severe inflammation (see sheet 16 in supporting table 1). 

Gene rankings as derived from minimally 25 contributing datasets, except for gene AREG (11 

datasets), approximately 50-55 contributing datasets on average. Gene rankings in profiles 

color-coded in green from 1 (high) to 400 (low). A pre-selection of 31 genes from whole 

blood exploratory GC signature 1, and 25 relevant marker genes for cell type and 

inflammation as indicated. Gene IL1B with NF-kB-dependent induction (NF-kB), genes 

IL1RN and TNFAIP6, both with NF-kB-dependent induction and induction by interferon 

(NF-kB + IFN), 2 interferon alpha (IFN alpha), and 2 interferon gamma (IFN gamma) 

inducible genes were used together as different markers for inflammation. Gene CIRBP (cold 

inducible RNA-binding protein) was added as a marker for circadian expression. A “core 

group” of GC inducible genes, with some subclustering related to differential expression in 

lymphoid cells or myeloid cells was visible. Marker genes upregulated in inflammation 

indicated in red. Several exploratory GC signature 1 genes (TNFAIP3, SOCS1, NFIL3) 

showed correlated expression with inflammation markers. B Circadian expression seen by 

plotting datasets GSE73072 on mild respiratory viral infection (Liu et al., 2016), and 

GSE56931 on sleep deprivation (Arnardottir et al., 2014) (Circadian). Upregulation during 

mild inflammation using dataset GSE73072 (Up in inflam). C Differential expression of 31 

genes from exploratory signature GC 1, mild respiratory viral infection (GSE68310,  

GPL10558, (Zhai et al., 2015)), ill days 0 and 2 (n= 258) versus baseline and spring (n= 243) 

(Log2 FC mild 1), and sepsis (E-MTAB-5273, GPL10558, (Burnham et al., 2017)), sepsis (n= 

221) versus control (n = 10) (Log 2FC sev 1) with corresponding p-values (Log10 pval mild 

1, Log10 pval sev 1). Differential expression of same 31 selected genes in sepsis 

(GSE154918, RNA-seq, (Herwanto et al., 2021)), sepsis and bacterial infection (n = 65) 

versus healthy (n= 40) (Log 2FC sev 2) with corresponding p-values (Log10 pval sev 2). 

Log2 FC values color-coded from red (upregulation) to blue (downregulation), NA gene 

absent. Log10  p-values color-coded from green (more significant) to white, not significant 

(yellow), NA, gene absent. D Expression ratios of 31 genes in isolated cells (GSE60424, 

RNA-seq, (Linsley et al., 2014)), all monocyte samples excluding IFN-treated MS, and sepsis 

(Mo control, n= 14), all neutrophil samples excluding IFN-treated MS, and sepsis (Ne control, 

n= 14), monocytes IFN-treated MS (Mo IFN, n= 3), neutrophils IFN-treated MS (Ne IFN, n= 

3), monocytes sepsis (Mo sepsis, n= 3), and neutrophils sepsis (Ne sepsis, n= 3). In RNA-seq 
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table, 1 count added, and made cpm, before calculating ratios. Ratio values color-coded in 

grey, NA, gene absent. E Correlation, hierarchical clustering of gene expression correlation 

matrix of 31 genes derived from whole blood exploratory GC signature 1, using the collection 

of 62 blood transcriptomic datasets excluding severe inflammation, genes selected in 

biomarker set GC-1 as indicated.  

Figure S4 

Selection of gene set GC-2 for use as whole blood transcriptomic biomarker of GC action in 

severe inflammation. 

Main criteria: 1) genes belonging to a group of correlated expression of GC inducible genes in 

whole blood in the presence of severe inflammation. 2) no strong correlation with other genes 

upregulated in severe inflammation more generally. 3) balanced set between genes 

preferentially expressed in neutrophils and monocytes. 4) strong upregulation during severe 

inflammation in whole blood, and in isolated monocytes or neutrophils. A Reciprocal ranking 

in 63 gene expression correlation profiles (rows) obtained using a collection of 38 blood 

transcriptomic datasets on severe inflammation (see sheet 15 in supporting table 1). Gene 

rankings as derived from minimally 20 contributing datasets, except for genes CPM, 

SRGAP1, INSR, DNASE4, SIGLEC16,  and MARVELD1  (15 datasets), approximately 30-

35 contributing datasets on average. Gene rankings in profiles color-coded in green from 1 

(high) to 400 (low). A pre-selection of 41 genes from exploratory GC signature 2 (see sheet 1 

in supporting table 2), genes in biomarker set GC-1, and 18 relevant marker genes for cell 

type and inflammation used as indicated. Genes that were selected as biomarker GC-2 set as 

indicated. Gene IL1B (NF-kB),  genes GK and NAMPT which are upregulated mainly  in 

neutrophils during inflammation, genes IL1RN and CASP1 (NF-kB + IFN), 2 interferon alpha 

(IFN alpha), and 2 interferon gamma (IFN gamma) inducible genes were used together as 

different markers for inflammation.  Also included are marker genes mainly expressed in 

neutrophils during severe inflammation such as GYG1 and LDHA. Gene groups related to 

differential expression in monocytes or neutrophils were visible. Several exploratory GC 

signature 2 genes (eg IRAK3, IL1R2), mainly expressed in neutrophils, showed strong 

correlated expression with marker genes for severe inflammation. Genes that were also 

strongly upregulated in mild inflammation indicated in red (inflammation A, eg interferon-

induced), genes more strongly or exclusively upregulated in severe inflammation indicated in 

brown (inflammation B,  GC inducible genes, and gene expression related to increased 
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neutrophil glucose metabolism). B  Differential expression of 41 genes from exploratory GC 

signature 2, and 4 biomarker GC-1 set genes, mild respiratory viral infection (GSE68310,  

GPL10558, (Zhai et al., 2015)), ill days 0 and 2 (n= 258) versus baseline and spring (n= 243)  

(Log2 FC mild 1), and sepsis (E-MTAB-5273, GPL10558, (Burnham et al., 2017)), sepsis (n= 

221) versus control (n = 10) (Log 2FC sev 1) with corresponding p-values (Log10 pval mild 

1, Log10 pval sev 1). Differential expression of same 45 selected genes in sepsis 

(GSE154918, RNA-seq, (Herwanto et al., 2021)), sepsis and bacterial infection (n = 65) 

versus healthy (n= 40) (Log 2FC sev 2) with corresponding p-values (Log10 pval sev 2). 

Log2 FC values color-coded from red (upregulation) to blue (downregulation), NA gene 

absent. Log10  p-values color-coded from green (more significant) to white, not significant 

(yellow), NA, gene absent. C Expression ratios of 45 genes in isolated cells, (GSE60424, 

RNA-seq, (Linsley et al., 2014)), all monocyte samples excluding IFN-treated MS, and sepsis 

(Mo control, n= 14), all neutrophil samples excluding IFN-treated MS, and sepsis (Ne control, 

n= 14), monocytes IFN-treated MS (Mo IFN, n= 3), neutrophils IFN-treated MS (Ne IFN, n= 

3), monocytes sepsis (Mo sepsis, n= 3), and neutrophils sepsis (Ne sepsis, n= 3). In RNA-seq 

table, 1 count added, and made cpm, before calculating ratios. Ratio values color-coded in 

grey, NA, gene absent. D Correlation, hierarchical clustering of gene expression correlation 

matrix of same 41 genes in whole blood exploratory GC signature 2 and genes in biomarker 

set GC-1 using the collection of 38 blood transcriptomic datasets on severe inflammation, 

genes selected in set GC-2 as indicated.  

Figure S5  

Cluster analysis of upregulated DEGs in PBMCs sampled with 6 h time difference  

Hierarchical clustering of an expression correlation matrix of 34 upregulated DEGs (p-values 

unpaired < 0.05) from dataset GDS3704 (PBMC, fatty acids consumption, 0h and 6h time 

points, 21 individuals (Bouwens et al., 2010)). DEGs shown from experiment were selected as 

follows: 1) based on log2 fold change >  0.2, and adding top 20 upregulated DEGs with 

lowest p-values (see sheet 1 supporting table 4). 2) visible upregulation by GC in vitro in one 

or more immune cells in experiment GSE112101 (Franco et al., 2019). 3) high ranking (cut-

off about 200) in correlation signatures of GC-driven gene expression in PBMCs, using 2 

signatures either with bias for lymphocytes, or bias for monocytes (see sheets 5,6 supporting 

table 3, and sheet 1 supporting table 4). 4) excluding gene CDK5R1 because of poor 

clustering with other DEGs and marker genes. Marker genes specifically expressed in 

different immune cells or upon early cell activation in vitro were also included. Circadian 
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cortisol-regulated DEGs were found in 3 larger clusters, broadly corresponding with 

expression in monocytes, expression mostly in NK cells, and expression in naive T cells.  

Figure S6 

Functional comparison of GC-driven gene expression profiles in myeloid cells  

Comparing ranking of selected genes in GC- driven gene expression profiles obtained on 

dataset collections of monocytes in the absence of severe inflammation (MoH), monocytes in 

the presence of severe inflammation (MoS), neutrophils in the absence of severe inflammation 

(NeH), and neutrophils in the presence of severe inflammation (NeS), as described (see sheet 

13, supporting table 3). Gene ranking in profiles color-coded in green (1, high) to white (500), 

to blue (10000, low). Genes were tentatively grouped according to functional categories, 

using gene summaries provided by GeneCards (Stelzer et al., 2016), and additional literature 

search. RNA-seq dataset GSE60424 (Linsley et al., 2014) was used to compare correlation 

profiles with expression levels in monocytes, neutrophils, separated lymphoid cells combined 

(B cells, CD4 T cells, CD8 T cells, NK cells), and myeloid cells combined (monocytes and 

neutrophils). Expression ratios between monocytes in the absence of severe inflammation 

(MoH), monocytes in sepsis (MoS), neutrophils in the absence of severe inflammation (NeH), 

and neutrophils in sepsis (NeS). Expression ratios also shown between lymphoid cells in the 

absence of severe inflammation (LyH), lymphoid cells in sepsis (LyS), myeloid cells in the 

absence of severe inflammation (MyH), and myeloid cells in sepsis (MyS). Sample groups 

used for the absence of severe inflammation, excluded sepsis samples, and interferon-treated 

MS samples. Ratio values shaded in grey. Differences in gene ranking in correlation profiles, 

generally corresponded to relative expression levels in separated myeloid cells. 

Figure S7  

Gene induction by GC in a broader framework of gene expression in monocytes in the 

absence of severe inflammation 

Reciprocal ranking in gene expression correlation profiles for monocytes, in the absence of 

severe inflammation, compared with gene induction occurring during isolation of myeloid 

cells from blood, and gene induction by interferons and IL-10. Green matrix; reciprocal gene 

ranking using a dataset collection (n= 8) of monocytes in the absence of severe inflammation 

(see sheet 13 supporting table 3). Genes include GC-regulated genes and relevant marker 

genes for describing inflammation, cell type, and several cellular processes. GC-regulated 
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genes that were chosen for obtaining a combined GC-driven gene profile (see sheet 3 

supporting table 3) are shown in red. Gene rankings in profiles are color-coded in green from 

1 (high) to 500 (low), high gene rankings (< 10) as indicated. N in grey; insufficient 

supporting datasets for gene in profile. Visible gene expression correlation (sub) clusters are 

indicated by black boxes. Visible gene groups, and gene induction involving interferon as 

annotated (vertical). Gene clusters originating from in vitro activation, in vivo inflammation, 

and contamination as indicated (horizontal). GSE60424 monocytes and neutrophils versus 

blood source (DEGs); Differential gene expression between separated cell preparations, and 

corresponding whole blood samples due to enrichment from source material, and in vitro 

activation (RNA-seq dataset GSE60424, one count added to table, made cpm (Linsley et al., 

2014)). Sepsis samples and samples from in vivo interferon treatment of MS were excluded 

from the group comparisons. Log2 fold change between monocyte samples (n= 14), and 

blood samples (n= 14) (Log2FC Mo), and log2 fold change between neutrophil samples (n= 

14), and blood samples (n= 14) (Log2FC Ne). Log2 fold change color-coded in red to blue, 

NA; gene absent in dataset. Genes not expressed in either monocytes or neutrophils indicated 

in red.  GSE60424 IFN treatment monocytes and neutrophils (expression ratio); Expression 

ratios between control monocytes (MO control, n= 14), control neutrophils (NE control, n= 

14), and monocytes (MO IFN, n= 3), and neutrophils (NE IFN, n=3) isolated from MS 

patients treated with interferon. Sepsis samples for monocytes (n = 3) and neutrophils (n= 3) 

were excluded from the control sample groups. Expression ratios shaded in blue, NA; gene 

absent in dataset. Genes not expressed in either monocytes or neutrophils indicated in red. 

GSE146438 IL10 Monocytes (DEGs); differential gene expression between monocytes 

treated in vitro with IL-10 or IL-10 variants, and untreated control monocytes. Monocytes 

were rested 2 days in M-CSF media and subsequently stimulated for 24h with different 

concentrations of IL-10 or IL-10 variants (RNA-seq dataset GSE146438 (Gorby et al., 2020)). 

Log2 fold change between IL-10 treated monocyte samples (n= 18), and untreated samples 

(n= 3) (Log2FC). Log2 fold change color-coded in red to blue. Log10 of unadjusted p-values 

color-coded in green to white, yellow not significant (Log10P). NA; gene absent in dataset. 

GSE190594 interferon monocytes (DEGs);  differential gene expression between monocytes 

treated in vitro with either IFN alpha or IFN gamma for 24h, and untreated control monocytes 

(GSE190594, (Green et al., 2023)). Illumina GPL10558 gene probes used for different genes 

as indicated. Log2 fold change between IFN alpha treated monocyte samples (n= 9), and 

untreated samples (n= 8) (Log2FC IFNA), and between IFN gamma treated monocyte 

samples (n= 9), and untreated samples (n= 8) (Log2FC IFNG). Log2 fold change color-coded 
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in red to blue. Corresponding log10 of unadjusted p-values color-coded in green to white, 

yellow not significant (Log10P IFNA, Log10P IFNG). NA; gene absent in dataset. 

Figure S8  

Gene induction by GC in a broader framework of gene expression in monocytes in the 

presence of severe inflammation 

Reciprocal ranking in gene expression correlation profiles for monocytes, in the presence of 

severe inflammation, compared with differential expression occurring in isolated myeloid 

cells in sepsis, and gene induction in vitro by IL-10 and interferons. Green matrix; reciprocal 

gene ranking using a dataset collection (n= 11) of monocytes in the presence of severe 

inflammation (see sheet 13 supporting table 3). Genes include GC-regulated genes and 

relevant marker genes for describing inflammation, cell type such as macrophage-like 

monocyte, and several cellular processes. GC-regulated genes that were chosen for obtaining 

a combined GC-driven gene profile (see sheet 4 supporting table 3) are shown in red. Gene 

rankings in profiles are color-coded in green from 1 (high) to 500 (low), high gene rankings 

(< 10) as indicated. Visible gene expression correlation (sub) clusters are indicated by black 

boxes. Visible gene groups, and gene induction involving interferon, NF-kB-dependent 

induction, and STAT3-dependent induction as annotated (vertical). Gene clusters originating 

from in vitro activation, in vivo inflammation A (more similar to clustering seen also in mild 

inflammation), in vivo inflammation B (clustering more specific to severe inflammation), and 

contamination as indicated (horizontal). GSE60424 sepsis monocytes and neutrophils 

(expression ratio); Expression ratios between control monocytes (MO control, n= 14), control 

neutrophils (NE control, n= 14), and monocytes (MO sepsis n= 3), and neutrophils (NE 

sepsis, n=3) isolated from sepsis patients. Samples for monocytes (n = 3), and neutrophils (n= 

3) isolated from IFN-treated MS patients were excluded from the control sample groups. 

Expression ratios shaded in blue, NA; gene absent in dataset. Genes not expressed in either 

monocytes or neutrophils, or expressed in unseparated neutrophil bands, indicated in red. 

GSE133822 sepsis monocytes (DEGs); differential gene expression between CD14 

monocytes from sepsis patients, and healthy control CD14 monocytes (RNA-seq dataset 

GSE133822 (Washburn et al., 2019)). Log2 fold change color-coded in red to blue (Log2FC). 

Log10 of unadjusted p-values color-coded in green to white, yellow not significant (Log10P). 

NA; gene absent in dataset. GSE146438 IL10 Monocytes (DEGs); differential gene 

expression between monocytes treated in vitro with IL-10 or IL-10 variants, and untreated 

control monocytes. Monocytes were rested 2 days in M-CSF media and subsequently 
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stimulated for 24h with different concentrations of IL-10 or IL-10 variants (RNA-seq dataset 

GSE146438 (Gorby et al., 2020)). Log2 fold change between IL-10 treated monocyte samples 

(n= 18), and untreated samples (n= 3) (Log2FC). Log2 fold change color-coded in red to blue. 

Log10 of unadjusted p-values color-coded in green to white, yellow not significant (Log10P). 

NA; gene absent in dataset. GSE190594 interferon monocytes (DEGs);  differential gene 

expression between monocytes treated in vitro with either IFN alpha or IFN gamma for 24h, 

and control monocytes (GSE190594, (Green et al., 2023)). Illumina GPL10558 gene probes 

used for different genes as indicated. Log2 fold change between IFN alpha treated monocyte 

samples (n= 9), and untreated samples (n= 8) (Log2FC IFNA), and between IFN gamma 

treated monocyte samples (n= 9), and untreated samples (n= 8) (Log2FC IFNG). Log2 fold 

change color-coded in red to blue. Corresponding log10 of unadjusted p-values color-coded in 

green to white, yellow not significant (Log10P IFNA, Log10P IFNG). NA; gene absent in 

dataset. 

Figure S9  

Gene induction by GC in a broader framework of gene expression in neutrophils in the 

absence of severe inflammation 

Reciprocal ranking in gene expression correlation profiles for neutrophils, in the absence of 

severe inflammation, compared with gene induction occurring during isolation of myeloid 

cells from blood, and gene induction by interferons. Green matrix; reciprocal gene ranking 

using a dataset collection (n= 6) of neutrophils in the absence of severe inflammation (see 

sheet 13, supporting table 3). Genes include GC-regulated genes and relevant marker genes 

for describing inflammation, cell type, and several cellular processes. GC-regulated genes that 

were chosen for obtaining a combined GC-driven gene profile (see sheet 1 supporting table 

able 3) are shown in red. Gene rankings in profiles are color-coded in green from 1 (high) to 

500 (low), high gene rankings (< 10) as indicated. Visible gene expression correlation (sub) 

clusters are indicated by black boxes. Visible gene groups, and gene induction involving 

interferon, and STAT3-dependent induction as annotated (vertical). Gene clusters originating 

from in vitro activation, in vivo inflammation, and contamination as indicated (horizontal). 

GSE60424 monocytes and neutrophils versus blood source (DEGs); Differential gene 

expression between separated cell preparations, and corresponding blood samples due to 

enrichment from source material, and in vitro activation (RNA-seq dataset GSE60424, one 

count added to table, made cpm (Linsley et al., 2014)). Sepsis samples and samples from in 

vivo interferon treatment of MS were excluded from the group comparisons. Log2 fold 
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change between monocyte samples (n= 14), and blood samples (n= 14) (Log2FC Mo), and 

log2 fold change between neutrophil samples (n= 14), and blood samples (n= 14) (Log2FC 

Ne). Log2 fold change color-coded in red to blue, NA; gene absent in dataset. Genes not 

expressed in either monocytes or neutrophils indicated in red.  GSE60424 IFN treatment 

monocytes and neutrophils (expression ratio); Expression ratios between control monocytes 

(MO control, n= 14), control neutrophils (NE control, n= 14), and monocytes (MO IFN, n= 

3), and neutrophils (NE IFN, n=3) isolated from MS patients treated with interferon. Sepsis 

samples for monocytes (n = 3) and neutrophils (n= 3) were excluded from the control sample 

groups. Expression ratios shaded in blue, NA; gene absent in dataset. Genes not expressed in 

either monocytes or neutrophils indicated in red. GSE145648 IFN treatment in vitro 

neutrophils (expression ratio); Expression ratios between control neutrophils (PMN control, 

n= 3), and neutrophils treated with either type 1 IFN (PMN IFN B1a, n= 3) or IFN gamma 

(PMN IFN gam. , n = 3) for 4 h (RNA-seq dataset GSE145648, subseries GSE131990, made 

cpm (Devlin et al., 2020)). Expression ratios shaded in blue, NA; gene absent in dataset. 

Figure S10  

Gene induction by GC in a broader framework of gene expression in neutrophils in the 

presence of severe inflammation 

Reciprocal ranking in gene expression correlation profiles for neutrophils, in the presence of 

severe inflammation, compared with differential expression occurring in isolated myeloid 

cells in sepsis. Green matrix; reciprocal gene ranking using a dataset collection (n= 10) of 

neutrophils in the presence of severe inflammation (see sheet 13 supporting table 3). Genes 

include GC-regulated genes and relevant marker genes for describing inflammation, cell type 

such as (meta) myelocytes, and several cellular processes. GC-regulated genes that were 

chosen for obtaining a combined GC-driven gene profile (see sheet 2 supporting table 3) are 

shown in red. Gene rankings in profiles are color-coded in green from 1 (high) to 500 (low), 

high gene rankings (< 10) as indicated. N in grey; insufficient supporting datasets for gene in 

profile. Visible gene expression correlation (sub) clusters are indicated by black boxes. 

Visible gene groups, and gene induction involving interferon, and STAT3-dependent 

induction as annotated (vertical). Gene clusters originating from in vitro activation, in vivo 

inflammation A (more similar to clustering seen also in mild inflammation), in vivo 

inflammation B (clustering more specific to severe inflammation), and contamination as 

indicated (horizontal). GSE60424 sepsis monocytes and neutrophils (expression ratio); 

Expression ratios between control monocytes (MO control, n= 14), control neutrophils (NE 
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control, n= 14), and monocytes (MO sepsis n= 3), and neutrophils (NE sepsis, n=3) isolated 

from sepsis patients. Samples for monocytes (n = 3), and neutrophils (n= 3) isolated from 

IFN-treated MS patients were excluded from the control sample groups. Expression ratios 

shaded in blue, NA; gene absent in dataset. Genes not expressed in either monocytes or 

neutrophils, or expressed in unseparated neutrophil bands, indicated in red. GSE123729 sepsis 

+ SIRS granulocytes versus control (DEGs); differential gene expression between 

granulocytes from sepsis and SIRS patients, and control granulocytes (GSE123729 (Coulibaly 

et al., 2019)). Log2 fold change color-coded in red to blue (Log2FC). Log10 of unadjusted p-

values color-coded in green to white, yellow not significant (Log10P). NA; gene absent in 

dataset. 

Figure S11 

Selection of gene set SIM (Severe Inflammatory Myeloid) and set FAM20A (4) used as 

whole blood transcriptomic biomarkers of severe inflammation. 

Main criteria: 1) genes in a large group of correlated expression in myeloid cells in whole 

blood in the presence of severe inflammation (SIM group). 2) no strong correlation with genes 

upregulated in severe inflammation by GC. 3) strong upregulation during severe inflammation 

in whole blood, in isolated monocytes or neutrophils. 4) in case of set FAM20A (n= 4), 

detectable subclustering of genes within larger SIM group. A Reciprocal ranking in 78 gene 

expression correlation profiles (rows) obtained using a collection of 38 blood transcriptomic 

datasets on severe inflammation (see sheet 15 supporting table 1). Gene rankings as derived 

from minimally 20 contributing datasets, approximately 30-35 contributing datasets on 

average. Gene rankings in profiles color-coded in green from 1 (high) to 400 (low). A pre-

selection of highly upregulated genes in severe inflammation as compared to mild 

inflammation, with additional relevant marker genes for cell type and inflammation as shown. 

Genes that were selected in SIM and FAM20A-4 sets as indicated. Marker genes include GC-

induced genes in severe inflammation (5 genes in biomarker set GC-2), PPARG (M2c 

monocytes), and genes expressed in immature neutrophils. Genes selected in SIM set include 

LDHA (in severe inflammation, marker for anaerobic glycolysis in neutrophils). Gene profiles 

with high ranking of FAM20A, and gene profiles with high ranking of SOCS3 (marker for 

STAT3-dependent expression) as shown. A stronger expression correlation of genes in cell 

proliferation with genes expressed in immature neutrophils than with genes expressed in 

plasmablasts, lower expression correlation of genes expressed in immature neutrophils 

(clusters AZU1 and MMP8), and a correlated expression of LDHA with genes upregulated in 
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neutrophils, instead of marker genes in biogenesis, were indicative for severe inflammation in 

the dataset collection. Genes that were also strongly upregulated in mild inflammation 

indicated in red (inflammation A, eg IL1B, and interferon-induced genes OASL and GBP1), 

genes more strongly or exclusively upregulated in severe inflammation indicated in brown 

(inflammation B;  GC inducible genes, SIM group). B  Differential expression of genes in 

SIM set, FAM20A-4 set, and 2 additional genes, which were not selected in sets;  mild 

respiratory viral infection (GSE68310,  GPL10558, (Zhai et al., 2015)), ill days 0 and 2 (n= 

258) versus baseline and spring (n= 243)  (Log2 FC mild 1), and sepsis (E-MTAB-5273, 

GPL10558, (Burnham et al., 2017)) sepsis (n= 221) versus control (n = 10) (Log 2FC sev 1) 

with corresponding p-values (Log10 pval mild 1, Log10 pval sev 1). Differential expression 

of same 22 genes in sepsis (GSE154918, RNA-seq, (Herwanto et al., 2021)), sepsis and 

bacterial infection (n = 65) versus healthy (n= 40) (Log 2FC sev 2) with corresponding p-

values (Log10 pval sev 2). Log2 FC values color-coded from red (upregulation) to blue 

(downregulation), NA gene absent. Log10  p-values color-coded from green (more 

significant) to white, not significant (yellow), NA, gene absent. C Expression ratios of genes 

in isolated cells, (GSE60424, RNA-seq, (Linsley et al., 2014)), all monocyte samples 

excluding IFN treated MS, and sepsis (Mo control, n= 14), all neutrophil samples excluding 

IFN treated MS, and sepsis (Ne control, n= 14), monocytes IFN treated MS (Mo IFN, n= 3), 

neutrophils IFN treated MS (Ne IFN, n= 3), monocytes sepsis (Mo sepsis, n= 3), and 

neutrophils sepsis (Ne sepsis, n= 3). In RNA-seq table, 1 count added, and made cpm, before 

calculating ratios. Ratio values color-coded in grey. D Correlation, hierarchical clustering of 

gene expression correlation matrix of same 22 genes using the collection of 38 blood 

transcriptomic datasets on severe inflammation, genes selected in set SIM and set FAM20A-4 

as indicated.  

Figure S12  

Selection of gene sets induction by interferon gamma and induction by interferon alpha.  

Main criteria: 1) genes belonging to either interferon alpha or interferon gamma related  (sub) 

clusters of correlated expression in whole blood in the absence of severe inflammation. 2) 

upregulation during mild inflammation, and 3) upregulation in isolated cells from IFN treated 

MS. A Reciprocal ranking in 80 gene expression correlation profiles (rows) obtained using a 

exploratory collection of 62 blood transcriptomic datasets excluding severe inflammation (see 

sheet 16 supporting table 1). Gene rankings as derived from minimally 25 contributing 

datasets, approximately 50-55 contributing datasets on average. Gene rankings in profiles 
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color-coded in green from 1 (high) to 400 (low). Interferon regulated genes, and relevant 

marker genes for cell types, cellular process, and inflammation as indicated. Genes IL1RN, 

TNFAIP6, CASP1 and AIM2 were used as additional markers for inflammation with 

involvement of interferon in gene induction. Gene markers exclusively induced in monocytes 

during inflammation (TCN2, C2, C1Qs), and genes markers IL1B (NF-kB) and SOCS3 

(STAT3) mainly induced in neutrophils during inflammation were also included. A stronger 

correlated expression of genes in proliferation with genes expressed in plasmablasts than in 

neutrophil bands, a tight correlated expression of genes expressed in neutrophil bands 

(clusters AZU1 and MMP8), and a correlated expression of LDHA with genes in biogenesis, 

indicated a relative absence of severe inflammation in the dataset collection. Marker genes 

upregulated in inflammation indicated in red. B  Differential expression of 23 genes in set 

interferon gamma, and 8 genes in set interferon alpha, mild respiratory viral infection 

(GSE68310,  GPL10558, (Zhai et al., 2015)), ill days 0 and 2 (n= 258) versus baseline and 

spring (n= 243)  (Log2 FC mild 1), and sepsis (E-MTAB-5273, GPL10558, (Burnham et al., 

2017)) sepsis (n= 221) versus control (n = 10) (Log 2FC sev 1) with corresponding p-values 

(Log10 pval mild 1, Log10 pval sev 1). Differential expression of same 31 genes in sepsis 

(GSE154918, RNA-seq, (Herwanto et al., 2021)), sepsis and bacterial infection (n = 65) 

versus healthy (n= 40) (Log 2FC sev 2) with corresponding p-values (Log10 pval sev 2). 

Log2 FC values color-coded from red (upregulation) to blue (downregulation), NA gene 

absent. Log10  p-values color-coded from green (more significant) to white, not significant 

(yellow), NA, gene absent. C Expression ratios of same 31 genes in isolated cells (GSE60424, 

RNA-seq, (Linsley et al., 2014)), all monocyte samples excluding IFN treated MS, and sepsis 

(Mo control, n= 14), all neutrophil samples excluding IFN treated MS, and sepsis (Ne control, 

n= 14), monocytes IFN treated MS (Mo IFN, n= 3), neutrophils IFN treated MS (Ne IFN, n= 

3), monocytes sepsis (Mo sepsis, n= 3), and neutrophils sepsis (Ne sepsis, n= 3). In RNA-seq 

table, 1 count added, and made cpm, before calculating ratios. Ratio values color-coded in 

grey. D Correlation, hierarchical clustering of gene expression correlation matrix of 31 genes 

in interferon modules, using the collection of 62 blood transcriptomic datasets excluding 

severe inflammation, genes selected in sets interferon gamma and alpha as indicated.  

Figure S13 

Expression correlation clustering of genes and corresponding gene probes used in comparing 

gene module / set  expression values between different inflammatory illnesses. 
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Hierarchical clustering of genes in expression correlation matrices for 3 different datasets on 

severe inflammation, each from a different platform. Genes in set T cell (bias naive T cell, n= 

13), SIM set (Severe Inflammatory Myeloid, n= 16), FAM20A set (n= 4), GC-2 set (n= 9), 

interferon gamma induced gene set (IFN gamma, n= 23), and interferon alpha induced gene 

set (IFN alpha, n= 8) as indicated. A dataset GSE66099, (Sweeney et al., 2015), samples 

SIRS, sepsis and septic shock (n total = 229), GPL570, Affymetrix Human Genome U133 

Plus 2.0 Array. B dataset E-MTAB-5273, (Burnham et al., 2017), samples sepsis (n total = 

221), GPL10558, Illumina HumanHT-12 V4.0 expression beadchip. C dataset GSE154918, 

(Herwanto et al., 2021), samples sepsis, septic shock, and uncomplicated bacterial infection (n 

total = 65), GPL20301, Illumina HiSeq 4000 (Homo sapiens). Gene expression correlation 

clusters corresponding to T cells and SIM set are well separated, with negative correlation. 

GC-2 clusters, corresponding to GC-induced genes in severe inflammation, and genes from 

the SIM set are positively correlated, and well separated, while the existence of a cluster for 

FAM20A genes, separate from other SIM genes, is not as clear from individual datasets. Gene 

expression clusters corresponding to either induction by interferon gamma, or interferon alpha 

are positively correlated and well separated. Experiment E-MTAB-5273 only provided a 

subset of available probes for platform GPL10558 with 7 selected gene probes missing. The 

clustering results indicated that selected genes, and selected gene probes used for Affymetrix, 

Illumina, and RNA-seq platforms (see supporting table 5) were generally adequate. 

Figure S14 

Distribution of gene set expression in health and during inflammatory illnesses (Affymetrix) 

GC-1 and GC-2 gene set expression in whole blood samples from sepsis, severe injury, 

systemic JIA, sarcoidosis, systemic sclerosis, rheumatoid arthritis, and asthma patients. 

Included for comparison are expression values for gene sets T cell, severe inflammatory 

myeloid (SIM), FAM20A, (4 genes including FAM20A), interferon gamma (inf gamma), and 

interferon alpha (inf alpha). All datasets are obtained using Affymetrix Human Genome U133 

Plus 2.0 Array (GPL570), and identical probesets (see supporting table 5) were used to 

calculate gene set expression values for each dataset. A; GSE66099 (Sweeney et al., 2015), 

healthy, SIRS, sepsis and septic shock (s-shock). B; GSE36809 (Xiao et al., 2011), healthy, 

blunt trauma till 99 h (trauma<99h), from 99 h till 28 days (trauma>99h). C; GSE77791 

(Plassais et al., 2017), healthy, severe burn shock (1-5 days, excluding 7 days samples; 

b.shock), severe burn shock with hydrocortisone treatment (1-5 days, excluding 7 days 

samples; b.shock GC). D; GSE80060 (Brachat et al., 2017), healthy, systemic juvenile 
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idiopathic arthritis (SJIA),with or withour canakinumab (can.mab) treatment on day 3 (all 

samples batch 1). E; GSE19314, (Koth et al., 2011), healthy and sarcoidosis. F; GSE65336 

(Guo et al., 2015) systemic sclerosis (SSc) before (SSC d0) and after 56 days of anifrolumab 

treatment (SSc anifrolumab, d56). G; GSE93272 (Tasaki et al., 2018) healthy, and rheumatoid 

arthritis, both drugs treated and untreated (RA). H; GSE69683, platform GPL13158 

(GPL570-like), (Bigler et al., 2017) healthy, moderate asthma, and severe asthma. Y-axis 

values on log-2 scale, with interval of 9 log 2 units for each panel. Shown are box plots with 

added binned dot plots. 

Figure S15 

Distribution of gene set expression in health and during inflammatory illnesses (Illumina) 

GC-1 and GC-2 gene set expression in whole blood samples from patients with SIRS, sepsis, 

sepsis/ARDS, febrile bacterial and viral infection, Kawasaki disease, children’s malaria, mild 

respiratory viral infection, and systemic lupus erythematosus (SLE), as well as from large 

healthy populations. Included for comparison are expression values for gene sets T cell, 

severe inflammatory myeloid (SIM), FAM20A, (4 genes including FAM20A), interferon 

gamma (inf gamma), and interferon alpha (inf alpha). All datasets are obtained using Illumina 

HumanHT-12 V4.0 or V3.0 expression beadchips (GPL10558 and GPL6947, respectively), 

and identical V4.0 probesets, which are also mostly present on V3.0, were used to calculate 

gene set expression values for each dataset (see supporting table 5). A; E-MTAB-5273, 

GPL10558 (Burnham et al., 2017), healthy, sepsis due to pneumonia (pneumonia), sepsis due 

to faecal peritonitis (f. peritonitis). B; E-MTAB-5273, GPL10558 (Burnham et al., 2017), 

healthy (none), sepsis response signature 1 (SRS1), sepsis response signature 2 (SRS2). C; 

GSE32707, GPL10558 (Dolinay et al., 2012), SIRS day 0 (SIRS), sepsis + ARDS day 0 

(se/ARDS), sepsis alone day 0 (seps.), sepsis alone day 7 (seps.d7). D; GSE72829, only 

GPL10558, (Herberg et al., 2016), febrile children with bacterial infection (bacterial), febrile 

childeren with viral infection (viral), febrile children with unknown infection (unknown). E; 

GSE73463, GPL10558 (Wright et al., 2018), convalescent Kawasaki disease (kawasaki conv), 

acute Kawasaki disease (kawasaki acute). F: GSE34404, GPL10558 (Idaghdour et al., 2012), 

children without symptomatic malaria (control), children with symptomatic P. falciparum 

malaria (Pf malaria). G; GSE117613, GPL10558 (Nallandhighal et al., 2019), children 

without P. falciparum infection (no Pf), children with severe malarial anemia (m. anemia), 

children with cerebral malaria (c. malaria). H; GSE138458, GPL10558 (Guthridge et al., 
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2020), SLE with low SLEDAI (SLE low), SLE with high SLEDAI (SLE high), control 

(control), (7 lower quality samples left out). I; GSE83456, GPL10558 (Blankley et al., 2016), 

healthy control (healthy), sarcoidosis (Sarcoid), extra pulmonary TB (EPTB), pulmonary TB 

(PTB). J; GSE42834, GPL10558 (Bloom et al., 2013), healthy control (healthy), non active 

Sarcoidosis (n act S), active Sarcoidosis (act Sarc), Tuberculosis (TB), lung cancer (lung Ca). 

K; GSE135304, GPL10558 (Kossenkov et al., 2019), benign pulmonary nodules (N benign), 

malign pulmonary nodules (N malign). L; GSE68310, GPL10558 (Zhai et al., 2015), healthy, 

mild respiratory influenza viral infection  (ill). M; GSE68310, GPL10558 (Zhai et al., 2015), 

healthy, mild respiratory non-influenza viral infection (ill). N; GSE48348, GPL6947 (Westra 

et al., 2013), healthy individuals (n= 734). O; datasets E-MTAB-1708, E-TABM-1036, and 

GSE36382, each GPL6947 (Inouye et al., 2010; Mayerle et al., 2013; Schramm et al., 2014), 

healthy individuals (n= 993, 518, and 991, respectively), only box plot with outliers shown. 

Y-axis values on log-2 scale, with interval of 9 log 2 units for each panel. Shown are box 

plots with added binned dot plots. 

Figure S16 

Distribution of gene set expression in health and during inflammatory illnesses (RNA-seq) 

number 1 

GC-2 gene set expression in whole blood samples from patients with SIRS, acute kidney 

injury, COVID-19, infectious diarrhea, brucellosis, leishmaniasis, adults malaria, 

inflammatory bowel disease (IBD), (systemic) juvenile idiopathic arthritis (SJIA and JIA), 

systemic lupus erythematosus (SLE), and mild respiratory viral infection, as well as from 

physically healthy populations. Included for comparison are expression values for gene sets T 

cell, severe inflammatory myeloid (SIM), FAM20A, (4 genes including FAM20A), interferon 

gamma (inf gamma), and interferon alpha (inf alpha). All datasets are obtained using mRNA 

sequencing and all genes, as present in different datasets, were used to calculate gene set 

expression values for each dataset (see supporting table 5). A; GSE67401 (Tsalik et al., 2015), 

SIRS, SIRS with acute kidney injury (SIRS-AKI), SIRS with hemodialysis (Hemodialysis), 

units 2 log rpm. B; GSE157103 (Overmyer et al., 2021), non COVID-19 patients not in ICU 

(ill), or in ICU (ill ICU), COVID-19 patients not in ICU (C19), or in ICU (C19 ICU), units 2 

log tpm. C; GSE152641 (Thair et al., 2021), healthy control (healthy), Covid-19 hospital 

patients (S Covid-19), units 2 log cpm. D; GSE69529 (DeBerg et al., 2018), healthy, 

infectious diarrhea with either bacterial (bact_drr), or rotaviral infection (rota_drr), units 2 log 
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cpm. E; GSE69597 (Dufort et al., 2016), healthy, brucellosis, leishmaniasis, units 2 log cpm. 

F; GSE52166 (Tran et al., 2016), healthy adults (healthy), adults with febrile Plasmodium 

falciparum malaria (Pf malaria), units 2 log fpkm. G; GSE112057 (Mo et al., 2018), healthy, 

ulcerative colitis (UC), Crohn disease (Crohn), juvenile idiopathic arthritis (JIA), systemic 

juvenile idiopathic arthritis (SJIA), units 2 log cpm. H; GSE72509 (Hung, Pratt, 

Sundararaman, Townsend, et al., 2015), healthy, systemic lupus erythematosus (SLE), units 2 

log rpkm. I; GSE107994 (Singhania et al., 2018), control, LTBI (latent TB),  LTBI Progressor 

(l prog TB), active TB, units 2 log cpm. J; GSE107793 (Singhania et al., 2018), control, LTBI 

(latent TB), units 2 log cpm. K; GSE97356 (Kuan et al., 2017), healthy and post traumatic 

stress disorder (PTSD), no PTSD, (no ptsd) , past PTSD (past ptsd), and actual PTSD (ptsd), 

units 2 log cpm. Shown are box plots with added binned dot plots. 

Figure S17 

Distribution of gene set expression in health and during inflammatory illnesses (RNA-seq) 

number 2 

GC-1 and GC-2 gene set expression in whole blood samples from acute fungal, bacterial and 

viral infection, sepsis, severe Covid-19, rheumatoid arthritis (RA), asthma, septic shock, 

Kawasaki disease, mild coronaviral infection, health, and additionally, gene set expression 

also in PBMC samples for severe Covid-19. Included for comparison are expression values 

for gene sets T cell, severe inflammatory myeloid (SIM), FAM20A, (4 genes including 

FAM20A), interferon gamma (inf gamma), and interferon alpha (inf alpha) (see supporting 

table 5). A; GSE176260, (Steinbrink et al., 2021), healthy control (Health), acute bacterial 

infection (Bact), acute candidemia (Cand), acute non infectious illness labeled SIRS (SIRS), 

acute viral infection (vir), units 2 log TMM normalized counts. B; GSE60424 (Linsley et al., 

2014), diseases excluding sepsis patients and interferon-treated MS patients (other), and 

sepsis patients (3 samples, sepsis), units 2 log TMM normalized counts. C; GSE171110 (Lévy 

et al., 2021), healthy control (healthy), and severe Covid-19 patients (Sev. Covid-19), units 2 

log cpm. D; GSE117769 published by Goldberg and co-workers (2018), healthy control 

(healthy), rheumatoid arthritis without GC treatment (RA-GC), rheumatoid arthritis with GC 

treatment (RA+GC), units made 2 log cpm. E; GSE115823 (Altman et al., 2019), asthmatic 

children with cold (cold), asthmatic children with cold, asthma exacerbation and systemic GC 

use (cold/asthmaX/GC), units made 2 log cpm. F; GSE161918 (C. Liu et al., 2021), PBMC 

from healthy control (healthy), and severe Covid-19 patients (Sev. Covid-19), units made 2 
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log cpm. G; GSE154918 (Herwanto et al., 2021), healthy control (healthy), bacterial infection 

(bact. inf.), and sepsis, units 2 log normalized value. H; GSE110487 (Barcella et al., 2018), 

septic shock within 16h (septic shock T1), and within 48h (septic shock T2) of admission to 

ICU. At T1 no patients, at T2 one in 31 patients with hydrocortisone treatment, units made 2 

log cpm  I; GSE207751 (published by Ginebaugh and colleagues, 2022), healthy, moderate 

asthma, and severe asthma, units 2 log normalized value. J; GSE161731 (McClain et al., 

2021), healthy control from student cohort (H), mixed severity influenza (Influ.), seasonal 

corona and other non-influenza respiratory viral infection, mainly prospective from healthy 

student cohort, and mild (Cor.), mixed severity COVID-19 (C-19), and severe (septic) 

bacterial pneumonia (Bact. Pn.), units, 2 log tpm, 0.1 tpm added. K; GSE196117 (Karakike et 

al., 2022), healthy control (healthy), sepsis, no recent high dose cortisol intake, with or 

without clarithromycin treatment (sepsis), units made 2 log cpm L; GSE178491 (Ghosh et al., 

2022), convalescent Kawasaki (Kawa. conval.), acute Kawasaki before initiation of 

treatments (Kawa. acute), febrile non-Kawasaki control (febr. acute), 10 samples below 5 

million total counts not used, units made 2 log cpm. M; GSE113883 (Braun et al., 2018), 

circadian experiment, using timepoints 13h, 15h, 17h, 19h (T down), and timepoints 1h, 3h, 

25h, 27h (T up), outlier individual labeled nr14 removed, units 2 log tpm, 0.1 tpm added. Y-

axis values on log-2 scale, with interval of 9 log 2 units for each panel. Shown are box plots 

with added binned dot plots. 

Figure S18 

Distribution of gene set expression in health and during inflammatory illnesses (other 

platforms) 

GC-1 and GC-2 gene set expression in whole blood samples in health, septic shock, SLE, 

rheumatoid arthritis (RA), Crohn disease, and ulcerative colitis (UC). Included for 

comparison are expression values for gene sets T cell, severe inflammatory myeloid (SIM), 

FAM20A, (4 genes including FAM20A), interferon gamma (inf gamma), and interferon alpha 

(inf alpha) (see supporting table 5). A; GSE110160 (platform GPL3921 taking probesets with 

highest mean expression) (Hu et al., 2018), healthy, and healthy 2-8 h after prednisolone 

intake (GC 2-8h). B; GSE106878 (platform GPL10295 taking probesets with highest mean 

expression) (Kolte, 2020), septic shock placebo 0 h (Ssh P0), septic shock hydrocortisone 0 h 

(Ssh GC0), septic shock placebo 24 h (Ssh P24), septic shock hydrocortisone 24 h (Ssh GC 

24). C; GSE110174 (platform GPL13158 taking probesets with highest mean expression) (Hu 
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et al., 2018), healthy, SLE low and medium prednisone usage (SL l/m GC), SLE high 

prednisone usage (SL hGC), SLE unknown prednisone usage (SL uGC). D; GSE110169 

(platform GPL13667 taking probesets with highest mean expression), batches 1 and 3 (Hu et 

al., 2018), healthy, RA without GC treatment (RA-GC), RA with GC treatment (RA+GC), 

SLE without GC treatment (SLE-GC), SLE with GC treatment (SLE+GC). E; GSE110169 

(platform GPL13667 taking probesets with highest mean expression), batches 2 and 4 (Hu et 

al., 2018), healthy, RA without GC treatment (RA-GC), RA with GC treatment (RA+GC), 

SLE without GC treatment (SLE-GC), SLE with GC treatment (SLE+GC). F; GSE126124 

(platform GPL6244, taking probes with highest mean expression) (Palmer et al., 2019), non 

inflammatory bowel disease (IBD) control (control), Crohn disease without GC use (Crohn), 

ulcerative colitis without GC use (UC). 

Figure S19 

Checking gene expression clustering in set GC-1 and GC-2  for selected datasets 

Reciprocal ranking in 19 gene expression correlation profiles obtained on 10  single data (sub) 

sets. A  health (GSE48348, GPL6947 (Westra et al., 2013)), B health (GSE36382, GPL6947 

(Mayerle et al., 2013)), C control (GSE34404, GPL10558 (Idaghdour et al., 2012)), D 

children’s severe malaria, symptomatic (GSE34404, GPL10558 (Idaghdour et al., 2012)), E 

convalescent Kawasaki’s disease (GSE73463, GPL10558 (Wright et al., 2018)), F acute 

Kawasaki’s disease, GC-untreated (GSE73463, GPL10558 (Wright et al., 2018)), G 

infectious bacterial diarrhea (GSE69529, RNA-seq (DeBerg et al., 2018)), H rotaviral 

diarrhea (GSE69529, RNA-seq (DeBerg et al., 2018)), I  health, data subset never PTSD 

(GSE97356, RNA-seq (Kuan et al., 2017)), J  Septic shock, GC-untreated (except for one 

sample), timepoints 1 and 2 (GSE110487, RNA-seq (Barcella et al., 2018)). Genes in set GC-

1 and set GC-2 as indicated. Gene rankings in profiles color-coded in green from 1 (high) to 

200 (low). Gene expression correlation profiles for each of 19 example genes shown in rows. 

Figure S20 

Gene expression correlation analysis for evaluation of possible GC biomarker genes number 1 

A,C, E : Overlap of first 50 genes in gene expression correlation profiles (see sheets 1,2,3 

supporting table 6), color-coded in green (50-0).  B, D. F : Reciprocal ranking of genes in 

profiles, color-coded in green (1-200). A ,B : health, GSE113883 (Braun et al., 2018), (n = 

140, excluding samples for outlier individual 14). Gene names in grey :  at or below detection. 
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C , D : SLE, GSE72509 (Hung, Pratt, Sundararaman, Towsend, et al., 2015), (all SLE 

samples, n = 99). E, F : sepsis, GSE154918 (Herwanto et al., 2021), (all sepsis samples, n = 

53). Black square : indicative for severe inflammation. Possible GC biomarker genes 

indicated by red square, relevant marker genes used as indicated. 

Figure S21  

Gene expression correlation analysis for evaluation of possible GC biomarker genes number 2 

Whole blood gene expression correlation in Rheumatoid Arthritis, asthma, and JIA. A,C, E : 

Overlap of first 50 genes in gene expression correlation profiles (see sheets 4,5,7 supporting 

table 6), color-coded in green (50-0).  B, D. F : Reciprocal ranking of genes in profiles, color-

coded in green (1-200). A ,B : Rheumatoid Arthritis , GSE117769 (Goldberg and co-

workers), (all RA samples, n = 52). D : Asthma, GSE207751 (Ginebaugh and co-workers), 

(all asthma samples, n = 42). E, F : JIA, GSE112057 (Mo et al., 2018), (all JIA samples, n = 

89). Possible GC biomarker genes indicated by red square,  relevant marker genes used as 

indicated. 

Figure S22  

Gene expression correlation analysis for evaluation of possible GC biomarker genes number 3 

Whole blood gene expression correlation in SJIA, IBD, and rotaviral gastroenteritis. A,C, E : 

Overlap of first 50 genes in gene expression correlation profiles (see sheets 7,6 supporting 

table 6), color-coded in green (50-0).  B, D. F : Reciprocal ranking of genes in profiles, color-

coded in green (1-200). A ,B : SJIA , GSE112057 (Mo et al., 2018), (all SJIA samples, n = 

26). D : IBD, GSE112057 (Mo et al., 2018), (all Crohn and UC samples, n = 75). E, F : 

rotaviral gastroenteritis, GSE69529 (DeBerg et al., 2018), (all rotavirus samples, n = 55). 

Possible GC biomarker genes indicated by red square,  relevant marker genes used as 

indicated. 

Figure S23  

Gene expression correlation analysis for evaluation of possible GC biomarker genes number 4 

Whole blood gene expression correlation in bacterial gastroenteritis, and frequently GC-

treated  severe COVID-19. A,C, E : Overlap of first 50 genes in gene expression correlation 

profiles (see sheets 6,8,9 supporting table 6), color-coded in green (50-0).  B, D. F : 

Reciprocal ranking of genes in profiles, color-coded in green (1-200). A ,B : bacterial 
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gastroenteritis, GSE69529 (DeBerg et al., 2018), (bacterial samples, n = 124). D : Severe 

COVID-19 , GSE171110 (Lévy et al., 2021), (all COVID-19 samples, n = 44). E, F : Severe 

COVID-19, GSE157103 (Overmyer et al., 2021), (all COVID-19, ICU and not ICU, samples, 

n = 100). Possible GC biomarker genes indicated by red square,  relevant marker genes used 

as indicated. Black squares : indicative for severe inflammation. 

Figure S24  

Gene expression correlation analysis for evaluation of possible GC biomarker genes number 5 

Whole blood gene expression correlation in GC-treated, and GC-untreated COVID-19. A,C, E 

: Overlap of first 50 genes in gene expression correlation profiles (see sheets 10,11,12 

supporting table 6), color-coded in green (50-0).  B, D. F : Reciprocal ranking of genes in 

profiles, color-coded in green (1-200). A ,B : Severe COVID-19, GSE206264 ((López-

Martínez et al., 2023), (both GC-treated and GC-untreated, n = 27). D : Severe COVID-19, 

GSE168400 (Amado-Rodríguez et al., 2022), (GC-untreated COVID-19, n = 42). E, F : 

Severe COVID-19, GSE197204 (López-Martínez et al., 2023), (GC-untreated COVID-19, n = 

56, with sample overlap with GSE168400). Possible GC biomarker genes indicated by red 

square, relevant marker genes used as indicated. 

Figure S25 

Comparing GC-inducible genes for use as whole blood transcriptomic biomarkers in health 

and in different diseases. 

Differential expression between different circadian phase in health (A), and between disease 

and healthy control (B-H). In addition, a measure of gene expression distribution range in 

disease (B-L) was used as a proxy for DEGs to account for absence of healthy control groups, 

and gene expression below or at detection limit in health in different datasets. Overlap of first 

50 highest ranking genes in gene expression correlation profiles with exploratory GC 

signature genes was used to indicate relative strength of induction by GC. The figure is a 

visualization of analysis presented in supporting table 6 on 12 RNA-seq datasets. A : 

Circadian in health, GSE113883 (Braun et al., 2018), log10 of mean expression (tpm) in all 

samples (Log10 H); mean of all individual log2 ratios (n = 11) of expression between T1 

timepoints (1h, 3h, 25h, 27h), and T2 timepoints (13h, 15h, 17h, 19h), (Log2FC T1/T2); 

log10 of corresponding p-values (Log10 pval); overlap of first 50 genes in expression 

correlation profiles, with genes present in exploratory GC signatures 1 and 2, correlation 
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profiles obtained on 140 samples excluding outlier individual labelled nr14 in dataset (GC 

signature H). 0.1 tpm unit was added to GSE113883 (table in tpm), before calculations (see 

sheet 1 supporting table 6). B :  SLE , GSE72509 (Hung, Pratt, Sundararaman, Towsend, et 

al., 2015), log10 of mean expression (rpkm) in healthy control samples (Log10 H),  Log2 fold 

change in SLE (n = 99), and healthy controls (n = 18), (Log2FC SLE/H) ; log10 of 

corresponding p-values (Log10 pval);  Log2 of ratio of mean value above 9th decile, and 

mean value below first quartile in distribution for SLE samples (Log2 D10m/Q1m SLE) ; 

overlap of first 50 genes in expression correlation profiles, obtained on SLE samples, with 

genes present in exploratory GC signature 1 and 2 (GC signature SLE) (see sheet 2 supporting 

table 6).  C : Sepsis, GSE154918 (Herwanto et al., 2021), log10 of mean expression 

(normalized value) in healthy control samples (Log10 H),  Log2 fold change in sepsis (n = 

53), and healthy controls (n = 40), (Log2FC SEPSIS /H) ; log10 of corresponding p-values 

(Log10 pval);  Log2 of ratio of mean value above 9th decile, and mean value below first 

quartile in distribution for sepsis samples (Log2 D10m/Q1m SEPS.) ; overlap of first 50 

genes in expression correlation profiles, obtained on sepsis samples, with genes present in 

exploratory GC signature 1 and 2 (GC signature SEPSIS) (see sheet 3 supporting table 6).  D : 

Rheumatoid Arthritis (RA) , GSE117769 (Goldberg and co-workers, 2018), log10 of mean 

expression (cpm) in healthy control samples (Log10 H),  Log2 fold change in GC-treated RA 

(n = 29), and healthy controls (n = 50), (Log2FC RA+GC/H) ; log10 of corresponding p-

values (Log10 pval); Log2 fold change in GC-treated RA (n = 29), and GC-untreated RA (n = 

23), (Log2FC +GC/-GC) ; log10 of corresponding p-values (Log10 pval) ; Log2 of ratio of 

mean value above 9th decile, and mean value below first quartile in distribution for RA 

samples (Log2 D10m/Q1m RA); overlap of first 50 genes in expression correlation profiles, 

obtained on RA samples, with genes present in exploratory GC signature 1 and 2 (GC 

signature RA). 1 count was added to GSE117769 (table in counts), and values cpm 

normalized, before calculations (see sheet 4 supporting table 6). E : Asthma, GSE207751 

(Ginebaugh and co-workers, 2022), log10 of mean expression (normalized value) in healthy 

control samples (Log10 H),  Log2 fold change in severe asthma (n = 23), and healthy controls 

(n = 14), (Log2FC AST. SEV. /H) ; log10 of corresponding p-values (Log10 pval); Log2 fold 

change in severe asthma (n = 23), and moderate asthma (n = 19), (Log2FC SEV./MOD.); 

log10 of corresponding p-values (Log10 pval) ; Log2 of ratio of mean value above 9th decile, 

and mean value below first quartile in distribution for all (n = 42) asthma samples (Log2 

D10m/Q1m AST.); overlap of first 50 genes in expression correlation profiles, obtained on all 

asthma samples, with genes present in exploratory GC signature 1 and 2 (GC signature AST.) 
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(see sheet 5 supporting table 6). F : Gastroenteritis, GSE69529 (DeBerg et al., 2018), log10 of 

mean expression (cpm) in healthy control samples (Log10 H),  Log2 fold change in rotaviral 

gastroenteritis (n = 55), and healthy controls (n = 24), (Log2FC ROTAVIRUS/H) ; log10 of 

corresponding p-values (Log10 pval); Log2 of ratio of mean value above 9th decile, and mean 

value below first quartile in distribution for rotaviral gastroenteritis samples (Log2 

D10m/Q1m ROTA); overlap of first 50 genes in expression correlation profiles, obtained on 

rotaviral gastroenteritis samples, with genes present in exploratory GC signature 1 and 2 (GC 

signature ROTA). Log2 fold change in bacterial gastroenteritis (n = 124), and healthy controls 

(n = 24), (Log2FC BACTERIAL/H) ; log10 of corresponding p-values (Log10 pval) ; Log2 

of ratio of mean value above 9th decile, and mean value below first quartile in distribution for 

bacterial gastroenteritis samples (Log2 D10m/Q1m BACT.); overlap of first 50 genes in 

expression correlation profiles, obtained on bacterial gastroenteritis samples, with genes 

present in exploratory GC signature 1 and 2 (GC signature BACT.). 1 count was added to 

GSE69529 (table in counts), and values cpm normalized, before calculations (see sheet 6 

supporting table 6). G : JIA, SJIA, and IBD, GSE112057 (Mo et al., 2018), log10 of mean 

expression (cpm) in healthy control samples (Log10 H),  Log2 fold change in JIA (n = 89), 

and healthy controls (n = 12), (Log2FC JIA/H) ; log10 of corresponding p-values (Log10 

pval); Log2 of ratio of mean value above 9th decile, and mean value below first quartile in 

distribution for JIA samples (Log2 D10m/Q1m JIA); overlap of first 50 genes in expression 

correlation profiles, obtained on JIA samples, with genes present in exploratory GC signature 

1 and 2 (GC signature JIA). Log2 fold change in SJIA (n = 26), and healthy controls (n = 12), 

(Log2FC SJIA/H) ; log10 of corresponding p-values (Log10 pval); Log2 of ratio of mean 

value above 9th decile, and mean value below first quartile in distribution for SJIA samples 

(Log2 D10m/Q1m SJIA); overlap of first 50 genes in expression correlation profiles, obtained 

on SJIA samples, with genes present in exploratory GC signature 1 and 2 (GC signature 

SJIA). Log2 fold change in IBD (n = 75), and healthy controls (n = 12), (Log2FC IBD/H) ; 

log10 of corresponding p-values (Log10 pval); Log2 of ratio of mean value above 9th decile, 

and mean value below first quartile in distribution for IBD samples (Log2 D10m/Q1m IBD); 

overlap of first 50 genes in expression correlation profiles, obtained on IBD samples, with 

genes present in exploratory GC signature 1 and 2 (GC signature IBD). 1 count was added to 

GSE112057 (table in counts), and values cpm normalized, before calculations (see sheet 7 

supporting table 6). H : Severe COVID-19,  frequent GC treatment, GSE171110 (Lévy et al., 

2021), log10 of mean expression (cpm) in healthy control samples (Log10 H),  Log2 fold 

change in severe COVID-19 (n = 44), and healthy controls (n = 10), (Log2FC C-19/H) ; log10 
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of corresponding p-values (Log10 pval); Log2 of ratio of mean value above 9th decile, and 

mean value below first quartile in distribution for COVID-19 samples (Log2 D10m/Q1m C-

19); overlap of first 50 genes in expression correlation profiles, obtained on COVID-19 

samples, with genes present in exploratory GC signature 1 and 2 (GC signature C-19). 1 count 

was added to GSE171110 (table in counts), and values cpm normalized, before calculations. 

(see sheet 8 supporting table 6) I : Severe COVID-19, frequent GC treatment, GSE157103 

(Overmyer et al., 2021), Log2 fold change in severe COVID-19 in ICU (n = 50), and severe 

COVID-19 not in ICU (n = 50), (Log2FC ICU/not ICU) ; log10 of corresponding p-values 

(Log10 pval); Log2 of ratio of mean value above 9th decile, and mean value below first 

quartile in distribution for all (n = 100) severe COVID-19 samples (Log2 D10m/Q1m C-19); 

overlap of first 50 genes in expression correlation profiles, obtained on all severe COVID-19 

samples, with genes present in exploratory GC signature 1 and 2 (GC signature C-19).  0.1 

tpm unit was added to GSE157103 (table in tpm), before calculations (see sheet 9 supporting 

table 6). J : Severe COVID-19, GSE206264 (López-Martínez et al., 2023), Log2 fold change 

in GC-treated severe COVID-19 (n = 11), and GC-untreated severe COVID-19 (n = 16), 

(Log2FC +GC/-GC) ; log10 of corresponding p-values (Log10 pval); Log2 of ratio of mean 

value above 9th decile, and mean value below first quartile in distribution for all (n = 27) 

severe COVID-19 samples (Log2 D10m/Q1m C-19); overlap of first 50 genes in expression 

correlation profiles, obtained on all severe COVID-19 samples, with genes present in 

exploratory GC signature 1 and 2 (GC signature C-19). 1 count was added to GSE206264 

(table in counts), and values cpm normalized, before calculations (see sheet 10 supporting 

table 6). K : Severe COVID-19, no GC treatment, GSE168400 (Amado-Rodríguez et al., 

2022), Log2 of ratio of mean value above 9th decile, and mean value below first quartile in 

distribution for all (n = 42) severe COVID-19 samples (Log2 D10m/Q1m C-19); overlap of 

first 50 genes in expression correlation profiles, obtained on all severe COVID-19 samples, 

with genes present in exploratory GC signature 1 and 2 (GC signature C-19). 1 count was 

added to GSE168400 (table in counts), and values cpm normalized, before calculations (see 

sheet 11 supporting table 6). L : Severe COVID-19, no GC treatment, GSE197204 (López-

Martínez et al., 2023), (some samples shared with GSE168400), Log2 of ratio of mean value 

above 9th decile, and mean value below first quartile in distribution for all (n = 56) severe 

COVID-19 samples (Log2 D10m/Q1m C-19); overlap of first 50 genes in expression 

correlation profiles, obtained on all severe COVID-19 samples, with genes present in 

exploratory GC signature 1 and 2 (GC signature C-19). 1 count was added to GSE197204 

(table in counts), and values cpm normalized, before calculations (see sheet 12 supporting 
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table 6). A-L Relative gene expression in healthy controls color-coded from blue (maximal) 

to white (minimal), for each dataset separately. Genes expressed at or below detection limit 

(in health) shaded in grey. Log2 fold change in differential expression color-coded in red 

(maximal upregulation) to blue (maximal downregulation), for each comparison separately. 

Corresponding p-values color-coded from green (minimal value in comparison) to white, 

shaded yellow at p-value above 0.05 (not significant). Log2 of ratio of mean value above 9th 

decile and mean value below first quartile color-coded in red (maximal) to white (minimal), 

for each dataset (or subset) separately, to indicate range in distribution. Overlap of highest 50 

ranking genes in expression correlation profiles with exploratory GC signatures 1 and 2 coded 

in grey (50) to white (0). NA: gene absent in dataset. GC biomarker gene sets GC-1 

(lightgreen), and GC-2 (darkgreen), possible GC biomarker genes (red), and relevant marker 

genes as indicated (B and M, antigen presentation by B cell and monocyte; NF-kB, NF-kB  

dependent gene induction; immature neutrophil, neutrophil bands or (meta) myelocytes in 

case of severe inflammation; NK/C-TOX, natural killer cell and cytotoxic T cell. Upregulated 

marker genes in severe inflammation include PPARG (monocytes), MERTK (monocytes and 

neutrophils), and genes GYG1, HK3, LDHA (mainly neutrophil). Downregulated marker 

genes in severe inflammation include genes ALDH1A1, PLA2G7, and ARHGEF10L (in 

monocytes), and genes MME, HAL, and NOV (downregulated in neutrophil compartment). 

Figure S26 

Graphical abstract 

Table S1 

Signatures of GC-driven gene expression in whole blood  

14 gene expression correlation signatures of GC-driven gene expression obtained on 4 whole 

blood dataset (sub) collections combining different GC-induced genes as correlation queries. 

Gene ranking in gene expression correlation profiles color-coded in green from 1 (high) to 

500 (low). Lists are cut off at 2000 genes. Average correlation value (cor), number of 

contributing datasets (nr), and ranking (rank) in single gene profile. Mean of rankings in 

different profiles (mean.rank), sum of contributing datasets (sumof supportingdatasets), and 

final ranking in signature (rank.mean). #N/B; number of contributing datasets for a gene in a 

profile below a set threshold. 
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Sheet 1)  circadian cortisol 15 nonsevere; Gene expression correlation signature from 

circadian cortisol with little cell type bias obtained on a collection of 15 datasets excluding 

severe inflammation, using GC-induced query genes, PER1, ZBTB16, DDIT4, TSC22D3, 

KLF9, IRS2. 

Sheet 2)  circ cort 15 nonsev bias Lympho; Gene expression correlation signature from 

circadian cortisol with bias for lymphocytes (mostly NK) obtained on a collection of 15 

datasets excluding severe inflammation, using GC-induced query gene DDIT4. Several high 

ranking genes more generally expressed in NK cells and NK/T cells as indicated (bold, red, 

orange). 

Sheet 3)  circ cort 15 nonsev bias Neutro; Gene expression correlation signature from 

circadian cortisol with bias for neutrophils obtained on a collection of 15 datasets excluding 

severe inflammation, using GC-induced query genes, TSC22D3, IRS2, FKBP5, ECHDC3, 

TPST1. Several genes more generally expressed in neutrophils as indicated (bold, red). 

Sheet 4)  inflam. GC 15 sev bias Lympho; Gene expression correlation signature from GC 

in severe inflammation with bias for lymphocytes obtained on a collection of 15 datasets on 

severe inflammation using GC-induced query gene DDIT4.  

Sheet 5)  inflam. GC 15 sev bias Myelo; Gene expression correlation signature from GC in 

severe inflammation with bias for neutrophils and monocytes obtained on a collection of 15 

datasets on severe inflammation using GC-induced query genes, FLT3, ADORA3, CD163, 

OLAH, DAAM2, ADAMTS2, VSIG4. Several genes more generally upregulated in 

neutrophils during severe inflammation as indicated (bold, red). 

Sheet 6)  inflam. GC 15 sev bias Neutro; Gene expression correlation signature from GC in 

severe inflammation with bias for neutrophil obtained on a collection of 15 datasets on severe 

inflammation using GC-induced query genes, OLAH, IL1R2, IL18R1, FKBP5, ECHDC3. 

Several genes more generally upregulated in neutrophils during severe inflammation as 

indicated (bold, red). 

Sheet 7)  inflam. GC 15 sev bias Mono; Gene expression correlation signature with bias for 

monocyte obtained on a collection of 15 datasets on severe inflammation using GC-induced 

query genes, FLT3, ADAMTS2, VSIG4, AMPH, GPER1. Several genes more generally 

upregulated in neutrophils during severe inflammation as indicated (bold, red). 
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Sheet 8)  circadian cortisol 40 nonsevere; Gene expression correlation signature from 

circadian cortisol with little cell type bias obtained on a collection of 40 datasets excluding 

severe inflammation, using GC-induced query genes, PER1, ZBTB16, DDIT4, TSC22D3, 

KLF9, IRS2. 

Sheet 9)  circ cort 40 nonsev bias Lympho; Gene expression correlation signature from 

circadian cortisol with bias for lymphocytes (mostly NK) obtained on a collection of 40 

datasets excluding severe inflammation, using GC-induced query gene DDIT4. Several high 

ranking genes more generally expressed in NK cells and NK/T cells as indicated (bold, red, 

orange). 

Sheet 10)  circ cort 40 nonsev bias Neutro; Gene expression correlation signature from 

circadian cortisol with bias for neutrophils obtained on a collection of 40 datasets excluding 

severe inflammation, using GC-induced query genes, TSC22D3, IRS2, FKBP5, ECHDC3, 

TPST1. Several genes more generally expressed in neutrophils as indicated (bold, red). 

Sheet 11)  inflam. GC 38 sev bias Lympho; Gene expression correlation signature from GC 

in severe inflammation with bias for lymphocytes obtained on a collection of 38 datasets on 

severe inflammation using GC-induced query gene DDIT4.  

Sheet 12)  inflam. GC 38 sev bias Myelo; Gene expression correlation signature from GC in 

severe inflammation with bias for neutrophils and monocytes obtained on a collection of 38 

datasets on severe inflammation using GC-induced query genes, FLT3, ADORA3, CD163, 

OLAH, DAAM2, ADAMTS2, VSIG4. Several genes more generally upregulated in 

neutrophils during severe inflammation as indicated (bold, red). 

Sheet 13)  inflam. GC 38 sev bias Neutro; Gene expression correlation signature from GC in 

severe inflammation with bias for neutrophil obtained on a collection of 38 datasets on severe 

inflammation using GC-induced query genes, OLAH, IL1R2, IL18R1, FKBP5, ECHDC3. 

Several genes more generally upregulated in neutrophils during severe inflammation as 

indicated (bold, red). 

Sheet 14)  inflam. GC 38 sev bias Mono; Gene expression correlation signature from GC in 

severe inflammation with bias for monocyte obtained on a collection of 38 datasets on severe 

inflammation using GC-induced query genes, FLT3, ADAMTS2, VSIG4, AMPH, GPER1. 

Several genes more generally upregulated in neutrophils during severe inflammation as 

indicated (bold, red). 
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Sheet 15) dataset collections; Lists of datasets in 4 collections used to obtain GC-driven gene 

expression profiles. Dataset collection blood no severe inflammation (n=15), and collection 

blood severe inflammation (n= 15) are subcollections of collection blood no severe 

inflammation (n= 40), and collection blood severe inflammation (n= 38), respectively. GEO 

and ArrayExpress dataset accessions (dataset), data subset used and edits performed 

(comment 1), and health or type of disease (comment 2) as indicated. 

Sheet 16) exploratory dataset collection; Dataset collection blood no severe inflammation 

(n=62), also containing several PBMC datasets and whole blood datasets on MS and 

tuberculosis. Datasets from this larger collection were used to assemble collection blood no 

severe inflammation (n= 40, sheet 12), which excludes PBMC, tuberculosis, and MS datasets, 

among others. 

Table S2  

Overall signature of GC-driven gene expression in vivo, 7 gene sets derived from GC 

signatures in blood, and 9 DEG sets of in vitro GC induction in immune cells. 

Candidate gene sets for regulation by GC were derived from expression correlation signatures 

of GC-driven gene expression in vivo from different dataset (sub) collections covering whole 

blood, PBMCs, isolated monocytes, and neutrophils, either in the absence or presence of 

severe inflammation. Gene sets were selected by combining related GC signatures, taking into 

account recurrent genes and top ranking genes. Upregulated DEG sets came from in vitro 

experiments on GC treatment of PBMCs, monocytes, macrophages, neutrophils, CD4 T cells, 

and B cells. A threshold of 2 fold upregulation and unadjusted p-values below 0.05 was used 

for upregulated DEGs. Sheets 3-11;  Log2 fold change, and corresponding p-values all from 

two tailed, unpaired t tests. 

Sheet 1) exploratory GC sign. cut off;  top ranking genes (n = 272) in earlier GC signatures 

1 and 2 obtained in the exploratory phase by programmatic selection of datasets from a 

collection of 375+  whole blood and PBMC transcriptomic datasets, using either GC inducible 

gene query 1 (PER1, ZBTB16, DDIT4, TSC22D3, KLF9, IRS2), or query 2 (FLT3, 

ADORA3, CD163, OLAH, DAAM2, ADAMTS2, VSIG4). Sheet 2) all GC signatures 

2000; an overall signature of GC-driven gene expression in blood and tissues obtained by 

ranking genes by frequency of occurrence in first 2000 genes in 16 separate GC signatures 

(see supporting tables S1 and S3), and a comparison with upregulated DEGs by GC in vitro in 

different immune cells and human cell cultures from experiment GSE112101 (Franco et al., 
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2019). Frequency, mean ranking and top ranking in positive signatures, and signature with 

highest ranking as indicated (GC signatures in vivo correlation). Log10 of unadjusted p-values  

< 0.05 (paired, two-tailed t-test) were calculated for DEGs in 9 sample groups of different 

cells in experiment GSE112101. Mean and minimal Log10 was calculated only for p-values 

corresponding with upregulated DEGs not using a threshold for fold upregulation. Sample 

group with lowest p-value as indicated. NA in pink, no sample group with significant 

upregulation; in grey, gene not present on platform or gene present with different alias (GC in 

vitro upregulated DEGs). Sheet 3) gene sets from GC sign.; drafting of 7 sets of candidate 

GC-regulated genes using combinations of overlap and high ranking in different GC 

signatures as indicated. Contributing GC signatures were from whole blood, PBMCs, 

monocytes and neutrophils. Sheet 4) comparison GC sign. gene sets.; comparison of 

candidate GC-regulated genes (n= 625 in total) in 7 gene sets selected from whole blood GC 

signatures 1 and 2, PBMC-based GC signatures, and from GC signatures in monocytes and 

neutrophils, either in health or in severe inflammation. Genes present in set 1, that were 

expressed in NK cells more generally and that originated from lymphocyte-biased circadian 

GC signatures, are marked in bold red. Set 1 ; from whole blood GC signatures 1 bias 

lymphocyte, little cell type bias, and bias neutrophil (WB GC signature circadian). Set 2 ; 

from whole blood GC signatures 2 bias myeloid cells, bias monocyte, and bias neutrophil 

(WB GC sign. Sev. Inflam. bias Myeloid cells). Set 3 ; from whole blood GC signatures 2 

bias lymphocyte (WB GC sign. Sev. Inflam. bias Lymphocyte). Set 4;  from circadian GC 

signature of isolated monocytes and circadian GC signature PBMC bias monocyte (mono GC 

signature circadian). Set 5; from GC signature of isolated monocytes in severe inflammation 

and whole blood GC signatures 2 bias monocyte (mono GC signature sev. inflam.). Set 6; 

from circadian GC signature of isolated neutrophils and whole blood circadian GC signatures 

1 bias neutrophil (neutro GC signature circadian). Set 7; from GC signature of isolated 

neutrophils / granulocytes in severe inflammation and whole blood GC signatures 2 bias 

neutrophil (neutro GC signature sev. inflam.). All candidate GC-regulated genes in 7 sets 

were scored for their presence in 7 separate sets, to give a corresponding frequency 

distribution (frequency Signature sets). Number of times present in 9 DEG sets as tabled in 

sheet 14 also shown (frequency DEGs). Sheet 5) PBMC_GSE100156; GC upregulated 

DEGs in PBMCs (GSE110156; (Hu et al., 2018)). Sheet 6) PBMC_GSE33649_8h; GC 

upregulated DEGs in 8h dexamethasone treated, PHA activated PBMCs compared to 8h 

ethanol control treated, PHA activated PBMCs (GSE33649 subset, (Maranville et al., 2013)). 

Sheet 7) MDMacro_GSE61880; GC upregulated DEGs in monocyte derived macrophages 
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(GSE61880; (Jubb et al., 2016)), using time points corresponding with highest fold change as 

indicated. Sheets 8, and 9) GC upregulated DEGs in monocyte derived macrophages 

(MDMacro_GSE109439) and monocytes (monocyte_GSE109439) (GSE109439; (Wang et 

al., 2019)). Sheets 10, 11, 12, 13) GC upregulated DEGs in monocytes 

(monocyte_GSE112101), neutrophils (neutrophil_GSE112101), CD4 T cells 

(T_CD4_GSE112101), and B cells (B-Cell_GSE112101) (GSE112101; (Franco et al., 

2019)). Sheet 14) GC DEGs frequency distribution; all genes in 9 DEG sets (n = 1725) 

scored for their presence in 9 separate DEG sets, and corresponding frequency distribution 

(frequency DEGs). Number of times present in 7 GC signature gene sets as tabled in sheet 4 

also shown (frequency Signature sets).  

Table S3  

Signatures of GC-driven gene expression in blood cells and tissues  

9 gene expression correlation signatures of GC-driven gene expression obtained on 8 

transcriptomic dataset collections of monocytes, neutrophils, PBMC, muscle, skin, and fat, 

combining different GC-induced genes as correlation queries. In case of monocytes and 

neutrophils, dataset collections were specific for either health or presence of severe 

inflammation, based on experimental description. Also, 3 gene expression correlation 

signatures of CLOCK- driven gene expression in tissues. In case of tissues, CLOCK-driven 

gene profiles showed some overlap with GC-driven profiles. Gene ranking in gene expression 

correlation profiles color-coded in green from 1 (high) to 500 (low). Lists are cut off at 2000 

genes. Average correlation value (cor), number of contributing datasets (nr), and ranking 

(rank) in single gene profile. Mean of rankings in different profiles (mean.rank), sum of 

contributing datasets (sumof supportingdatasets), and final ranking in signature (rank.mean). 

#N/B; number of contributing datasets for a gene in a profile below a set threshold. 

Sheet 1)  circadian cortisol neutrophil; Gene expression correlation signature from 

circadian cortisol obtained on a collection of 6 neutrophil datasets on health, using GC-

induced query genes CCND3, CEBPD, ECHDC3, FKBP5, IL1R2, IRS2, TOB1. 

Sheet 2)  inflammatory GC neutrophil; Gene expression correlation signature from GC in 

severe inflammation obtained on a collection of 10 neutrophil / granulocyte datasets on severe 

inflammation, using GC-induced query genes CLEC4E, ECHDC3, FKBP5, CD163, MACIR, 

OLAH, DAAM2. 
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Sheet 3)  circadian cortisol monocyte; Gene expression correlation signature from circadian 

cortisol obtained on a collection of 8 monocyte datasets on health, using GC-induced query 

genes ZBTB16, KLF9, TSC22D3, PER1, IRS2, FKBP5, FLT3, ALOX15B, GPER1, TPST1.  

Sheet 4)  inflammatory GC monocyte; Gene expression correlation signature from GC in 

severe inflammation obtained on a collection of 11 monocyte datasets on severe 

inflammation, using GC-induced query genes IL1R2, FKBP5, TPST1, FLT3, ADAMTS2, 

VSIG4. 

Sheet 5)  PBMC circ cort bias lympho; Gene expression correlation signature from 

circadian cortisol with a bias for lymphocytes obtained on a collection of 7 PBMC datasets on 

health and vaccination, using GC-induced query genes DDIT4, KLF9, BTG1. 

Sheet 6)  PBMC circ cort bias mono; Gene expression correlation signature from circadian 

cortisol with a bias for monocytes obtained on a collection of 7 PBMC datasets on health and 

vaccination, using GC-induced query genes GPER1, FLT3, ECHDC3, FKBP5, ADORA3, 

SMAP2, RNF144B. 

Sheet 7)  muscle circadian cortisol; Gene expression correlation signature from circadian 

cortisol obtained on a collection of 11 muscle datasets on health and sarcopenia, using GC-

induced query genes DDIT4, TSC22D3, PER1, CEBPB, CEBPD, KLF9, FKBP5, ZBTB16, 

GLUL, FOXO3, FOXO1. 

Sheet 8)  skin circadian cortisol; Gene expression correlation signature from circadian 

cortisol obtained on a collection of 6 skin datasets on health and nonlesional skin in psoriasis, 

using GC-induced query genes TSC22D3, PER1, KLF9, FKBP5, ZBTB16, BCL6, IRS2. 

Sheet 9)  fat circadian cortisol; Gene expression correlation signature from circadian cortisol 

obtained on a collection of 5 fat tissue datasets on health and obesity, using GC-induced query 

genes TSC22D3, PER1, KLF9, ZBTB16, ITPKC, RHOB, ERFFI1. 

Sheet 10)  muscle CLOCK; Gene expression correlation signature from CLOCK-driven gene 

expression obtained on a collection of 11 muscle datasets on health and sarcopenia, using 

selected CLOCK:BMAL1-regulated core clock query genes PER3, HLF, TEF, DBP. 

Sheet 11)  skin CLOCK; Gene expression correlation signature from CLOCK-driven gene 

expression obtained on a collection of 6 skin datasets on health and nonlesional skin in 

psoriasis, using selected CLOCK:BMAL1-regulated core clock query genes PER2, PER3, 

HLF, TEF, DBP, NR1D2. 
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Sheet 12)  fat CLOCK; Gene expression correlation signature from CLOCK-driven gene 

expression obtained on a collection of 5 fat tissue datasets on health and obesity, using 

selected CLOCK:BMAL1-regulated core clock query genes PER2, PER3, HLF, TEF, DBP. 

Sheet 13) dataset collections; overview of datasets in 8 separate collections used to obtain 

gene expression correlation profiles (datasets), sample groups according to cell type, tissue, or 

disease (comment 1; disease, subset, cells/tissue), assay type, (microarray platform with GEO 

accession, or RNA-seq), value type, and scale (comment 2; scale, platform), number of 

samples used with each data (sub)set (nr.samples). 

Table S4 

Circadian DEGs in health, and GC treatment induced DEGs in septic shock and burn shock 

Upregulated DEGs in whole blood of septic shock and burn shock patients upon GC treatment 

were compared with each other, with data on upregulation in monocytes and neutrophils in 

sepsis compared to controls, with data on in vitro induction by GC, and with correlation 

signatures of GC-driven gene expression in severe inflammation. The comparison was made 

to help identify direct gene targets of GC treatment in shock. DEGs induced by circadian GC 

in health were added for comparison. 

Sheet 1) 6h circadian DEGs GDS3704; DEGs in PBMCs at 0h and 6h time points after fatty 

acid consumption (GDS3704, 84 samples, dietary unsaturated and saturated fatty acid 

consumption, (Bouwens et al., 2010)), experiment added to compare DEGs induced by 

circadian GC in health, and by GC treatment in shock. Expression of circadian, GC-induced 

genes is higher at 0h time point in the experiment. Log2 fold change and p-values given for 

unpaired and paired two-sided t-tests of highest 2000 upregulated DEGs. Sheet 2) GC DEGs 

septic shock GSE106878; Upregulated DEGs in whole blood of septic shock patients beween 

either 24h GC or 24h placebo treatment (GSE106878, sequential hydrocortisone injections, 24 

GC treated patients, 23 placebo treated patients, (Kolte, 2020)). Log2 fold change and p-

values given for unpaired two sided t-tests of highest 2000 upregulated DEGs. Sheet 3) GC 

DEGs burn shock GSE77791; Upregulated DEGs in whole blood of burn shock patients 

treated with GC, comparing one day and 120h time points with placebo treatment at one day 

and at 120h time points (GSE77791, priming dose and continuous infusion of hydrocortisone, 

time series, 15 GC treated individuals, 15 placebo treated individuals, (Plassais et al., 2017)). 

Log2 fold change and p-values given for unpaired two sided t-tests of highest 2000 
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upregulated DEGs.  Sheet 4) GC DEGs sepsis (Wong, 2014);  Upregulated and 

downregulated DEGs in whole blood of GC-treated pediatric septic shock. Differentially 

expressed Affymetrix probe sets with provided gene annotation (256) after corticosteroid 

treatment of pediatric septic shock (Wong et al., 2014). Probe sets corresponding with genes 

present in gene sets based on whole blood GC 1 (circadian) and GC 2 (severe inflammation) 

gene expression correlation signatures as indicated, and marked in red. Additional DEGs 

found in GSE106878 and GSE77791 marked in orange. Sheet 5) comparison GC DEGs 

shock; A comparison of GC treatment induced DEGs in septic shock (GSE106878, (Kolte, 

2020)), and in burn shock (GSE77791, (Plassais et al., 2017)). The highest 2000 upregulated 

DEGs in GC treatment of either septic shock or burn shock, with p-values less than 0.05, were 

profiled together for expression in monocytes and neutrophils during sepsis (GSE60424, 

(Linsley et al., 2014)), inducibility by GC in vitro in monocytes and neutrophils (GSE112101, 

(Franco et al., 2019)), as well as for ranking in signatures of GC-driven gene expression in 

severe inflammation in whole blood, monocytes, and neutrophils / granulocytes.  DEGs 

GSE106878 septic shock and GSE77791 burn shock; A large proportion of DEGs are shared 

between both experiments, including several genes with different gene symbols on both 

platforms (eg OLAH and THEDC1). HUGO approved gene symbols are provided where 

necessary. Log2 fold change (log GC/-) color-coded in red to green and corresponding p-

values given for unpaired two sided t-tests, shaded in green to white, in yellow; p-value > 

0.05 (not significant). #N/B in logGC/- columns; gene missing from platform. #N/B in p-

value columns; gene missing from platform, or gene not with first 2000 upregulated DEGs. 

DEGs GSE60424 monocytes and neutrophils sepsis; Several highly induced genes in GC 

treatment of septic shock and burn shock are also upregulated in monocytes, neutrophils or in 

both cell types during sepsis (3 samples for each cell type) compared with controls (healthy, 

type 1 diabetes, amyotrophic lateral sclerosis, and multiple sclerosis excluding interferon beta 

treatment, 14 samples for each cell type in total) in experiment GSE60424 (Linsley et al., 

2014). Ratios of gene expression in monocytes (M) and neutrophils (N) in controls and sepsis 

as indicated, and color-coded in grey. Log2 of gene expression ratio between monocytes and 

neutrophils during sepsis added separately (log M seps/ N seps), and color-coded from yellow 

(more in monocytes) to blue (more in neutrophils). ##### in blue; no detection in monocytes, 

##### in yellow; no detection in neutrophils. #N/B; gene missing from platform. DEGs 

GSE112101 healthy monocytes and neutrophils in vitro GC treatment; Gene inducibility by 

GC in vitro in monocytes and in neutrophils isolated from healthy people (GSE112101, 

(Franco et al., 2019)) broadly agrees with a direct effect of GC on DEGs seen in vivo. Log2 of 
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gene expression ratio between GC treated monocytes and GC treated neutrophils (log M 

GC/N GC) color-coded from yellow (more in monocytes) to blue (more in neutrophils). 

##### in blue; no detection in monocytes, ##### in yellow; no detection in neutrophils. Log2 

fold change between GC-treated and untreated control samples color-coded in red to blue, and 

unadjusted p-values given for unpaired and paired two sided t-tests of differential expression 

in monocytes (MGC) and neutrophils (NGC), shaded in green to white, in yellow; p-value > 

0.05 (not significant). #N/B; gene missing from platform. ##### in blue; no detection in 

samples with GC,  ##### in red; no detection in samples without GC. COR blood severe (n= 

38); Ranking of DEGs in whole blood GC signatures 2 (severe inflammation), bias 

lymphocyte, bias myeloid cells, bias neutrophil, and bias monocyte. COR datasets collection 

cells; Ranking of DEGs in correlation signatures of GC-driven gene expression in severe 

inflammation in dataset collections of isolated neutrophils / granulocytes, and isolated 

monocytes. High ranking of DEGs in signatures from GC-driven gene expression in vivo 

indicated a direct effect of GC treatment on such DEGs seen in vivo. #N/B; gene not present 

in GC signatures, which may also be due to different gene alias used in DEGs. Gene rankings 

1-500 in signatures shaded in green (1 high) to white (500 low).  

Table S5 

Gene sets and gene probe identifiers used in screening different illnesses 

Gene composition for gene sets T cell, SIM (severe inflammatory myeloid), FAM20A (n= 4), 

biomarker gene sets GC-2, GC-1, interferon gamma, and interferon alpha as provided. For 

determining gene set expression values in microarray experiments, genes were represented by 

a single adequate probe identifier chosen for microarray platforms GPL570 (Affymetrix 

Human Genome U133 Plus 2.0 array), GPL10558 (Illumina HumanHT-12 V4.0 expression 

beadchip), and GPL6947 (Illumina HumanHT-12 V3.0 expression beadchip) as given. 

Illumina platforms GPL10558 and GPL6947 share probe identifiers, but with a small number 

of specific gene probes absent from GPL6947 compared to GPL10558. Gene set expression 

values were calculated according to methods. 

Table S6 

Comparing GC-inducible genes for use as whole blood transcriptomic biomarkers in health 

and in different diseases.  
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Differential expression, and gene expression correlation analysis, using 12 whole blood RNA-

seq datasets on health and different diseases. Potential GC biomarker genes (n= 26), including 

genes in biomarker sets GC-1, GC-2, and in 3 existing GC biomarker sets for Addison’s 

disease (Sævik et al., 2021), and SLE (Hu et al., 2018; Northcott et al., 2021) were tested for 

health, and for different diseases. Results for several marker genes for cell type and 

inflammation are also provided. Basal expression for different genes in health is included for 

each dataset, where available, as well as differential expression between disease and healthy 

controls. A ratio of mean of values above 9th decile, and below first quartile in a given 

distribution was calculated as a measure of induction strength, in case of inducible genes. 

Correlation analysis shows first 50 genes in gene expression correlation profiles, and their 

overlap with exploratory GC signature genes 1 and 2 (see sheet 1 in supporting table 2). 

Sheet 1) GSE113883 health;  Circadian in health, GSE113883 (Braun et al., 2018). 0.1 tpm 

unit was added to GSE113883 (table in tpm), before calculations. columns 1 , IDENTIFIER 

(gene name); 2,  mean H (mean expression (tpm) in all samples); 3, Log10 H (log10 of mean 

expression (tpm) in all samples); 4, Log2FC T1/T2 (mean of all individual log2 ratios (n = 

11) of expression between T1 timepoints (1h, 3h, 25h, 27h), and T2 timepoints (13h, 15h, 

17h, 19h); 5, pval (corresponding p-values); 6, Log10 pval (log10 of corresponding p-values); 

7 GC signature hit health (overlap of first 50 genes in expression correlation profiles, with 

genes present in exploratory GC signatures 1 and 2, correlation profiles obtained on 140 

samples excluding outlier individual labelled nr14 in dataset); 8, COR50 H (first 50 genes in 

expression correlation profiles obtained on 140 samples excluding outlier individual labelled 

nr14 in dataset). 

Sheet 2)  GSE72509 SLE;  SLE with healthy controls, GSE72509 (Hung, Pratt, 

Sundararaman, Towsend, et al., 2015). columns 1 , IDENTIFIER (gene name); 2,  mean H 

(mean expression (rpkm) in healthy control samples); 3,  Log10 H (log10 of mean expression 

(rpkm) in healthy control samples) ; 4,  Log2FC SLE/H (Log2 fold change in SLE (n = 99), 

and healthy controls (n = 18)) ; 5, pval (corresponding p-values); 6, Log10 pval (log10 of 

corresponding p-values); 7, Q1m SLE (mean of values below first quartile in distribution for 

SLE samples);  8, D10m SLE (mean of values above 9th decile in distribution for SLE 

samples); 9 , Log2 D10m/Q1m SLE (Log2 of ratio of mean value above 9th decile, and mean 

value below first quartile in distribution for SLE samples); 10, GC signature hit SLE (overlap 

of first 50 genes in expression correlation profiles, obtained on SLE samples, with genes 
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present in exploratory GC signature 1 and 2); 11, COR50 SLE (first 50 genes in expression 

correlation profiles obtained on SLE samples) 

Sheet 3)  GSE154918 sepsis;  Sepsis, bacterial infection, healthy controls, GSE154918 

(Herwanto et al., 2021). columns 1, IDENTIFIER (gene name); 2 mean H (mean expression 

(normalized value) in healthy control samples); 3 Log10 H (log10 of mean expression 

(normalized value) in healthy control samples) ; 4,  Log2FC SEPSIS /H (Log2 fold change in 

sepsis (n = 53), and healthy controls (n = 40); 5, pval (corresponding p-values); 6 Log10 pval 

(log10 of corresponding p-values); 7, Q1m SEPSIS (mean of values below first quartile in 

distribution for sepsis samples);  8, D10m SEPSIS (mean of values above 9th decile in 

distribution for sepsis samples); 9, Log2 D10m/Q1m SEPSIS (Log2 of ratio of mean value 

above 9th decile, and mean value below first quartile in distribution for sepsis samples); 10, 

GC signature hit SEPSIS (overlap of first 50 genes in expression correlation profiles, obtained 

on sepsis samples, with genes present in exploratory GC signature 1 and 2); 11, COR50 

SEPSIS (first 50 genes in expression correlation profiles obtained on sepsis samples). 

 Sheet 4)  GSE117769 RA; rheumatoid arthritis +/- GC treatment, healthy controls, 

GSE117769. 1 count was added to GSE117769 (table in counts), and values cpm normalized, 

before calculations. columns 1, IDENTIFIER (gene name); 2, mean H (mean expression 

(cpm) in healthy control samples); 3, Log10 H (log10 of mean expression (cpm) in healthy 

control samples); 4, Log2FC RA+GC/H (Log2 fold change in GC-treated RA (n = 29), and 

healthy controls (n = 50); 5, pval (corresponding p-values); 6, Log10 pval (log10 of 

corresponding p-values); 7, Log2FC +GC/-GC (Log2 fold change in GC-treated RA (n = 29), 

and GC-untreated RA (n = 23); 8, pval (corresponding p-values); 9, Log10 pval (log10 of 

corresponding p-values); 10, Q1m RA (mean of values below first quartile in distribution for 

all RA samples);  11, D10m RA (mean of values above 9th decile in distribution for all RA 

samples); 12, Log2 D10m/Q1m RA (Log2 of ratio of mean value above 9th decile, and mean 

value below first quartile in distribution for all RA samples); 13, GC signature hit RA 

(overlap of first 50 genes in expression correlation profiles, obtained on all RA samples, with 

genes present in exploratory GC signature 1 and 2); 14, COR50 RA (first 50 genes in 

expression correlation profiles obtained on all RA samples). 

Sheet 5)  GSE207751 asthma;  moderate and severe asthma, healthy controls, GSE207751. 

columns 1, IDENTIFIER (gene name); 2, mean H (mean expression (normalized value) in 

healthy control samples); 3, Log10 H (log10 of mean expression (normalized value) in 

healthy control samples); 4, Log2FC AST. SEV. /H (Log2 fold change in severe asthma (n = 
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23), and healthy controls (n = 14)); 5, pval (corresponding p-values); 6, Log10 pval (log10 of 

corresponding p-values); 7, Log2FC SEV./MOD. (Log2 fold change in severe asthma (n = 

23), and moderate asthma (n = 19)); 8, pval (corresponding p-values); 9, Log10 pval (log10 of 

corresponding p-values); 10, Q1m ASTHMA (mean of values below first quartile in 

distribution for all asthma samples);  11, D10m ASTHMA (mean of values above 9th decile 

in distribution for all asthma samples); 12, Log2 D10m/Q1m ASTHMA (Log2 of ratio of 

mean value above 9th decile, and mean value below first quartile in distribution for all (n = 

42) asthma samples); 13, GC signature hit ASTHMA (overlap of first 50 genes in expression 

correlation profiles, obtained on all asthma samples, with genes present in exploratory GC 

signature 1 and 2); 14, COR50 ASTHMA (first 50 genes in expression correlation profiles 

obtained on all asthma samples). 

Sheet 6)  GSE69529 gastroenteritis; infectious bacterial diarrhea, rotaviral diarrhea, healthy 

controls, GSE69529 (DeBerg et al., 2018). 1 count was added to GSE69529 (table in counts), 

and values cpm normalized, before calculations. columns 1, IDENTIFIER (gene name); 2, 

mean H (mean expression (cpm) in healthy control samples); 3, Log10 H (log10 of mean 

expression (cpm) in healthy control samples); 4, Log2FC ROTAVIRUS/H (Log2 fold change 

in rotaviral gastroenteritis (n = 55), and healthy controls (n = 24)); 5, pval (corresponding p-

values); 6, Log10 pval (log10 of corresponding p-values); 7, Log2FC BACTERIAL/H (Log2 

fold change in bacterial gastroenteritis (n = 124), and healthy controls (n = 24)); 8, pval 

(corresponding p-values); 9, Log10 pval (log10 of corresponding p-values); 10, Q1m ROTA 

(mean of values below first quartile in distribution for rotaviral gastroenteritis samples); 11, 

D10m ROTA (mean of values above 9th decile in distribution for rotaviral gastroenteritis 

samples), 12, Log2 D10m/Q1m ROTA (Log2 of ratio of mean value above 9th decile, and 

mean value below first quartile in distribution for rotaviral gastroenteritis samples); 13, Q1m 

BACT. (mean of values below first quartile in distribution for bacterial gastroenteritis 

samples); 14, D10m BACT. (mean of values above 9th decile in distribution for bacterial 

gastroenteritis samples); 15, Log2 D10m/Q1m BACT. (Log2 of ratio of mean value above 9th 

decile, and mean value below first quartile in distribution for bacterial gastroenteritis 

samples); 16, GC signature hit ROTA (overlap of first 50 genes in expression correlation 

profiles, obtained on rotaviral gastroenteritis samples, with genes present in exploratory GC 

signature 1 and 2); 17, COR50 ROTA (first 50 genes in expression correlation profiles 

obtained on rotaviral gastroenteritis samples); 18, GC signature hit BACT. (overlap of first 50 

genes in expression correlation profiles, obtained on bacterial gastroenteritis samples, with 
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genes present in exploratory GC signature 1 and 2); 19, COR50 BACT. (first 50 genes in 

expression correlation profiles obtained on bacterial gastroenteritis samples). 

Sheet 7)  GSE112057 JIA, SJIA, IBD;  JIA (oligo, poly), SJIA, IBD (Crohn, Ulcerative 

Colitis), healthy controls, GSE112057 (Mo et al., 2018). 1 count was added to GSE112057 

(table in counts), and values cpm normalized, before calculations. columns 1, IDENTIFIER 

(gene name); 2, mean H (mean expression (cpm) in healthy control samples); 3, Log10 H 

(log10 of mean expression (cpm) in healthy control samples); 4, Log2FC JIA/H (Log2 fold 

change in JIA (n = 89), and healthy controls (n = 12)); 5, pval (corresponding p-values); 6, 

Log10 pval (log10 of corresponding p-values); 7, Log2FC SJIA/H (Log2 fold change in SJIA 

(n = 26), and healthy controls (n = 12)); 8, pval  (corresponding p-values); 9,  Log10 pval 

(log10 of corresponding p-values); 10, Log2FC IBD/H (Log2 fold change in IBD (n = 75), 

and healthy controls (n = 12)); 11, pval (corresponding p-values); 12, Log10 pval (log10 of 

corresponding p-values); 13, Q1m JIA (mean of values below first quartile in distribution for 

JIA samples); 14, D10m JIA (mean of values above 9th decile in distribution for JIA 

samples); 15, Log2 D10m/Q1m JIA (Log2 of ratio of mean value above 9th decile, and mean 

value below first quartile in distribution for JIA samples); 16, Q1m SJIA (mean of values 

below first quartile in distribution for SJIA samples); 17, D10m SJIA (mean of values above 

9th decile in distribution for SJIA samples); 18, Log2 D10m/Q1m SJIA (Log2 of ratio of 

mean value above 9th decile, and mean value below first quartile in distribution for SJIA 

samples); 19, Q1m IBD (mean of values below first quartile in distribution for IBD samples); 

20, D10m IBD (mean of values above 9th decile in distribution for IBD samples); 21 Log2 

D10m/Q1m IBD (Log2 of ratio of mean value above 9th decile, and mean value below first 

quartile in distribution for IBD samples); 22, GC signature hit JIA (overlap of first 50 genes in 

expression correlation profiles, obtained on JIA samples, with genes present in exploratory 

GC signature 1 and 2); 23, COR50 JIA (first 50 genes in expression correlation profiles 

obtained on JIA samples); 24, GC signature hit SJIA  (overlap of first 50 genes in expression 

correlation profiles, obtained on SJIA samples, with genes present in exploratory GC 

signature 1 and 2); 25, COR50 SJIA (first 50 genes in expression correlation profiles obtained 

on SJIA samples); 26, GC signature hit IBD (overlap of first 50 genes in expression 

correlation profiles, obtained on IBD samples, with genes present in exploratory GC signature 

1 and 2); 27, COR50 IBD (first 50 genes in expression correlation profiles obtained on IBD 

samples) 
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Sheet 8)  GSE171110 severe COVID-19; severe COVID19, frequent GC treatment, healthy 

controls, GSE171110 (Lévy et al., 2021). 1 count was added to GSE171110 (table in counts), 

and values cpm normalized, before calculations. columns 1, IDENTIFIER (gene name); 2, 

mean H (mean expression (cpm) in healthy control samples); 3, Log10 H (log10 of mean 

expression (cpm) in healthy control samples); 4, Log2FC severe COVID-19/H (Log2 fold 

change in severe COVID-19 (n = 44), and healthy controls (n = 10)); 5, pval (corresponding 

p-values); 6, Log10 pval (log10 of corresponding p-values); 7, Q1m COVID-19 (mean of 

values below first quartile in distribution for severe COVID-19 samples); 8, D10m COVID19 

(mean of values above 9th decile in distribution for severe COVID-19 samples); 9 Log2 

D10m/Q1m COVID-19 (Log2 of ratio of mean value above 9th decile, and mean value below 

first quartile in distribution for severe COVID-19 samples); 10, GC signature hit severe 

COVID-19 (overlap of first 50 genes in expression correlation profiles, obtained on severe 

COVID-19 samples, with genes present in exploratory GC signature 1 and 2); 11, COR50 

severe COVID-19 (first 50 genes in expression correlation profiles obtained on severe 

COVID-19 samples) 

Sheet 9)  GSE157103 severe COVID-19;  severe COVID-19,  frequent GC treatment, in 

ICU, not in ICU, no healthy controls, GSE157103 (Overmyer et al., 2021).  0.1 tpm unit was 

added to GSE157103 (table in tpm), before calculations. columns 1, IDENTIFIER (gene 

name); 2, Log2FC ICU/not ICU (Log2 fold change in severe COVID-19 in ICU (n = 50), and 

severe COVID-19 not in ICU (n = 50); 3, pval (corresponding p-values); 4,  Log10 pval 

(log10 of corresponding p-values); 5, Log2 D10m/Q1m COVID-19 (Log2 of ratio of mean 

value above 9th decile, and mean value below first quartile in distribution for all (n = 100) 

severe COVID-19 samples); 6, GC signature hit severe COVID-19 (overlap of first 50 genes 

in expression correlation profiles, obtained on all severe COVID-19 samples, with genes 

present in exploratory GC signature 1 and 2); 7, COR50 severe COVID-19 (first 50 genes in 

expression correlation profiles obtained on all severe COVID-19 samples). 

Sheet 10)  GSE206264 severe COVID-19; severe COVID-19, documented GC usage, no 

healthy controls, GSE206264 (López-Martínez et al., 2023). 1 count was added to 

GSE206264 (table in counts), and values cpm normalized, before calculations. columns 1, 

IDENTIFIER (gene name); 2, mean all (mean expression (cpm) in all samples); 3, Log10 all 

(log10 of mean expression (cpm) in all samples); 4, Log2FC +GC/-GC (Log2 fold change in 

GC-treated severe COVID-19 (n = 11), and GC-untreated severe COVID-19 (n = 16)); 5, pval 

(corresponding p-values); 6, Log10 pval (log10 of corresponding p-values); 7, Q1m all (mean 
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of values below first quartile in distribution for all severe COVID-19 samples); 8, D10m all 

(mean of values above 9th decile in distribution for all severe COVID-19 samples); 9 Log2 

D10m/Q1m COVID-19 (Log2 of ratio of mean value above 9th decile, and mean value below 

first quartile in distribution for all (n = 27) severe COVID-19 samples); 10, GC signature hit 

severe COVID-19 (overlap of first 50 genes in expression correlation profiles, obtained on all 

severe COVID-19 samples, with genes present in exploratory GC signature 1 and 2); 11, 

COR50 severe COVID-19 (first 50 genes in expression correlation profiles obtained on all 

severe COVID-19 samples) 

Sheet 11)  GSE168400 severe COVID-19;  severe COVID-19, no GC treatment, no healthy 

controls, GSE168400 (Amado-Rodríguez et al., 2022). 1 count was added to GSE168400 

(table in counts), and values cpm normalized, before calculations. columns 1, IDENTIFIER 

(gene name); 2, mean all (mean expression (cpm) in all samples (n= 42)); 3, Log10 all (log10 

of mean expression (cpm) in all samples); 4, Q1m all (mean of values below first quartile in 

distribution for all severe COVID-19 samples); 5, D10m all (mean of values above 9th decile 

in distribution for all severe COVID-19 samples); 6, Log2 D10m/Q1m all (Log2 of ratio of 

mean value above 9th decile, and mean value below first quartile in distribution for all (n = 

42) severe COVID-19 samples); 7, GC signature hit severe COVID-19 (overlap of first 50 

genes in expression correlation profiles, obtained on all severe COVID-19 samples, with 

genes present in exploratory GC signature 1 and 2); 8, COR50 severe COVID-19 (first 50 

genes in expression correlation profiles obtained on all severe COVID-19 samples). 

Sheet 12)  GSE197204 severe COVID-19; severe COVID-19, no GC treatment, no healthy 

controls, GSE197204 (López-Martínez et al., 2023). columns 1, IDENTIFIER (gene name); 

2, mean all (mean expression (cpm) in all samples (n= 56)); 3, Log10 all (log10 of mean 

expression (cpm) in all samples); 4, Q1m all (mean of values below first quartile in 

distribution for all severe COVID-19 samples); 5, D10m all (mean of values above 9th decile 

in distribution for all severe COVID-19 samples); 6, Log2 D10m/Q1m all (Log2 of ratio of 

mean value above 9th decile, and mean value below first quartile in distribution for all (n = 

56) severe COVID-19 samples); 7, GC signature hit severe COVID-19 (overlap of first 50 

genes in expression correlation profiles, obtained on all severe COVID-19 samples, with 

genes present in exploratory GC signature 1 and 2); 8, COR50 severe COVID-19 (first 50 

genes in expression correlation profiles obtained on all severe COVID-19 samples). 
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FCGR3B     

CSF3R

MME

neutrophil
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ASGR1      

CCR2

VCAN

classical monocyte
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IFI27      

C1QA

CDKN1C

non−classical / intermediate monocyte  (mainly)
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OASL       

GBP1

IL1B

induced by IFN, and NF−kB dependent (IL1B)
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TSC22D3

GC−1

induced by GC
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disease SIM FAM20A (4) GC-2 IFN-G IFN-A dataset platform supporting

moderate asthma l l l l l GSE69683 GPL570-like Fig S14H

severe asthma l l  l l GSE69683 GPL570-like Fig S14H

RA # l # #  GSE93272 GPL570 Fig S14G

SJIA plus canakinumab #   #  GSE80060 GPL570 Fig S14D

SJIA no canakinumab    #  GSE80060 GPL570 Fig S14D

sarcoidosis # #   # GSE19314 GPL570 Fig S14E

trauma < 99h    # # GSE36809 GPL570 Fig S14B

trauma > 99h    l $# GSE36809 GPL570 Fig S14B

burn shock no GC      GSE77791 GPL570 Fig S14C / Fig 9A

burn shock + GC      GSE77791 GPL570 Fig S14C / Fig 9A

SIRS    # # GSE66099 GPL570 Fig S14A

sepsis     # GSE66099 GPL570 Fig S14A

septic shock    # # GSE66099 GPL570 Fig S14A

mild resp. vir. influenza # l l   GSE68310 GPL10558 Fig S15L

mild resp. vir. not influenza # l l   GSE68310 GPL10558 Fig S15M

SLE low SLEDAI l l # #  GSE138458 GPL10558 Fig S15H

SLE high SLEDAI l l # #  GSE138458 GPL10558 Fig S15H

sarcoidosis  l l   GSE83456 GPL10558 Fig S15I

tuberculosis (active)  #    GSE83456 GPL10558 Fig S15I

sarcoidosis (non active) l l l   GSE42834 GPL10558 Fig S15J

sarcoidosis (active)  # ?   GSE42834 GPL10558 Fig S15J

tuberculosis (active)   #   GSE42834 GPL10558 Fig S15J

lung cancer  ?  ? ? GSE42834 GPL10558 Fig S15J

malaria (children)     $# GSE34404 GPL10558 Fig S15F

malaria (cerebral)    ? $# GSE117613 GPL10558 Fig S15G

malaria (anemia)    ? $# GSE117613 GPL10558 Fig S15G

kawasaki acute no GC     $# GSE73463 GPL10558 Fig S15E

sepsis SRS1      E-MTAB-5273 GPL10558 Fig S15B

sepsis SRS2      E-MTAB-5273 GPL10558 Fig S15B

sepsis pneumonitis      E-MTAB-5273 GPL10558 Fig S15A

sepsis peritonitis      E-MTAB-5273 GPL10558 Fig S15A

PTSD l l l l l GSE97356 RNA-seq Fig S16K

moderate asthma l l l l l GSE207751 RNA seq Fig S17I

severe asthma l l  l l GSE207751 RNAseq Fig S17I

SLE #     GSE72509 RNA-seq Fig S16H

RA no GC l l l l # GSE117769 RNA-seq Fig S17D / Fig 9D

RA + GC l #  l # GSE117769 RNA-seq Fig S17D / Fig 9D

JIA l l # l # GSE112057 RNA-seq Fig S16G

SJIA    ? ? GSE112057 RNA-seq Fig S16G

IBD-Crohn  #   ? GSE112057 RNA-seq Fig S16G

IBD-UC    ? l GSE112057 RNA-seq Fig S16G

tuberculosis (latent) l l l # l GSE107793 RNA-seq Fig S16J

tuberculosis (latent) l l l l l GSE107794 RNA-seq Fig S16I

tuberculosis (active)   #   GSE107794 RNA-seq Fig S16I

malaria (adults) #  l   GSE52166 RNA-seq Fig S16F

leishmaniasis   ?   GSE69597 RNA-seq Fig S16E

brucellosis l  l   GSE69597 RNA-seq Fig S16E

diarrhea rota viral      GSE69529 RNA-seq Fig S16D

diarrhea bacterial    #  GSE69529 RNA-seq Fig S16D

COVID-19 (severe)    #  GSE171110 RNA-seq Fig S17C

COVID-19 (severe)      GSE152641 RNA-seq Fig S16C

mild resp. vir. not influenza # l l   GSE161731 RNA-seq Fig S17J

bacterial pneumonia     ? GSE161731 RNA-seq Fig S17J

bacterial (pneumonia/bacteremia)     $ GSE176260 RNA-seq Fig S17A

SIRS    $# $ GSE176260 RNA-seq Fig S17A

resp. viral infection (acute)   #   GSE176260 RNA-seq Fig S17A

candidemia    $ $ GSE176260 RNA-seq Fig S17A

kawasaki acute no GC      GSE178491 RNA-seq Fig S17L

sepsis      GSE154918 RNA-seq Fig S17G

sepsis, no recent high GC      GSE196117 RNA-seq Fig S17K
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ZBTB16 P P P P P P 4 yes

KLF9 P O O O O O 2

DDIT4 P P O P O O 4 4 4 yes

PER1 P P P P P P 1 4 4

IRS2 P P P P O O yes

CXCR4 P O O O O O
TSC22D3 P P P P O O yes

DUSP1 P P O P O O 3 yes

FKBP5 P P P P P P 2 4 yes yes

ALOX15B O P P P P P yes

CD163 O P P P P P yes

ADAMTS2 O P P P P P
FLT3 P P P P P P 1 2

VSIG4 O P P P P P yes

MAOA * O O P P P P
AMPH O P P P P P yes

ADORA3 * O O O O O O
TMIGD3 P P P P P P
MACIR O O P P P P

OLAH O P P P P P
DAAM2 P P P P P P 1 3

IL1R2 O P P P P O yes yes

IRAK3 O P P P P O yes

ECHDC3 P P P P P P yes

ARG1 O P P P O O
ACSL1 O O O O O O yes
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