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Abstract 16 
 17 
Rapid identification of new SARS-CoV-2 variants is a critical component of the public health 18 
response to the COVID-19 pandemic. However, we lack a quantitative framework to assess 19 
the expected performance of sampling strategies in varying epidemic contexts. To address 20 
this gap, we used a multi-patch stochastic model of SARS-CoV-2 spread in New York City to 21 
evaluate the impact of the volume of testing and sequencing, geographic representativeness 22 
of sampling, location and timing of variant emergence, and relative variant transmissibility on 23 
the time to first detection of a new variant. The strategy of targeted sampling of likely emer-24 
gence locations offered the most improvement in detection speed. Increasing sequencing ca-25 
pacity reduced detection time more than increasing testing volumes. The relative transmissi-26 
bility of the new variant and the epidemic context of variant emergence also influenced detec-27 
tion times, showing that individual surveillance strategies can result in a wide range of detec-28 
tion outcomes, depending on the underlying dynamics of the circulating variants. These find-29 
ings help contextualize the design, interpretation, and trade-offs of genomic surveillance strat-30 
egies.   31 
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Introduction 32 
 33 
Genomic surveillance is an important tool for public health response to infectious disease 34 
(1,2). For pathogens such as SARS-CoV-2, genomic surveillance has enabled rapid identifi-35 
cation and characterization of genetic variants that differ in transmissibility, virulence, and an-36 
tigenic space, and thus informed disease control policies and the design and clinical use of 37 
therapeutics and vaccines (3–7).  38 
 39 
Many questions remain about the impact of sampling strategies on the time to first detection 40 
of a variant. Guidelines suggest specific sequencing rates or fixed sequencing volumes (7)(8), 41 
depending on available resources, logistical considerations, overall SARS-CoV-2 prevalence, 42 
and surveillance objectives. They also emphasize the importance of sequencing cases that 43 
accurately reflect all SARS-CoV-2 infections, which requires representativeness of both test-44 
ing and sequencing. In low- and middle-income countries, increasing testing volume as a way 45 
of improving the representativeness of sampling is most important to reducing variant detec-46 
tion times (9). However, we lack a general quantitative assessment of sampling strategies to 47 
detect new variants—where ‘new’ refers to local emergence of a novel variant or the importa-48 
tion of an emerging, known or an unknown variant—within a target detection time that consid-49 
ers the role of geographic representativeness of sampling, the optimal testing and sequencing 50 
volumes, and epidemic context. 51 
 52 
To address this gap, we simulated the impact of a set of surveillance strategies on variant 53 
detection across a range of contexts. We developed a multi-patch stochastic transmission 54 
model for SARS-CoV-2 in New York City (NYC) and incorporated empirical human mobility 55 
data for the geographic dispersal of pathogens. We chose NYC as a case study given its 56 
experience with genomic surveillance and publicly available data on testing, sequencing, and 57 
mobility (10,11). We simulated the introduction of new variants with varying levels of transmis-58 
sibility in locations across the city and at multiple introduction times relative to the introduction 59 
of the previously dominant variant. We then simulated testing and sequencing scenarios, var-60 
ying both the volume and distribution of sampling, and computed the time to first detection, 61 
the overall burden of disease, and the geographic variability of the disease burden under each 62 
strategy. By developing this framework, we aimed to contextualize decision-making on ge-63 
nomic surveillance within the diversity of possible disease scenarios.  64 
 65 
 66 
Methods  67 
 68 
Data. 69 
 70 
Baseline COVID-19 testing rates (609 tests per 100,000 residents per week) and sequencing 71 
rates for NYC were obtained from the NYC Department of Health and Mental Hygiene (NYC 72 
DOHMH) (11) from December 2020 until November 2021 at the geographic resolution of mod-73 
ified ZIP-code tabulation areas (MODZCTAs). Mobility data were obtained from Meta via the 74 
Facebook Data for Good Initiative (12), which reported the physical locations of anonymized 75 
app users within 600m-by-600m tiles in 8-hour intervals. These data were aggregated to both 76 
MODZCTAs and boroughs and used to construct a mixing matrix estimating the rate of inter-77 
personal encounters among the residents of NYC. We used data from the United States Cen-78 
sus Bureau to define mappings between MODZCTAs, tiles, and boroughs. The main analysis 79 
was conducted at the geographic scale of boroughs. We conducted a sensitivity analysis at 80 
the level of MODZCTAs. Full details are provided in the Supplementary Materials and Meth-81 
ods. 82 
 83 
Model structure. 84 
 85 
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To simulate the introduction and subsequent transmission of a novel SARS-CoV-2 variant, we 86 
constructed a multi-patch, two-variant stochastic compartmental model that builds on the basic 87 
structure of a Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model. A first 88 
variant was seeded in the population and a single index case of a novel variant was introduced 89 
at varying times and in varying locations. The new variant was simulated to be more infectious 90 
than the previously circulating variant. In sensitivity analyses (see Supplemental Material), we 91 
considered variants that also had greater and faster immune evasion. Individuals progressed 92 
stochastically through the states defined by variant characteristics (cross-protection, transmis-93 
sion probability, duration of latent and infectious periods) and the number of individuals in each 94 
compartment. The probability of transmission between geographic locations (patches repre-95 
senting a borough or MODZCTA) was governed by the contact between boroughs (as ob-96 
served through human mobility), and the relative quantities of infectious and susceptible resi-97 
dents. We accounted for imperfect test sensitivity and specificity and for infection-induced be-98 
havioral changes, such as reducing contacts in response to a positive test. We then assessed 99 
the impact on detection outcomes of different characteristics of the surveillance strategy and 100 
the epidemiological context, specifically the volume of testing and sequencing, the geographic 101 
distribution of testing, the introduction time and location of the second variant relative to the 102 
first, the probability of transmission, and the connectivity (inward and outward mobility) of in-103 
troduction and sampling locations. Full details on the model structure are provided in the Sup-104 
plementary Materials and Methods. Code is available at github.com/gradlab/detecting-105 
sarscov2-variants. 106 
 107 
Statistical analysis. 108 
 109 
The main outcomes in this study were the time to variant detection (the number of days be-110 
tween when the index case becomes infectious and laboratory confirmation of the new variant 111 
among sequenced specimens), the cumulative number of infections, and the variation in cu-112 
mulative infections across locations. We ran 100 simulations per scenario and calculated the 113 
arithmetic means, medians, and confidence intervals of the main outcomes across simula-114 
tions. For sampling schemes, we considered (1) the distribution of test volume in New York 115 
City provided to DOHMH, which we termed ‘baseline’ testing, (2) test volumes distributed by 116 
population density, and (3) test volumes distributed randomly across locations. We also con-117 
sidered “focused testing scenarios” in which 20-100% of tests were allocated in a single loca-118 
tion, with the remaining tests distributed evenly among the other locations according to their 119 
population size. For total testing volumes, we considered a range between 5% and 300% of 120 
the reported testing volume. For sequencing rates, we considered a range between 1% and 121 
90% of all positive tests to be selected for sequencing. In a sensitivity analysis, we evaluated 122 
fixed sequencing quantities instead of sequencing proportions, which distinguished the mar-123 
ginal contribution of sequencing versus testing alone. 124 
 125 
When all introduction times produced qualitatively similar results, we reported in the main text 126 
the results from the scenario in which the new variant is introduced just before the outbreak 127 
peak of the previously dominating variant (at 𝑡 = 50 days). In this scenario, detection was 128 
expected to be at or near its slowest, due to high background prevalence and depletion of 129 
susceptible individuals. Full results for all parameter combinations are provided in the Sup-130 
plementary Data. 131 
 132 
  133 
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Results 134 
 135 
Geographic sampling strategy  136 
 137 
Relative to the baseline volume and 138 
distribution of testing and sequenc-139 
ing in NYC (the “baseline” testing 140 
and sequencing strategy), detection 141 
times were similarly distributed 142 
when test volumes were allocated 143 
to be (a) proportional to the popula-144 
tion density or (b) uniformly at ran-145 
dom across locations (Fig. 1). This 146 
similarity across geographic sam-147 
pling strategies was unaffected by 148 
the outcome measure used as well 149 
as the timing and location of the 150 

new variant’s introduction. How-151 
ever, the geographic sampling 152 
strategy affected detection out-153 
comes if the introduction location of 154 
the new variant was oversampled. 155 
Allocating a greater proportion of 156 
tests in a single location reduced 157 
detection times and cumulative in-158 
fections of variants emerging in that 159 
location but increased detection times of variants that first appeared elsewhere (Fig. 2).  This 160 
effect was especially pronounced in Staten Island and Brooklyn, but weaker in Manhattan 161 

(Supplementary Fig. S5).  162 

 163 

 164 
Testing and sequencing volumes 165 
 166 
Outcomes varied considerably across testing and sequencing rates, with higher rates leading 167 
to faster detection, fewer cases, and less variation in cumulative infections across locations 168 
(Fig. 3). In accordance with sampling guidelines for well-resourced settings (7), we assumed 169 

Figure 1. Distribution of detection times by geographic 
sampling strategy. Points depict the time between variant 
introduction and detection in days for the scenarios where tests 
are sampled geographically according to the baseline testing 
strategy, proportionally to population size, or randomly across 
New York City (at variant introduction 50 days after the prior 
variant, 30% of baseline test volume, and 10% sequencing rate). 
Boxes and whiskers depict the minimum, lower 25%, median, 
upper 75%, and maximum detection times. 

Figure 2. Detection time by proportion of tests 
allocated in a single location. Lines depict the 
average detection time for scenarios where between 
20% and 100% of tests are sampled from a single 
location, and the remaining tests are evenly 
distributed across the remaining locations by popu-
lation size. The lines distinguish between scenarios 
where the variant emerged in the primary allocation 
location, i.e., test over-sampling and emergence oc-
curred in the same location (blue), and scenarios 
where the variant emerged in one of the other loca-
tions, i.e., test over-sampling and emergence oc-
curred in different locations (red). Ribbons depict the 
95% confidence interval for the detection time. 
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that a fixed percentage of tests was sequenced. Thus, increasing the number of tests also 170 
increased the number of sequenced samples.  171 

 172 
To better understand the individual contributions of testing and sequencing, we fixed the quan-173 
tities of samples selected for sequencing at varying testing volumes. Fixed sequencing vol-174 
umes were implemented as a cap on the maximum number of samples that can be sequenced 175 
per day. The actual number of sequenced cases depended on the test positivity rate.  176 
 177 
The improvement in variant detection with increasing test volumes at a given sequencing pro-178 
portion was driven by the increase in sequencing volume rather than test volume. At all levels 179 
of testing, increasing the number of sequenced samples reduced the detection time, while 180 
increasing testing alone had little impact on new variant detection (Fig. 4).  181 

 182 
We also considered an alternative interpretation of the sequencing cap, where the sequencing 183 
volume depended on both the test volume and the positivity rate (Supplement 3; Supple-184 
mentary Materials and Methods). The results from this sensitivity analysis fall between the 185 
fixed volume and fixed rate analyses (Figs. 3 and 4). Raising testing capacity improved de-186 
tection times for low levels of testing (up to 50-75 tests per 100k persons). At higher levels of 187 
testing, improvements in detection time were driven primarily by increased sequencing capac-188 
ity (Supplementary Fig. 3). 189 
 190 

Figure 3. Detection outcomes by test quantity and sequencing rate. Lines depict the mean duration between 
variant introduction and detection in days (A) and the cumulative infections upon detection (B) as a function of daily 
testing volume (given new variant introduction 50 days after the prior variant, baseline test strategy). Ribbons depict 
the 95% confidence interval for the detection time. Colors represent proportions of tests selected for sequencing. 

A) B) 
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 191 
 192 

 193 
Emergence context 194 
 195 
We compared introduction times of the new variant as an approximation for varying back-196 
ground prevalence of the previously circulating variant and the population susceptibility to in-197 
fection.  198 
 199 
When the second, more 200 
transmissible variant was in-201 
troduced into a fully suscep-202 
tible population together 203 
with the first variant (at 𝑡 =204 
0), the second variant was 205 
more likely to dominate due 206 
to its increased transmissi-207 
bility. Under this scenario, 208 
the extinction probability of 209 
the second variant (defined 210 
as the likelihood that a vari-211 
ant will cause no more than 212 
10 infections) was only 9.6% 213 
under the baseline sampling 214 
strategy. Both variants gen-215 
erally persisted through the 216 
duration of the simulation, 217 
though the second variant 218 
caused more infections. 219 
Consequently, at a t=0 intro-220 
duction time, the second 221 
variant was detected in un-222 
der 33 days in 95% of simu-223 
lations. If the second variant was introduced after the peak of the first variant’s outbreak (at 224 
𝑡 = 80 or 𝑡 = 100), the second variant had a high probability of extinction (64.6 and 84.2%, 225 
respectively), and if it persisted, it was detected later (at least 56 and 37 days after introduction 226 

Figure 5. Detection time of a novel variant across introduction times. 
Points depict the time between variant introduction and detection in days for 
different introduction times (with baseline distribution of tests, 30% of baseline 
test quantity, and sequencing rate 10%). Points are jittered horizontally to help 
visualize the distribution. Boxes and whiskers depict the minimum, lower 25%, 
median, upper 75%, and maximum detection times. The extinction probability 
for each scenario is depicted using inset squares, where the relative area of 
the red square is proportional to the extinction probability. 

Figure 4. Detection time by test volume and fixed sequencing capacity. Lines depict the mean duration 
between variant introduction and detection in days as a function of daily testing volume, colored by the maximum 
sequencing volume (A), and as a function of daily maximum sequencing volume, colored by the test volume (B) (at 
variant introduction 50 days after the prior variant and baseline sampling strategy). 

A) B) 
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in 95% of simulations, respectively). The greatest range of disease dynamics and conse-227 
quently detection times was observed when the second variant was introduced just before the 228 
peak of the first variant (at 𝑡 = 50), with detection times ranging from 16 to 145 days (Fig 5). 229 
 230 
The introduction location did not significantly impact the detection time or cumulative disease 231 
burden across the city but did influence where infections occurred .The number of infections 232 
was highest in locations with the highest mobility connectivity to the emergence location, which 233 
was either the introduction location itself or other locations, depending on the mobility matrix. 234 
Emergence in Staten Island, for example, produced infections primarily within Staten Island, 235 
while emergence in Manhattan led to a high number of infections in Brooklyn and Queens 236 
(Supplementary Fig. S4). 237 
 238 
 239 
Variant characteristics 240 
We compared variants with different levels of transmissibility, varying the probability of infec-241 
tion given an infectious contact from 𝛽 = 0.21 to 𝛽 = 0.5 (contrasting with the transmissibility 242 
of the first variant of 𝛽 = 0.2). This transmission parameter affected the disease dynamics, 243 
with more transmissible variants spreading more quickly, leading to earlier detection. All trans-244 
mission rates yielded a wide range of cumulative infections at detection time (Fig. 6).  245 

 246 

 247 

 248 

 249 
Discussion 250 
 251 
This study provides an assessment of testing and sequencing strategies for the detection of 252 
new SARS-CoV-2 variants to help inform genomic surveillance policies. We considered var-253 
ying quantities and distributions of resources within a wide range of potential settings for var-254 
iant emergence and assessed how they influenced variant detection times and the unde-255 
tected disease burden.  256 
 257 
Our results confirm that variant detection is governed by both the surveillance strategy and 258 
the epidemic dynamics in which the new variant arises (13). The relative transmissibility of the 259 
new variant as well as the context of variant emergence influenced its speed of spread and 260 
extinction probability, which in turn affected detection outcomes (Figs. 5 and 6).  261 

Figure 6. Detection time by cumula-
tive infections for different transmis-
sion rates. Points depict the mean de-
tection time and cumulative number of in-
fections upon detection, averaged 
across 100 simulations of each introduc-
tion location, for each of the six transmis-
sion probabilities, represented by differ-
ent colors (at variant introduction 50 days 
after the prior variant, baseline distribu-
tion of tests, 30% of baseline test quan-
tity, and sequencing rate 10%). The 
baseline transmission rate of the pre-ex-
isting variant is β = 0.2. 
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 262 
Surveillance guidelines stipulate the need for representative sampling strategies, which re-263 
quire not only that a random subset of positive cases be chosen for sequencing, but that pos-264 
itive cases also accurately reflect infections across the population; non-representative sam-265 
pling delays the detection of new variants (14). Nonrepresentative testing and sequencing 266 
must be considered separately and jointly, along dimensions such as demography, socioeco-267 
nomic factors, disease outcome, and geography. In this study, we assessed the role of geog-268 
raphy in representative sampling. For variation in the geographic distribution of sequencing, 269 
other work found that if sampling was not representative, then raising test volume improved 270 
variant detection times more than raising sequencing rates (9). Our study considered the ge-271 
ographic distribution of testing, as well as the volume of both testing and sequencing, and 272 
found that in the context of random sampling of tests for sequencing, improvements in detec-273 
tion time were driven primarily by increases in sequencing volume rather than testing volume 274 
(Fig. 4). The geographic distribution of residents receiving tests impacted detection outcomes 275 
only via the proximity to the emergence location of the new variant (Fig. 2), though careful test 276 
distribution matters to many related public health and social equity objectives (14–16). Over-277 
sampling emergence locations improved detection outcomes, underscoring the importance of 278 
targeted sequencing, for example at ports of entry or of patients with prolonged viral replication 279 
(8). The connectivity of the introduction location did not impact detection times but did affect 280 
where infections occurred before variant detection (Supplement 3). Variants that emerged 281 
among residents of boroughs with more inward and outward mobility produced more infections 282 
in other boroughs. In our simulations, a variant first appearing in a resident of Manhattan, for 283 
example, caused more infections on average in Brooklyn and Queens than in Manhattan itself. 284 
Failing to adequately sample locations near emergence or those highly connected to emer-285 
gence locations will lead to a disproportionate number of infections in those locations.  286 
 287 
The number of undetected infections varied widely for a given transmission rate, even at fixed 288 
detection times (Fig 6). This result demonstrated the challenge of understanding the epidemi-289 
ologic scenario on discovery of a new variant and the need for combining pathogen genome 290 
sequencing with other forms of surveillance. More work is also needed to understand whether 291 
optimal surveillance strategies differ if the primary objective is monitoring or detecting variants 292 
and how to position genomic surveillance within the broader landscape of sometimes compet-293 
ing public health objectives.  294 
 295 
The model in this study was designed to be simple, while accounting for the most important 296 
factors affecting testing and sequencing, and to help attain a qualitative understanding of 297 
which parameters influence detection times and undetected infections. Consequently, the sim-298 
ulation results, such as the detection times, should not be interpreted as predictions. Specific 299 
simplifications include the modeling of single introductions of a novel variant, rather than ac-300 
counting for multiple introductions or several variants. We also assumed homogeneous mixing 301 
within locations and did not account for age structure, social networks, or social determinants 302 
of health. SARS-CoV-2 infection risk varies across socioeconomic and demographic groups, 303 
due in part to variability in the average number of contacts, vaccine uptake, long- and short-304 
distance mobility, comorbidities linked to more severe disease outcomes, and other social 305 
factors (17–19). While we incorporated neighborhood-level variations in movement, we did 306 
not include within-neighborhood heterogeneity or between-neighborhood variation in social 307 
determinants of health. A basic first analysis suggests that household income correlates neg-308 
atively with undetected infections in our simulations (Supplement 4). Future work may explore 309 
how these heterogeneities influence emergence locations of new variants, disease dynamics, 310 
and consequently detection outcomes.  311 
 312 
The model in this study also took a simplified perspective of genomic surveillance processes.  313 
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We assumed random sampling of positive tests and did not account for variations in specimen 314 
quality across testing sites or in access to testing, which may cloud estimates of the preva-315 
lence of circulating variants (20). In this sense, our model takes an idealized view of our ca-316 
pacity to sample randomly from the population in each borough or zip code.  317 
 318 
Even though we incorporated human mobility data, the model did not account for human re-319 
sponses to the epidemiological situation, such as reduced contact rates during periods of high 320 
or rising prevalence, or changes in public health policies like mask mandates. Contact patterns 321 
vary over time, not just across places, and future studies should examine how new variant 322 
detection changes when incorporating time-varying human behavior. 323 
 324 
Detection of novel variants remains a critical component of the response to the COVID-19 325 
pandemic. Emerging empirical evidence on genomic surveillance of SARS-CoV-2 variants has 326 
allowed public health agencies to provide guidance on sampling strategies to detect and mon-327 
itor variants, though more research is needed to anticipate the impact of these strategies under 328 
as yet unseen epidemiologic settings. This modeling study aimed to contribute to these ongo-329 
ing efforts to assess variant detection strategies, by simulating detection outcomes for varying 330 
testing and sequencing rates in NYC. We focused on the role of geography in representative 331 
sampling as well as the context of variant emergence. The epidemiologic context, including 332 
emergence timing and background prevalence, played an important role in shaping detection 333 
times and undetected disease burdens. Targeted sampling of emergence locations was the 334 
primary aspect of geographical representativeness examined in our model that improved de-335 
tection outcomes. Increased testing is an important tool to enable more representative sam-336 
pling (9), though in well-resourced settings with random sampling, as was assumed in this 337 
case study of NYC, increasing sequencing capacity rather than testing had a larger impact on 338 
improving detection speeds.  339 
 340 
 341 
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Supplementary Materials and Methods 356 
 357 
Data 358 
 359 
Mobility 360 
 361 
Through its Facebook Data for Good initiative, Meta provides aggregated and anonymized 362 
movement data from users who have enabled location sharing (12). It is available in 8-hour 363 
intervals and with a maximum geographic resolution of 600-by-600m tile sizes. We leveraged 364 
this data to compute the average share of users moving between geographic tiles on a given 365 
day, aggregated to both modified zip code areas (MODZCTA) and boroughs. This percentage 366 
was rescaled to the population size of each location, under the assumption that Facebook 367 
users who activate location sharing are representative of NYC residents, which may not be 368 
true in practice and may limit our ability to accurately capture human movement across the 369 
city. The movements were captured in the raw mobility matrix 𝑀, where an entry 𝑀{"#$%}	indi-370 

cates the number of movements from location 𝑖 to location 𝑗. We then computed a contact 371 
matrix from the mobility matrix under the assumption of homogeneous mixing. The probability 372 
that a resident of location 𝑖 has contact with a resident of location 𝑗 in any location 𝑘 was 373 
defined as:  374 

𝑘{",%} = ∑(
){"#$%}){'#$%}	+()*+,(+-

∑. ){.#$%}
  375 

Where 𝜇-./01-02	is the average number of contacts per person, 𝑀{"#$(} is the number of indi-376 

viduals moving from location 𝑖 to location 𝑘, and ∑3 𝑀{3#$(} is the sum of all individuals 377 

moving to location 𝑘. This contact matrix determined the coupling strength of two locations in 378 
the mathematical model, and therefore influenced the likelihood for an infection to spread be-379 
tween the two locations.  380 
 381 
Testing and Sequencing Rates 382 
 383 
Weekly COVID-19 testing rates and sequencing rates by MODZCTA are published by the 384 
NYC Department of Health and Mental Hygiene (16). The baseline test rate was calculated as 385 
the daily average from December 2020 to November 2021. 386 
 387 
 388 
Compartmental Model Structure 389 
 390 
We implemented a multi-patch, two-variant stochastic compartmental model which builds 391 
upon the basic structure of an SEIRS model. Exposure, testing, sequencing, isolation, recov-392 
ery, waning (cross-)protection, and reinfection were treated as stochastic events. The model 393 
explicitly incorporated human mobility, testing and sequencing rates, as well as test sensitivity 394 
and specificity. It also included control measures to account for the fact that testing strategies 395 
may impact disease dynamics if infectious individuals reduce their contacts upon receiving a 396 
positive test result. 397 
 398 
The model structure is presented in Supplemental Figure 1 and described in more detail be-399 
low. The corresponding parameters are listed in Supplemental Table 1. Susceptible (𝑆) indi-400 
viduals may be exposed (𝐸) to one of two variants, represented by subscripts 1 and 2, or they 401 
may isolate if they receive a false positive test result (𝑆4). After a latent period, an exposed 402 

individual moves to one of five infectious compartments depending on their reporting and iso-403 
lation outcome: an infection may be unreported (𝐼5), for example if it is asymptomatic or de-404 
tected only via an at-home test. A positive case may be detected at an official test center (𝐼6), 405 
leading the person to isolate (𝐼64) or not (𝐼6/4). Finally, the positive test may also be sequenced 406 

(𝐼7), again separating individuals by their isolation status (𝐼74 , 𝐼7/4). After recovery, individuals 407 
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have temporary full protection against reinfection with either variant while they remain in com-408 
partments 𝑅5 , 𝑅6 , 𝑅7. Full protection wanes over time at variant-specific rates, making individ-409 
uals susceptible to reinfection with one (𝑆8{8}, 𝑆9{8}, 𝑆8{9}, 𝑆9{9}) or both variants (𝑆89{8}, 𝑆89{9}). 410 

The model incorporates a variant-specific leaky immunity parameter (𝑎88, 𝑎89, 𝑎98, 𝑎99), which 411 
defines the reduction in the probability of reinfection after full protection has waned.  412 
 413 
  414 

 415 
 416 
 417 
𝑑𝑆
𝑑𝑡

= 	𝜖	𝑆4 	–	𝑝0(1 − 𝑝6:)	𝑝4 	𝑆	–	𝑏8𝑘𝐼8𝑆	–	𝑏9𝑘𝐼9𝑆	 418 

𝑑𝑆4
𝑑𝑡

= 	𝑝0(1 − 𝑝6:)	𝑝4 	𝑆	– 	𝜖	𝑆4 		 419 

 420 
Variant 1: 421 

Supplemental Figure S1. Model structure 
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 422 
𝑑𝐸8
𝑑𝑡

	= 		 𝑏8𝑘𝐼8𝑆	 + 𝑎8{8}𝑏8𝑘𝐼8(𝑆8{8} + 𝑆89{8}) 	+ 𝑎8{9}𝑏8𝑘𝐼8(𝑆8{9} + 𝑆89{9}) 	−
1
𝐿8
𝐸8	 423 

𝑑𝐼58
𝑑𝑡

=
1
𝐿8
𝐸8	[(1 − 𝑝0) + 𝑝0	𝑝;<	]	–	

1
𝐷8
𝐼58	 424 

𝑑𝐼648
𝑑𝑡

=
1
𝐿8
𝐸8	[𝑝0(1 − 𝑝=)𝑝6:	𝑝4	]	–	

1
𝐷8
𝐼648	 425 

𝑑𝐼6/48
𝑑𝑡

=
1
𝐿8
𝐸8	[𝑝0(1 − 𝑝=)𝑝6:(1 − 	𝑝4	)]	–	

1
𝐷8
𝐼6/48	 426 

𝑑𝐼748
𝑑𝑡

=
1
𝐿8
𝐸8	[𝑝0	𝑝=	𝑝6:	𝑝4	]	–	

1
𝐷8
𝐼748	 427 

𝑑𝐼7/48
𝑑𝑡

=
1
𝐿8
𝐸8	[𝑝0	𝑝=	𝑝6:(1 − 	𝑝4	)]	–	

1
𝐷8
𝐼7/48	 428 

𝑑𝑅58
𝑑𝑡

=
1
𝐷8
	𝐼58	–	𝑅58(𝑤8{8} +𝑤9{8} −𝑤8{8}𝑤9{8}) 429 

𝑑𝑅68
𝑑𝑡

=
1
𝐷8
	(𝐼648 + 𝐼6/48)	–	𝑅68(𝑤8{8} +𝑤9{8} −𝑤8{8}𝑤9{8}) 430 

𝑑𝑅78
𝑑𝑡

=
1
𝐷8
	(𝐼748 + 𝐼7/48)	–	𝑅78(𝑤8{8} +𝑤9{8} −𝑤8{8}𝑤9{8}) 431 

𝑑𝑆8{8}
𝑑𝑡

= 	𝑤8{8}(1 − 𝑤9{8})(𝑅58 +	𝑅68 	+ 	𝑅78) 	− 𝑎8{8}𝑏8𝑘𝐼8𝑆8{8}	 432 

𝑑𝑆89{8}
𝑑𝑡

= 	𝑤8{8}	𝑤9{8}	(𝑅58 +	𝑅68 	+ 	𝑅78) 	− 𝑎8{8}𝑏8𝑘𝐼8𝑆89{8} − 𝑎9{8}𝑏9𝑘𝐼9𝑆89{8}	 433 

𝑑𝑆9{8}
𝑑𝑡

= 	𝑤9{8}(1 − 𝑤8{8})(𝑅58 +	𝑅68 	+ 	𝑅78) 	− 𝑎9{8}𝑏9𝑘𝐼9𝑆9{8}	 434 

 435 
 436 
Variant 2: 437 
 438 
𝑑𝐸9
𝑑𝑡

	= 		 𝑏9𝑘𝐼9𝑆	 + 𝑎9{8}𝑏9𝑘𝐼9(𝑆9{8} + 𝑆89{8}) 	+ 𝑎9{9}𝑏9𝑘𝐼9(𝑆9{9} + 𝑆89{9}) 	−
1
𝐿9
𝐸9	 439 

𝑑𝐼59
𝑑𝑡

=
1
𝐿9
𝐸9	[(1 − 𝑝0) + 𝑝0	𝑝;<	]	–	

1
𝐷9
𝐼59	 440 

𝑑𝐼649
𝑑𝑡

=
1
𝐿9
𝐸9	[𝑝0(1 − 𝑝=)𝑝6:	𝑝4	]	–	

1
𝐷9
𝐼649	 441 

𝑑𝐼6/49
𝑑𝑡

=
1
𝐿9
𝐸9	[𝑝0(1 − 𝑝=)𝑝6:	(1 − 𝑝4	)]	–	

1
𝐷9
𝐼6/49	 442 

𝑑𝐼749
𝑑𝑡

=
1
𝐿9
𝐸9	[𝑝0	𝑝=	𝑝6:	𝑝4	]	–	

1
𝐷9
𝐼749	 443 

𝑑𝐼7/49
𝑑𝑡

=
1
𝐿9
𝐸9	[𝑝0	𝑝=	𝑝6:(1 − 	𝑝4	)]	–	

1
𝐷9
𝐼7/49	 444 

𝑑𝑅59
𝑑𝑡

=
1
𝐷9
	𝐼59	–	𝑅59(𝑤8{9} +𝑤9{9} −𝑤8{9}𝑤9{9}) 445 

𝑑𝑅69
𝑑𝑡

=
1
𝐷9
	(𝐼649 + 𝐼6/49)	–	𝑅69(𝑤8{9} +𝑤9{9} −𝑤8{9}𝑤9{9}) 446 

𝑑𝑅78
𝑑𝑡

=
1
𝐷9
	(𝐼749 + 𝐼7/49)	–	𝑅79(𝑤8{9} +𝑤9{9} −𝑤8{9}𝑤9{9}) 447 

𝑑𝑆8{9}
𝑑𝑡

= 	𝑤8{9}(1 − 𝑤9{9})(𝑅59 +	𝑅69 	+ 	𝑅79) 	− 𝑎8{9}𝑏8𝑘𝐼8𝑆8{9}	 448 

𝑑𝑆89{9}
𝑑𝑡

= 	𝑤8{9}	𝑤9{9}	(𝑅59 +	𝑅69 	+ 	𝑅79) 	− 𝑎8{9}𝑏8𝑘𝐼8𝑆89{9} − 𝑎9{9}𝑏9𝑘𝐼9𝑆89{9}	 449 
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𝑑𝑆9{9}
𝑑𝑡

= 	𝑤9{9}(1 − 𝑤8{9})(𝑅59 +	𝑅69 	+ 	𝑅79) 	− 𝑎9{9}𝑏9𝑘𝐼9𝑆9{9}	 450 

 451 
where 𝐼8 = 𝐼58 + 𝐼648 + 𝐼6/48 + 𝐼748 + 𝐼7/48 and 𝐼9 = 𝐼59 + 𝐼649 + 𝐼6/49 + 𝐼749 + 𝐼7/49 452 

 453 
Where 𝑝0 is the test rate, 𝑝= is the sequencing rate, 	𝑝4 	 is the control measure compliance 454 

rate, 𝑝6: is the true positive rate, 𝑎>{?} is the leaky immunity parameter, 𝑤>{?} is the waning 455 

full immunity parameter, 𝑏 is the probability of infection given contact, 𝐿 is the average dura-456 
tion of the latent period, 𝐷 is the average duration of the infectious period, 𝑘 is the contact 457 
matrix, and 𝜖 is the rate of ending control measures if false positive. 458 
 459 
 460 
Table S1. Parameters 461 
 462 

Parameter Description 

𝑝0 Test rate (share of population) 

𝑝= Sequencing rate (share of positive tests) 

	𝑝4 	 Control measure compliance rate 

𝑝6: True positive rate of test instrument 

𝑎>{?} Leaky immunity parameter: percent suscepti-
bility to infection with variant x after infection 
with variant y 

𝑤>{?} Waning full immunity parameter: rate of loss of 
immunity against variant x after infection with 
variant y 

𝑏  Probability of infection given a contact with an 
infectious individual 

𝐿 Average duration of latent period 

𝐷 Average duration of infectious period 

𝑘 Contact matrix 

𝜖 Rate of ending control measures with false 
positive test result 

 463 
 464 
 465 
 466 
Simulations 467 
 468 
 469 
Geographic Test Distribution  470 
 471 
We implement the following primary strategies for testing allocation. Supplemental Figure 2 472 
shows an example of the test rates under each scenario. 473 
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- Baseline: Tests are allocated according to the current NYC strategy, computed as the 474 
average allocation and daily test quantity between December 2020 and November 475 
2021. 476 

- Population density-based allocation: The same number of tests are distributed homo-477 
geneously across the city, so that each location has the same test rate. Locations with 478 
a larger population receive more tests than less densely populated boroughs or 479 
MODZCTAs. 480 

- Random allocation: The available tests are distributed randomly across locations. This 481 
effectively results in higher per-capita test rates in less densely populated areas. 482 

 483 
Test Volume 484 
 485 
We varied the quantity of available tests from 5% to 400% of the NYC average of 7,184 tests 486 
per day (87 tests per 100,000 persons). Changing the quantity of available tests may be un-487 
derstood as either increased capacity or reduced reporting, for example due to a shift toward 488 
home testing. From February 2020 to September 2021, an estimated 75 percent of COVID-489 
19 infections went unreported (21). With the emergence of the Omicron sub-variants BA.2.12 490 
and BA.2.12.1, underreporting may be as high as 95 percent (22).  491 
 492 
To further understand the role of the geographic test distribution, we also considered “focused 493 
testing scenarios”, where individual locations are over-sampled. In these scenarios, 20-100% 494 
of all tests were sampled from a single location and the remaining tests were distributed across 495 
the remaining locations proportional to population size. We then compared how detection out-496 
comes differed when the new variant emerged in the over-sampled location versus one of the 497 
other locations. 498 

 499 
 500 
 501 
 502 
Sequencing volume 503 
 504 
The main analysis considered sequencing probabilities of 5-90% of all positive tests. The se-505 
quencing volume for each day of the simulation was therefore determined by the test volume 506 
and the number of infections. Raising test volume for a given epidemiologic scenario effec-507 
tively raises sequencing volume at fixed sequencing probabilities. 508 
 509 
In two sensitivity analyses, we sought to isolate the effect of testing and sequencing volumes 510 
by placing a cap on sequencing resources: 511 

- Sensitivity analysis 1: At any time point, a fixed number of positive tests was 512 
sequenced. If there were fewer positive tests than sequencing resources (due to low 513 
prevalence), then all positive tests were sequenced. The maximum sequencing 514 

Supplemental Figure S2. Sample number of tests per capita at the borough level. Boroughs are colored by 
the proportion of the population that is tested each week under the baseline (A), density-based (B), and random 
(C) sampling strategy. 

A) Baseline    B) Density             C) Random 
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volume was reached when there was a sufficient quantity of positive tests, i.e., 515 
sufficiently high prevalence and test volume. The effective sequencing volume did not 516 
necessarily vary for different sequencing caps, if prevalence and/or test volume were 517 
low.   518 

- Sensitivity analysis 2: A fixed number of tests were assigned as potentials for 519 
sequencing, akin to placing a stamp on a subset of test kits. If a test with a stamp was 520 
positive, the sample was sequenced. The maximum sequencing volume was achieved 521 
when all (stamped) tests were positive, which depended on the number of infections. 522 
The effective sequencing volume necessarily varied between the different sequencing 523 
caps. 524 

 525 
 526 
 527 
Variants 528 
 529 
The first variant was modeled to resemble the Delta SARS-CoV-2 variant with an effective 530 
transmission probability of 0.2. We then introduced a second variant, which was (i) more trans-531 
missible, (ii) had greater and faster immune evasion, or (iii) both. We considered effective 532 
transmission probabilities of 0.21-0.5. 533 
 534 
 535 
Context of variant emergence 536 
 537 
We simulated the emergence of the second variant at different locations and different times 538 
relative to the introduction of the first variant. The first variant was introduced with a single 539 
index case in each location, to simulate even spread across the city. The second variant was 540 
introduced with one index case in a single location, representing the location of residence of 541 
the index case. We simulated all possible introduction locations. Introduction times of the sec-542 
ond variant varied from 0 to 150 days after the introduction of the first variant. The introduction 543 
times represent different contexts, because of varying prevalence of the first variant and var-544 
ying numbers of susceptible individuals. We did not distinguish between variants that emerged 545 
within the city and those that were imported. The index case of the novel variant in our model 546 
could thus represent the first case of a newly emerging variant introduced to NYC from outside 547 
the city or a globally undetected variant that either emerged within NYC or was imported from 548 
outside before detection.  549 
 550 
Outcome measures 551 
 552 
For each simulation, we computed three primary outcome measures. The time to detection 553 
was defined as the number of days between the introduction and detection (first sequenced 554 
case) of the second variant. Cumulative undetected infections measured the total number of 555 
people who were exposed to (i.e., infected by) the second variant in NYC by the time the new 556 
variant was detected, including individuals who at detection time were in the latent phase prior 557 
to infectiousness, infectious, recovered, or susceptible to reinfection. Finally, we computed the 558 
standard deviation of the cumulative undetected infections across locations as an estimate of 559 
the geographic variation in disease burden.  560 
 561 
 562 
 563 
  564 
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Supplement 2: Sensitivity analysis of fixed sampling volumes 565 

 566 
 567 
Supplement 3: Role of introduction location 568 
 569 

 570 

Supplementary Figure S3. Detection time by fixed volumes of test and sequencing quantities. 
Lines depict the mean duration between variant introduction and detection in days (A) as a function of 
daily testing volume, colored by the maximum sequencing volume, and (B) as a function of maximum 
sequencing volume, colored by the test volume. 

Supplementary Figure S4. Cumulative infections by borough for introduction locations Manhattan 
and Staten Island. Points depict the number of cumulative infections in each borough at detection time 
(at variant introduction 50 days after the prior variant, baseline distribution of tests, 30% of baseline test 
quantity, and sequencing rate 10%). Boxes and whiskers depict the minimum, lower 25%, median, upper 
75%, and maximum cumulative infections.  
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 571 
Supplementary Figure S5. Detection time by proportion of tests allocated in a single location, by 572 
introduction location. Lines depict the average detection time for scenarios where between 20% and 100% of 573 
tests are sampled from a single location, and the remaining tests are evenly distributed across the remaining loca-574 
tions by population size. The sub-plots distinguish between scenarios where the variant emerged in the primary 575 
allocation location, i.e., test over-sampling and emergence occurred in the same location (left), and scenarios where 576 
the variant emerged in one of the other locations, i.e., test over-sampling and emergence occurred in different 577 
locations (right).  578 

 579 
 580 
 581 

 582 
Supplementary Figure S6. Detection times by introduction location. Points depict the detection time in days 583 
for each introduction location (at variant introduction 50 days after the prior variant, baseline distribution of tests, 584 
30% of baseline test quantity, and sequencing rate 10%). Boxes and whiskers depict the minimum, lower 25%, 585 
median, upper 75%, and maximum detection times.  586 

 587 

 588 
Supplement 4: Social equity 589 
 590 
We explored the relationship between socioeconomic variables and the average cumulative 591 
undetected exposures at the time of new variant detection across all NYC zip codes (Supple-592 
mentary Fig. S7). We observed a weak negative correlation (Pearson correlation coefficient 593 
-0.39), with cumulative exposures decreasing with increasing household income, possibly due 594 
to lower population density in wealthier neighborhoods.  595 
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