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1 

Abstract 9 

West Nile virus (WNV), a flavivirus transmitted by mosquito bites, causes primarily mild symptoms but 10 

can also be fatal. Therefore, predicting and controlling the spread of West Nile virus is essential for public 11 

health in endemic areas. We hypothesized that socioeconomic factors may influence human risk from 12 

WNV. We analyzed a list of weather, land use, mosquito surveillance, and socioeconomic variables for 13 

predicting WNV cases in 1-km hexagonal grids across the Chicago metropolitan area. We used a two-14 

stage lightGBM approach to perform the analysis and found that hexagons with incomes above and below 15 

the median are influenced by the same top characteristics. We found that weather factors and mosquito 16 

infection rates were the strongest common factors. Land use and socioeconomic variables had relatively 17 

small contributions in predicting WNV cases. The Light GBM handles unbalanced data sets well and 18 

provides meaningful predictions of the risk of epidemic disease outbreaks. 19 

 20 

Introduction  21 

West Nile Virus (WNV) is a mosquito-borne flavivirus that has been circulating in the United States for 22 

two decades, first appearing in New York in 1999 [1–3]. The disease is spread in an enzootic mosquito-23 

bird-mosquito circulation [4–7], and zoonotic transmission occurs when humans are bitten by a WNV-24 

positive mosquito [8]. Because there are no vaccines for WNV in humans, prediction of WNV-positive 25 

mosquitoes is used to inform public health actions to clear mosquitoes in areas of high risk [9] and to 26 

warn the general public of increased risk. 27 

Efforts have been made to build predictive models of WNV spread [10]. Predicting human cases would 28 

help to identify high-risk populations, and therefore enable protective measures. Paz [11] analyzed major 29 

weather factors and found temperature and precipitation are associated with WNV human cases. A 30 

temperature range of 10-35°C is advantageous for mosquito breeding activity. However, an association of 31 
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temperature with WNV infection risk is not always positive. Hahn et al.[12] performed a climate-region-32 

wise analysis and found that in most regions of the US, temperature above the local average increases 33 

WNV risk, while in the western regions of the US, above-average temperature decreases WNV risk. 34 

Shocket et al. [13] has identified the optimal temperature range for mosquitoes that vector WNV is 35 

between 23-26°C. Precipitation and humidity have complex associations with mosquito population and 36 

infection rate, as well. Interaction between temperature and precipitation also explains a significant part of 37 

the WNV mosquito infection rate [14]. Poh et al. identified that temperature and rainfall increase 38 

mosquito abundance [15]. In addition to temperature and precipitation, other factors such as humidity and 39 

wind velocity affect mosquito abundance [16]. Peper et al. have studied WNV and mosquito surveillance 40 

records from Lubbock, TX, and have found that the probability of mosquito infection depends on the 41 

weather variables including the time in the year, wind, visibility, humidity, dew point, and the time lag of 42 

these variables [17]. They also found that weather has a temporal autocorrelation, which brings lagging 43 

effects into play [18,19]. DeFelice has discussed the lag in reporting of both mosquito infection and 44 

human cases that reduces real-time WNV forecast accuracy and proposed recursive optimization and 45 

Poisson process simulation for the retrospective forecast to solve the problem [20]. The landscape also 46 

contributes to WNV risk. Studies have identified geological factors such as vegetation, urbanization, 47 

mosquito breeding sites, and wetlands to be associated with WNV incidences [21–23]. Sánchez-Gómez et 48 

al. have discussed how temperature and the presence of wetlands influence WNV circulation in vectors 49 

and humans [21]. Hernandez et al. have identified weather, demographic, and controlling measurements 50 

including temperature, precipitation, ethnicity, mosquito breeding sites, targeted prevention, and 51 

education as key predictors [22]. Myer and Johnston have analyzed a 15-year span of data in Nassau 52 

County, NY, and identified landscape factors including high normalized difference vegetation index 53 

(NDVI), wetlands, and high urban development have a negative association with WNV incidences [23]. 54 

Farooq et.al. have estimated WNV expansion risk and found early spring weather, population, and 55 

agriculture activities can be important factors for early warning systems to predict Europe WNV outbreak 56 

[24]. Bassal et.al. investigated demographic disparities for WNV IgG levels in Israel and identified 57 
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different WNV seroprevalence among geographical regions. Bassal et. al. also discovered different 58 

prevalence among racial groups, which have different socioeconomic status [25].  59 

Linear regression and ensemble tree methods are the two most commonly used approaches for predicting 60 

WNV incidence or mosquito populations. Hernandez et al. started with chi-squared tests to identify a list 61 

of candidate factors and then used regression to find the strongest predictors [22]. Karki et al. used a 62 

stepwise model selection procedure to automatically test all factors and find the strongest predictors [26]. 63 

However, the risk of WNV is not linear with the factors. Furthermore, linear models have high specificity 64 

and perform best when there are no cases of viral infection, but have poor sensitivity when there are cases 65 

(low recall). To address these two issues, ensemble methods, specifically light gradient boosting method 66 

(GBM) approach [27], are used as our model in this paper. Light GBM  is based on building an ensemble 67 

of decision trees instead of a single model to make the prediction. Therefore, neither requires linearity in 68 

the problem. However, light GBM is much faster to train and evaluate than other methods such as random 69 

forest [28,29], has a generally lower bias, and thus will be our focus in this paper. We performed a two-70 

step light GBM approach as recommended for other ensemble tree methods [28,29]. In the first step, all 71 

factors are included in the model. And then a second light GBM classification/regression is performed 72 

based on the top factors selected by the first model [28]. 73 

We have hypothesized that, in addition to natural factors such as mosquito infection rate (MIR), weekly 74 

temperature, temperature in January, and precipitation, social economics and land cover factors will also 75 

be predictive factors for the WNV occurrences. We also hypothesized that natural factors might have 76 

lagging effects. These effects, linear or not, can be detected by the light GBM approach and identify areas 77 

at high risk of WNV cases and provide guidance for health intervention. 78 

 79 
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Methods 80 

Data Set and pre-analysis 81 

The dataset we used is described in more detail in Karki, et al. [26]. The dataset includes the number of 82 

human disease cases from 2005-2016 in Cook and DuPage Counties, IL, as the dependent variable, and 83 

several independent variables comprising  weather, socioeconomic, land cover, and mosquito infection 84 

rates (MIR). All variables were aggregated on a weekly temporal resolution and on a spatial grid of 1 km 85 

wide hexagons for the study region. 86 

The human disease data is described as a binary number that represents whether a case occurs in a 87 

hexagon in a given week. We performed the two-sample Kolmogorov-Smirnov (KS) test [30] and the 88 

two-step light GBM classification [27] to build the model to predict the human illness data and to derive 89 

the illness probability from the model. 90 

Weather variables include temperature and precipitation, as well as the lagged variables representing 91 

temperature and precipitation 1 week, 2 weeks, 3 weeks, and 4 weeks before human case report date. The 92 

original weather data was collected by PRISM [31], aggregated to census tract level, and mapped to 93 

hexagons by Karki, et al. [26] 94 

The land cover data include urban areas (developed open space, developed low intensity, developed 95 

medium intensity, developed high intensity), forest (deciduous, evergreen, and mixed), barren land, 96 

shrubs, grassland, pasture, cultivated crops, woody wetlands, herbaceous wetlands, and open water. 97 

Karki, et al.[26] retrieved the land cover data from the 2016 National Land Cover Database (NLCD) [32] 98 

and aggregated the percentage of different land covers in the hexagons. 99 

For the socioeconomic data used by Karki, et al. [26], the 2016 census data from the US Census Bureau 100 

[33] was applied across all years. The data were converted from the census tract level to the hexagon level 101 
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by assuming homogeneous socioeconomic status within each census tract. To determine the sensitivity of 102 

the socioeconomic data to annual changes, we replicated the mapping procedure with the 5-year rolling 103 

averages from 2010-2017 and performed the model analysis with both datasets (S1, S2). We found that 104 

the results are similar and the conclusions do not change; therefore, we will present the model built with 105 

the 2016 census data. 106 

The variables we used are listed in Table 1 below. 107 

Table 1. List of variables involved in building the models. We have variables representing nature 108 

factors, land cover, and socioeconomic data. 109 

Notation Variable Type 

mir_mean, 

mir_lag1-4 

Mosquito Infection Rate (MIR) measured 0-4 weeks 

before human case report date 

nature 

preci, 

preci_lag1-4 

Precipitation measured 0-4 weeks before human case 

report date 

tempc, 

temp_lag1-4 

Temperature measured 0-4 weeks before human case 

report date 

tempJan Temperature in January 

dospct Proportion of developed open space Land cover 

dlipct Proportion of developed low intensity 

dmipct Proportion of developed medium intensity 

dlipct Proportion of developed high intensity 
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dfpct Proportion of deciduous forests 

efpct Proportion of evergreen forests 

mfpct Proportion of mixed forests 

blpct Proportion of barren land 

shrubspct Proportion of shrubs 

glandpct Proportion of grassland 

pasturepct Proportion of pasture 

clpct Proportion of cultivated land 

wwpct Proportion of woody wetlands 

shwpct Proportion of herbaceous wetland 

owpct Proportion of open water 

hpctpreww, 

hpctpostww, 

hpct7089, 

hpctpost90 

Percentage of houses built before WWII, after WWII, 

between 1970-1989, and after 1990 

whitepct, 

blackpct, 

asianpct, 

hispanicpct 

Percentage of white, african american, asian, and hispanic 

population 

Demographic, 

socioeconomics  
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tot_pop Total population 

Income Median household income 

 110 

We performed the two-sample Kolmogorov-Smirnov (KS) test [30] as a univariate analysis to identify the 111 

candidate key predictors to get some insights that would be helpful before building the models. The KS 112 

test is a model-free approach to test whether the distributions of features corresponding to two different 113 

classes behave similarly. Therefore, we did not reject collinearity in the KS test. A list of p-values was 114 

calculated to assess the importance of the features. We examined the distributions of the weather, 115 

socioeconomic, and land cover factors separately for the presence and absence of human cases by 116 

hexagon and week. The KS test would indicate which variables are distributed differently for the two 117 

situations. The KS score will serve as a criteria in choosing which variables to keep among a set of 118 

highly-correlated variables. For each set of highly-correlated variables, we will keep the one with the 119 

highest KS score.  120 

Before building the light GBM model, we first assessed collinearity by generating the covariance plots 121 

calculated from Pearson's correlation. We set the correlation threshold at 0.35 and kept the variables with 122 

the largest -log(p) values in the KS test. Therefore, it is possible that the factors selected in the model are 123 

correlated with the true predictors. We then selected the variables with the highest functional significance 124 

to build the models. We also evaluated the income-stratified data to check whether the high-income and 125 

low-income groups have different characteristics (S3). 126 

 127 
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Two-step Light GBM Modeling 128 

The hyperparameter for the light GBM is tuned with grid search with a predefined set, evaluated on the 129 

metric log-loss score as the decision criterion, which can help  deal with the highly zero-inflated 130 

characteristic of the WNV case number. We used the lightgbm package in Python [34] to perform the 131 

light GBM method. 132 

The model was built using a heuristic approach with two light GBM categorization procedures. After 133 

removing the correlation, we ran the first light GBM procedure on all remaining variables. We then 134 

examined the distribution of feature importance, selected the top variables by the natural gap in the 135 

distribution, and ran another light GBM procedure. Feature importance is defined as the mean decrease in 136 

impurity when a given feature is included to split the WNV_binary = 0 and WNV_binary = 1 cases. 137 

Feature importance is represented by the negative logarithm of the absolute value of importance. We 138 

evaluated the receiver operating characteristics area under the curve (ROC-AUC) to find the best 139 

threshold for a minimum model. The ROC-AUC score is insensitive to imbalanced data. With the 140 

threshold identified, we are able to evaluate the accuracy, recall, precision, and F-1 score [35]. We first fit 141 

the model with high and low income data to confirm that the models are similar (S3). Therefore, we build 142 

our model based on the full dataset. We then examine the distribution of feature importance and select 143 

subsets of features to build reduced models. We examine the performance of the reduced models to find a 144 

minimal model that retains predictive power. 145 

Then, in the final model, we evaluated the relative importance of the covariates to identify important 146 

predictive features for WNV cases in our models. For the features of interest, we generate partial 147 

dependence (PD) plots to show their marginal predicted probability. The slope of the PD plot represents 148 

the strength of the feature. The shape of the PD plot could also indicate whether the effect is monotonic. 149 

The PD plots could easily show the nonlinear effects that are difficult to identify by regression. 150 

 151 
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Results  152 

KS test 153 

We performed univariable KS tests on all variables (Figure 1). We found that temperatures and mosquito 154 

infection rates have significant effects in the model. On the other hand, precipitation, land cover and 155 

socio-economic characteristics do not contribute significantly to the WNV risk.  156 

 157 

Fig 1. -log(p) of Kolmogorov-Smirnov test for all the features and covariates. From the KS test, we 158 

calculate the p-value, which indicates how different the distribution of the variable is between the 159 

hexagon-weeks with and without a case. The larger the -log(p), the less similar the two distributions are. 160 

The variables are grouped into four main categories + one residue category, but we have combined the 161 

fast-changing weather and MIR into the same category because these variables, as well as the number of 162 
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cases, are captured with a temporal resolution of one week. Green bars represent land cover variables. 163 

Orange bars represent socio-economic variables. The blue bars represent strongly fluctuating variables: 164 

weather and mosquito infection rate.  165 

 166 

Variable correlations 167 

 168 

Fig 2. Heat-Map Covariance matrix for all the features. Original data are from Karki (2020) [26].  Yellow 169 

colors indicate strong positive correlations; dark blue colors indicate strong negative correlations. Light blue or 170 
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green colors indicate weak correlations. We infer that temperature has a relatively high temporal correlation, as 171 

the variables tempc and templag1-4 (current temperature and temperatures 1-4 weeks before) are correlated. In 172 

addition, development stage and housing age are correlated with population, showing the interaction of 173 

population aggregation with land cover and housing status.  174 

Figure 2 shows the correlation between the variables. We found that weekly temperatures have a strong 175 

positive temporal correlation (0.47 - 0.84). On the other hand, the lagged effects of weekly MIR (0.075 - 176 

0.18) and weekly precipitation (-0.022 - 0.044) are not as strongly correlated. Weekly MIR and weekly 177 

precipitation are also independent of other variables.  178 

We also found that income is strongly correlated with race. Income has a high positive correlation (0.54) 179 

with the white race percentage in the hexagon area, and a medium-high negative correlation with the 180 

black race percentage (-0.46) and the Hispanic race percentage (-0.37). The white and black population 181 

percentages have a strong negative correlation with each other (-0.87), which is to be expected since the 182 

total population percentages should add up to 100%. 183 

For each set of medium to highly correlated variables, we kept the variables with the highest KS scores 184 

for the light GBM analysis. The remaining variables are: All precipitation and MIR variables, mean 185 

temperature of 4 weeks before the human case report, mean temperature in January, total population, 186 

proportion of developed low intensity, proportion of open water, proportion of barren land, proportion of 187 

evergreen forest, proportion of shrubs, proportion of grassland, proportion of pasture, proportion of 188 

cultivated land, proportion of woody wetlands, emergent herbaceous wetlands, percent temperature in 189 

January, house post World War II, and income. 190 

 191 
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Light GBM based on all selected features 192 

We built our models using cross-validation, randomly splitting training and test sets, and then selected the 193 

best parameter based on the log-loss criteria. The importance of each predictor in the model is shown in 194 

Figure 3, and its performance on the test set is shown in Table 2.  195 

 196 

Fig 3: Gini feature importance of the model predicting West Nile Virus cases in the Chicago area, 197 

with the 25 variables after removing the highly correlated ones. The higher the y-value, the more 198 

important the feature is to the model. The variables are grouped into four main categories, but we have 199 

combined the fast-changing weather and MIR into the same category because these variables, as well as 200 

the number of cases, are captured with a temporal resolution of one week. The blue bars represent the 201 

weekly variables (weather + MIR). Orange bars represent socio-economic variables. The green bars 202 
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represent the land cover variables. We found that total population is the most important variable in the 203 

model. The weekly variables (weather + MIR) are also strong predictors.  204 

Figure 3 shows that socioeconomic, weather, and mosquito infection factors are candidates for strong 205 

predictors. Precipitation variables have relatively low importance among the weather factors, but still 206 

have a medium rank among the feature importance. Total population and income level, the two 207 

independent socioeconomic variables included in the model, both have high importance in predicting 208 

WNV case occurrence. Percentage of housing built after World War II and percentage of low 209 

development intensity area are the only strong indicators among the land cover features. We can see a 210 

natural gap between MIR 3 weeks before (mirlag3) and percentage of open water (owpct). Therefore, we 211 

select the first 16 features for our reduced model. 212 

The cutoff for selecting the features is chosen to maximize the difference between the true positive rate 213 

(TPR) and the false positive rate (FPR). Table 2 shows the confusion matrix of the result based on the test 214 

set. With the cutoff = 0.625, we obtain a true positive rate (recall or sensitivity) close to 0.89. The 215 

precision is about 0.007. This value is not good, but it is still well above the baseline derived from the 216 

proportion of positive categories (0.0005) in the dataset. The F1 score is 0.486 and the accuracy is 0.92. 217 

Since our model focuses on maximizing recall, this loss in overall performance is to be expected.  218 

Table 2:  Confusion Matrix of the model including all features.   219 

 hexagons with WNV cases 

predicted 

hexagons with no WNV cases 

predicted 

Hexagons with WNV Case 

Observed 

160 18 

Hexagons with no WNV Case 22878 265923 
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Observed 

We predict the probability that a case of WNV will occur during a given week in each 1-km-wide 220 

hexagonal region in Cook and DuPage counties, from which we predict whether a case will occur. The 221 

receiver operating characteristic (ROC) area under the curve (AUC) is 0.96. The model has an accuracy 222 

of 0.92, a precision of 0.007, a recall of 0.89, and a macro F1 score of 0.486.   223 

 224 

Light GBM model based on reduced features 225 

We re-fit the model using only the features with importance > 20. The feature importance of each 226 

predictor in this model is shown in Figure 4, and its performance on the test set is shown in Table 2.  227 

 228 
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Fig 4: Gini Feature importance of the candidate predictors in the reduced model. Blue, highly dynamic 229 

features including weather and mosquito infection rate. Orange: Socioeconomic features. Green, land cover 230 

data. The socioeconomic features include total population and income, ranked 1 and 5. The land cover 231 

features, share of post-war housing and share of low-intensity development, rank 11 and 15. The most 232 

important natural features are the January temperature and the average weekly temperature, followed by the 233 

mosquito infection rate. While the ranks may change in individual runs, the feature importance of these factors 234 

are close to each other.  235 

The cutoff for selecting the features is chosen to maximize the difference between the true positive rate 236 

(TPR) and the false positive rate (FPR). Table 3 shows the confusion matrix of the result based on the test 237 

set. With the cutoff = 0.446, we obtain a true positive rate (recall or sensitivity) close to 0.96.  The 238 

precision is about 0.0034. This value is not good, but it is still well above the baseline derived from the 239 

proportion of positive categories (0.0005) in the dataset. The F1 score is 0.45 and the accuracy is 0.83. 240 

Since our model focuses on maximizing recall, this loss in overall performance is to be expected.  241 

Table 3:  Confusion Matrix of the reduced model.  242 

 hexagons with WNV cases 

predicted 

hexagons with no WNV cases 

predicted 

Hexagons with WNV Case 

Observed 

173 6 

Hexagons with no WNV Case 

Observed 

50,060 238,741 

 243 

We predict the probability that a case of WNV will occur during a given week in each 1-km-wide 244 

hexagonal region in Cook and DuPage counties, from which we predict whether a case will occur. The 245 
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receiver operating characteristic (ROC) area under the curve (AUC) is 0.95. The model has an accuracy 246 

of 0.8267, a precision of 0.0034, a recall of 0.9664, and a macro F1 score of 0.45.  247 

Based on the above results, we found that the metrics of the reduced model are similar to the model 248 

including all 25 low-correlation variables. Therefore, we conclude that the reduced model is sufficient to 249 

describe the result. 250 

 251 

Marginal Effects 252 

We examined the marginal effects of all the features by generating partial dependence plots. The slope of 253 

the plots shows how much each feature contributes to the model when controlling for the other factors. 254 

 255 

Fig 5. Partial dependence plot of factors with positive effects: total population, mean MIR, 256 

temperature 4 weeks before WNV cases are reported, and January temperature. The MIR and the 257 
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weekly temperatures in 1-4 weeks before also have similar trends as the mean MIR and the temperature 258 

of the current week. 259 

Figure 5 shows the partial dependence plot of the factors that predict higher WNV risk as the values of 260 

the factors increase. MIR and total population have strong monotonic positive effects. The result is 261 

consistent that both disease-carrying mosquitoes and the human population increase the risk of infection. 262 

Weekly mean temperature 4 weeks before WNV cases are reported has a strong monotonic positive 263 

effect. It is noteworthy that the temperature range is below 30ºC, which is approximately the range that 264 

promotes mosquito activity and virus replication. January temperature also has a strong monotonic 265 

positive effect. A warmer January allows mosquitoes to survive the winter, resulting in larger mosquito 266 

populations.  267 
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 268 

Fig 6. Partial dependence plot of precipitation for the current week and 1-4 weeks prior.  269 

Precipitation variables have non-monotonic effects. The marginal effect contributing to WNV risk first 270 

increases and then decreases as precipitation increases. 271 

On the other hand, as shown in Figure 6, the precipitation variables have non-monotonic effects, i.e., the 272 

risk of WNV outbreak first increases and then decreases as precipitation continues to increase. This result 273 

is consistent with the existing literature [10,14,26]. While temporary water accumulation provides 274 
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mosquitoes with more places to lay eggs, excessive precipitation can also wash away mosquito eggs, thus 275 

reducing the risk of WNV.  276 

 277 

Fig 7. Partial dependence plot of socioeconomics and land cover features. The socioeconomics and 278 

land cover features are not very strongly represented. There is no marginal effect of income. The 279 

percentage of houses built after World War II has a slight negative effect, indicating that people living in 280 

older neighborhoods have higher WNV risks. Meanwhile, the percentage of less developed land has a 281 

slight positive effect. 282 

As shown in Figure 7, apart from total population (in Figure 1), land cover and other socioeconomic features 283 

have relatively small effects. We don't observe a marginal effect of income, although it is presented in the 284 

feature selection. House age and land development intensity both have small effects on WNV case prediction.  285 

 286 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.23289737doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289737
http://creativecommons.org/licenses/by/4.0/


20 

Conclusion 287 

We performed two-step light GBM procedures to identify a minimum model. We evaluated the ROC-288 

AUC score, accuracy, recall, precision and F-1 score of the models. We found that the reduced model has 289 

a worse performance than the linear models of Karki, et. al. [26], while the full model has a similar 290 

performance. Therefore, we kept all 25 parameters in the model for prediction. We have found that the 291 

natural effects including January temperature, weekly temperature (lagged 0-4 weeks), weekly 292 

precipitation (lagged 0-4 weeks), and weekly MIR (lagged 0-4 weeks), as well as the total population are 293 

the dominant features that are strongly correlated with the incidence of West Nile virus human cases. 294 

The light GBM model is better at detecting the positive cases, i.e. higher recall. We found consistent 295 

features with Karki, et al. that mosquito infection rate, temperature and their lag effects are important 296 

factors [26]. This result was further confirmed with PD plots. We also found the behavior of precipitation 297 

factors consistent with the literature [10,14,26], being strong predictors with non-monotonic marginal 298 

effects. In addition, we found that the percentage of houses built after World War II, which is not 299 

included in the original work, is quite important. While income is selected as a predictor by the final 300 

model, the PD plot has shown that it has no marginal effects.  301 

The model based only on selected key factors performs similarly to the model that includes all other 302 

factors. In addition, both the number of cases and the weather vary on a weekly basis, while the land 303 

cover and socioeconomic data are static. Therefore, the effect of the socioeconomic characteristics could 304 

be masked by the correlated characteristics of lagged MIR and lagged temperature. 305 

One concern was that the behavior of the model may differ by the income of the area, as income 306 

disparities may affect diagnosis rates, surveillance efforts, and distribution of land cover and housing 307 

variables. Therefore, the light GBM model fitting was repeated for subsets of the data consisting of the 308 

areas with above-median income and the areas with below-median income (S3). These stratified models 309 
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were similar to each other and to the full model, indicating that the predictive capabilities of this model 310 

are not predicated on income groupings. 311 

In conclusion, our light GBM model provides an alternative way to predict the probability of an area 312 

having a WNV case or not. The performance in terms of ROC-AUC is very close to the previous work 313 

[26] and is much better at detecting the area where there is actually a case. We also have a clearer 314 

relationship between temperature and precipitation, mosquito infection, and West Nile virus. In addition, 315 

we identified weak effects of socioeconomics and land cover. The risk of contracting WNV does not 316 

appear to be related to income in these data. However, other factors may relate to income and WNV 317 

detection that are not possible to study with these data, such as variation in diagnosis rates.  318 

The results of this study can be used as a guideline to develop a threshold for public health intervention. 319 

Acknowledgements 320 

The authors thank the NCSA Center-Directed Discretionary Research (CDDR) for funding this project. The 321 

authors would like to thank the SPIN program at NCSA for supporting the student who is the first author of the 322 

paper. The authors would like to thank the HAL cluster and support team for providing the computational 323 

resources to complete the work. The author would also like to acknowledge the efforts of the NCSA Industry 324 

Group for supporting the work. The authors would like to thank Dr. Christina Fliege for her editorial 325 

suggestions on this manuscript. The authors would like to thank Mr. Mingyu Yang for his help in retrieving 326 

and preprocessing the census data. 327 

  328 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.23289737doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289737
http://creativecommons.org/licenses/by/4.0/


22 

References 329 

 330 

1.  Lanciotti RS. Origin of the West Nile Virus Responsible for an Outbreak of Encephalitis in the 331 

Northeastern United States. Science. 1999. pp. 2333–2337. doi:10.1126/science.286.5448.2333 332 

2.  Hayes EB, Komar N, Nasci RS, Montgomery SP, O’Leary DR, Campbell GL. Epidemiology and 333 

transmission dynamics of West Nile virus disease. Emerg Infect Dis. 2005;11: 1167–1173. 334 

3.  Hadfield J, Brito AF, Swetnam DM, Vogels CBF, Tokarz RE, Andersen KG, et al. Twenty years of 335 

West Nile virus spread and evolution in the Americas visualized by Nextstrain. PLoS Pathog. 336 

2019;15: e1008042. 337 

4.  Kilpatrick AM, Marm Kilpatrick A, LaDeau SL, Marra PP. ECOLOGY OF WEST NILE VIRUS 338 

TRANSMISSION AND ITS IMPACT ON BIRDS IN THE WESTERN HEMISPHERE. The Auk. 339 

2007. p. 1121. doi:10.1642/0004-8038(2007)124[1121:eownvt]2.0.co;2 340 

5.  Kramer LD, Styer LM, Ebel GD. A Global Perspective on the Epidemiology of West Nile Virus. 341 

Annual Review of Entomology. 2008. pp. 61–81. doi:10.1146/annurev.ento.53.103106.093258 342 

6.  Johnson BJ, Munafo K, Shappell L, Tsipoura N, Robson M, Ehrenfeld J, et al. The roles of mosquito 343 

and bird communities on the prevalence of West Nile virus in urban wetland and residential habitats. 344 

Urban Ecosystems. 2012. pp. 513–531. doi:10.1007/s11252-012-0248-1 345 

7.  Reisen WK. Ecology of West Nile virus in North America. Viruses. 2013;5: 2079–2105. 346 

8.  Hubálek Z, Halouzka J. West Nile Fever–a Reemerging Mosquito-Borne Viral Disease in Europe. 347 

Emerging Infectious Diseases. 1999. pp. 643–650. doi:10.3201/eid0505.990505 348 

9.  Kilpatrick AM, Pape WJ. Predicting human West Nile virus infections with mosquito surveillance 349 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.23289737doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289737
http://creativecommons.org/licenses/by/4.0/


23 

data. Am J Epidemiol. 2013;178: 829–835. 350 

10.  Keyel AC, Elison Timm O, Backenson PB, Prussing C, Quinones S, McDonough KA, et al. 351 

Seasonal temperatures and hydrological conditions improve the prediction of West Nile virus 352 

infection rates in Culex mosquitoes and human case counts in New York and Connecticut. PLoS 353 

One. 2019;14: e0217854. 354 

11.  Paz S. Effects of climate change on vector-borne diseases: an updated focus on West Nile virus in 355 

humans. Emerging Topics in Life Sciences. 2019. pp. 143–152. doi:10.1042/etls20180124 356 

12.  Hahn MB, Nasci RS, Delorey MJ, Eisen RJ, Monaghan AJ, Fischer M, et al. Meteorological 357 

Conditions Associated with Increased Incidence of West Nile Virus Disease in the United States, 358 

2004–2012. The American Journal of Tropical Medicine and Hygiene. 2015. pp. 1013–1022. 359 

doi:10.4269/ajtmh.14-0737 360 

13.  Shocket MS, Verwillow AB, Numazu MG, Slamani H, Cohen JM, El Moustaid F, et al. 361 

Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures 362 

between 23°C and 26°C. eLife. 2020. doi:10.7554/elife.58511 363 

14.  Shand L, Brown WM, Chaves LF, Goldberg TL, Hamer GL, Haramis L, et al. Predicting West Nile 364 

Virus Infection Risk From the Synergistic Effects of Rainfall and Temperature. J Med Entomol. 365 

2016;53: 935–944. 366 

15.  Poh KC, Chaves LF, Reyna-Nava M, Roberts CM, Fredregill C, Bueno R, et al. The influence of 367 

weather and weather variability on mosquito abundance and infection with West Nile virus in Harris 368 

County, Texas, USA. Science of The Total Environment. 2019. pp. 260–272. 369 

doi:10.1016/j.scitotenv.2019.04.109 370 

16.  Campion M, Bina C, Pozniak M, Hanson T, Vaughan J, Mehus J, et al. Predicting West Nile Virus 371 

(WNV) occurrences in North Dakota using data mining techniques. 2016 Future Technologies 372 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.23289737doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289737
http://creativecommons.org/licenses/by/4.0/


24 

Conference (FTC). 2016. doi:10.1109/ftc.2016.7821628 373 

17.  Peper ST, Dawson DE, Dacko N, Athanasiou K, Hunter J, Loko F, et al. Predictive Modeling for 374 

West Nile Virus and Mosquito Surveillance in Lubbock, Texas. J Am Mosq Control Assoc. 2018;34: 375 

18–24. 376 

18.  Davis JK, Vincent GP, Hildreth MB, Kightlinger L, Carlson C, Wimberly MC. Improving the 377 

prediction of arbovirus outbreaks: A comparison of climate-driven models for West Nile virus in an 378 

endemic region of the United States. Acta Tropica. 2018. pp. 242–250. 379 

doi:10.1016/j.actatropica.2018.04.028 380 

19.  Yoo E-H, Chen D, Diao C, Russell C. The Effects of Weather and Environmental Factors on West 381 

Nile Virus Mosquito Abundance in Greater Toronto Area. Earth Interactions. 2016. pp. 1–22. 382 

doi:10.1175/ei-d-15-0003.1 383 

20.  DeFelice NB, Birger R, DeFelice N, Gagner A, Campbell SR, Romano C, et al. Modeling and 384 

Surveillance of Reporting Delays of Mosquitoes and Humans Infected With West Nile Virus and 385 

Associations With Accuracy of West Nile Virus Forecasts. JAMA Netw Open. 2019;2: e193175. 386 

21.  Sánchez-Gómez A, Amela C, Fernández-Carrión E, Martínez-Avilés M, Sánchez-Vizcaíno JM, 387 

Sierra-Moros MJ. Risk mapping of West Nile virus circulation in Spain, 2015. Acta Trop. 2017;169: 388 

163–169. 389 

22.  Hernandez E, Torres R, Joyce AL. Environmental and Sociological Factors Associated with the 390 

Incidence of West Nile Virus Cases in the Northern San Joaquin Valley of California, 2011–2015. 391 

Vector-Borne and Zoonotic Diseases. 2019. pp. 851–858. doi:10.1089/vbz.2019.2437 392 

23.  Myer MH, Johnston JM. Spatiotemporal Bayesian modeling of West Nile virus: Identifying risk of 393 

infection in mosquitoes with local-scale predictors. Sci Total Environ. 2019;650: 2818–2829. 394 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.23289737doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289737
http://creativecommons.org/licenses/by/4.0/


25 

24.  Farooq Z, Sjödin H, Semenza JC, Tozan Y, Sewe MO, Wallin J, et al. European projections of West 395 

Nile virus transmission under climate change scenarios. One Health. 2023;16: 100509. 396 

25.  Bassal R, Shohat T, Kaufman Z, Mannasse B, Shinar E, Amichay D, et al. The seroprevalence of 397 

West Nile Virus in Israel: A nationwide cross sectional study. PLoS One. 2017;12: e0179774. 398 

26.  Karki S, Brown WM, Uelmen J, Ruiz MO, Smith RL. The drivers of West Nile virus human illness 399 

in the Chicago, Illinois, USA area: Fine scale dynamic effects of weather, mosquito infection, social, 400 

and biological conditions. PLoS One. 2020;15: e0227160. 401 

27.  Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: A Highly Efficient Gradient 402 

Boosting Decision Tree. Adv Neural Inf Process Syst. 2017;30. Available: 403 

https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf 404 

28.  Breiman L. Random Forests. Mach Learn. 2001;45: 5–32. 405 

29.  Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. aoas. 2008;2: 841–406 

860. 407 

30.  Gong R & Huang. A Kolmogorov–Smirnov statistic based segmentation approach to learning from 408 

imbalanced datasets: With application in property refinance prediction. Expert Syst Appl. 2012;39: 409 

6192–6200. 410 

31.  Daly C, Smith JI, Olson KV. Mapping Atmospheric Moisture Climatologies across the 411 

Conterminous United States. PLoS One. 2015;10: e0141140. 412 

32.  Dewitz J. National Land Cover Database (NLCD) 2019 Products. U.S. Geological Survey; 2021. 413 

doi:10.5066/P9KZCM54 414 

33.  US Census Bureau. Census.gov. [cited 11 Aug 2020]. Available: https://www.census.gov/en.html 415 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.23289737doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289737
http://creativecommons.org/licenses/by/4.0/


26 

34.  Machado MR, Karray S, de Sousa IT. LightGBM: an Effective Decision Tree Gradient Boosting 416 

Method to Predict Customer Loyalty in the Finance Industry. 2019 14th International Conference on 417 

Computer Science & Education (ICCSE). 2019. doi:10.1109/iccse.2019.8845529 418 

35.  Saito T, Rehmsmeier M. The Precision-Recall Plot Is More Informative than the ROC Plot When 419 

Evaluating Binary Classifiers on Imbalanced Datasets. PLoS One. 2015;10: e0118432. 420 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.23289737doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289737
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.23289737doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289737
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.23289737doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289737
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.23289737doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289737
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.23289737doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289737
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.23289737doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289737
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.23289737doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289737
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.23289737doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289737
http://creativecommons.org/licenses/by/4.0/

