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Abstract

Opisthorchis viverrini is a parasitic liver fluke affecting over 10 million people despite
sustained control efforts. High intensity infections are a risk factor for the often fatal
bile duct cancer, cholangiocarcinoma. Similar to other helminthiases, the distribution
of worm burden in humans is highly uneven within populations. We developed
multiple models which allow us to capture heterogeneity in transmission and
interventions dynamics and the resulting impact on worm distribution: An
agent-based model with the common assumption of gamma-distributed transmission
parameters; an agent-based model with an alternative nonparametric distribution of
transmission parameters; and a simpler ordinary differential equation model. We
calibrated all models to prevalence and intensity of infection data in humans, and
prevalence data for reservoir hosts and intermediate hosts from southern Lao People’s
Democratic Republic. We simulated the impact of multiple interventions on
prevalence, intensity of infection and the distribution of worm burden in humans. Our
results showed significant overlap in predictions of prevalence and intensity of infection
over time between the agent-based models and the ordinary differential equation
model, corroborating both the simple and more complex models; however, the
nonparametric model was better able to capture the distribution of the highest
intensity burden in individuals. Under assumptions of homogeneous adherence to mass
drug administration campaigns, no model was able to capture the changing
heterogeneity of worm burden over time seen in the epidemiological data. Allowing for
heterogeneous adherence in these campaigns, which was only possible in the
agent-based models, allowed us to explain the changes seen in the worm distribution
and burden seen in the data. This result highlights the added benefit of agent-based
models in capturing the changing heterogeneity in worm burden in areas with
repeated mass treatments. Appropriately capturing this heterogeneity is essential in
understanding the relationship between worm burden, control interventions and
subsequent disease burden.
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Author summary

Opisthorchis viverrini is a parasitic liver fluke affecting over 10 million people despite
sustained control efforts. The distribution of worm burden in humans is highly uneven
within populations with high intensity infections being a major risk factor for bile
duct cancer. We developed and present multiple models, some of which allow us to
capture this uneven distribution in susceptibility to infection as well as in adherence to
treatment: Two agent-based models of high complexity and a simpler
population-based model. We calibrated all models to replicate worm burden data
collected in southern Lao People’s Democratic Republic. We simulated the impact of
multiple interventions and showed significant overlap of all models in many aspects,
corroborating both the simple and more complex models. However, we show that the
agent-based models have the added benefit of being able to better capture the
unevenness of worm burden before and especially after interventions.

1 Introduction 1

Opisthorchis viverrini is a parasitic liver fluke endemic to the Greater Mekong 2

Subregion (GMS) in Southeast Asia [1]. While substantial reductions in O. viverrini 3

prevalence were achieved over recent decades, a total of 12.4 million individuals in the 4

GMS were estimated to still be infected in 2018 [2–4]. Infections with O. viverrini can 5

be asymptomatic [5] but frequently cause liver morbidity and, especially after 6

sustained heavy infection, cholangiocarcinoma, a malignancy with poor prognosis [6–9]. 7

Humans and other mammals, such as dogs and cats, serve as definitive hosts of O. 8

viverrini [10]. The mature parasite resides in the bile duct producing eggs which reach 9

the environment with the hosts’ stool. Miracidia hatch from eggs and are ingested by 10

freshwater snails of the genus Bithynia, inside which they develop into cercariae. The 11

cercariae shed from the snails, penetrate the skin of fish from the carp family and 12

develop into metacercariae inside the fish. When definitive hosts consume infected fish 13

in raw or undercooked form, the metacercariae migrate to the hosts’ bile duct and 14

develop into adult worms that can live for many years . 15

The intensity of liver fluke infection is highly heterogeneous in populations where 16

O. viverrini is endemic, with relatively few individuals exhibiting very heavy worm 17

burden [11]. This pattern of aggregation is typical for macroparasitic infections and 18

has been explained by differences in exposure, susceptibility and immune response of 19

individuals [12,13]. 20

Praziquantel is the drug of choice for the treatment of O. viverrini infection. 21

Non-pharmaceutical interventions include education campaigns on safe fish 22

consumption and use of sanitation, improvement of sanitation, snail control and safe 23

fish farming. Mass drug administration (MDA) campaigns with Praziquantel are 24

regularly conducted in endemic areas, but with limited success [14]. While the drug 25

itself shows high efficacy when dosed correctly, infection prevails because of limited 26

coverage, limited adherence and continued consumption of raw and undercooked fish. 27

In previous work, we developed various population-based models (PBMs) for O. 28

viverrini transmission and control. These are ordinary and partial differential 29

equation models that track the mean worm burden in humans and reservoir hosts, and 30

the prevalence of infection in intermediate hosts. The main conclusions from PBM 31

studies are that interruption of transmission can be achieved by only targeting humans 32

with interventions [15], but MDA campaigns covering all age groups are necessary to 33

interrupt transmission and treating school-aged children exclusively is not sufficient to 34

achieve this goal [16]. Other modelling work on O. viverrini has focused on the effect 35

of ecological and climate factors on transmission [17,18]. Furthermore, several 36
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compartmental models for the transmission and control of Clonorchis sinensis, a 37

parasite with the same life cycle as O. viverrini, have been published [19–23]. 38

While PBMs can provide distributions of worm burden as an output based on 39

mean worm burden [12], they usually assume homogeneity of individuals when it 40

comes to susceptibility to infection, behavior, adherence to interventions and coverage 41

of interventions. PBMs can accommodate for heterogeneity to some degree by adding 42

compartments for each combination of considered characteristics. For example, 43

separate compartments were added for individuals with different propensity to 44

consume undercooked fish in a PBM for C. sinensis [21]. However, when modelling 45

multiple sources of heterogeneity simultaneously, the number of required 46

compartments grows exponentially. Agent-based models (ABMs) track each individual 47

separately, allowing heterogenous characteristics, and tracking parasite and disease 48

burden at the individual level. Because heterogeneities among humans play an 49

important role in the transmission, pathology and treatment of O. viverrini, we have 50

developed an ABM for O. viverrini transmission and control. To our knowledge, this 51

is the first model of this kind for O. viverrini or C. sinensis. We present two versions 52

of the ABM: One with the assumption of gamma-distributed transmission parameters 53

over the population, which is the most common assumption in ABMs of 54

schistosomiasis [24], and one with a nonparametric distribution of transmission 55

parameters derived from the distribution of worm burden in two villages in Lao PDR. 56

We fit both models to this data and compare the equilibrium state and intervention 57

impact predictions to those of a previously published PBM of O. viverrini 58

transmission and control [25]. We show that taking heterogeneities into account is 59

essential to adequately model the impact of interventions on worm distribution. 60

2 Methods 61

2.1 Data 62

We use previously published data collected in cross-sectional surveys on two adjacent 63

Mekong river islands in Southern Laos in 2012 and 2018 [11]. Between the surveys, 64

MDA was conducted every year except in 2013 and education campaigns were carried 65

out. The 2012 data includes the intensity of infection for O. viverrini measured in 66

eggs per gram of stool (EPG) in stool samples of humans, cats and dogs. It also 67

includes prevalence of infection in the intermediate snail and fish hosts. For the year 68

2018, only EPG data in humans is available. The number of samples of each kind are 69

listed in Table 1 and the distribution of EPG among humans is shown in Fig 1. We 70

transform EPG to worm counts and vice versa in individuals and animals with a 71

density-dependent function derived from a purging study as described in the 72

supplementary Section S1.6.2. 73

2012 2018
Humans Cats Dogs Snails Fish Humans

Tested 994 64 68 3102 628 580
Positive 603 34 17 9 169 135

Prevalence 60.7% 53.1% 25% 0.3% 26.9% 23.3%

Table 1. Number of tested and positive samples from definitive and intermediate
hosts in 2012 and 2018.
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Fig 1. Distribution of EPG among humans in data collected in 2012 and 2018. The
hatched wide bars on the left show the proportion of individuals with an egg count of
zero. The remaining bars show the proportion of individuals with nonzero egg counts,
where the bin width equals 1000 EPG. The red lines mark the thresholds of World
Health Organization worm burden classification with 1-999 EPG being classified as
light infection, 1000-9999 as moderate infection and 10000 and above as heavy
infection [26]. The EPG data from both years show a high degree of aggregation,
k = 0.10 in 2012 and k = 0.03 in 2018, implying more aggregation in 2018. These
values of k are obtained by applying Equation (3) to the EPG data.

2.2 Agent-based Model 74

This section provides a high-level overview of the ABM. A detailed description written 75

according to the ODD (Overview, Design concepts, Details) protocol for describing 76

individual- and agent-based models [27,28] is provided in the supplementary 77

Section S1. A schematic of the ABM is provided in Fig 2. State variables of N 78

humans are tracked individually while animals are modelled at the aggregate level 79

(Table 2). The transmission dynamics are governed by the parameters listed in 80

Table 3. We introduce heterogeneity by letting the worm acquiring rate βhf,i vary 81

between individuals, i. We consider two distributions for randomly drawing βhf,i and 82

refer to the models using these distributions with separate names: The ABMΓ assumes 83

a gamma distribution, which can be considered the standard assumption for 84

macroparasite models [24]; the AMBε assumes a nonparametric distribution derived 85

from the 2012 field data. The gamma distribution in the ABMΓ is parameterized by 86

the mean and variance parameters βΓ
µ and βΓ

σ whose values are determined by model 87

fitting. In the AMBε, a worm count w̃i is drawn for each individual from the 88

distribution of worm counts in the 2012 data. The individuals’ βhf,i is derived from 89

the drawn w̃i using the relation 90

log10(βhf,i) = βεa + βεb log10(w̃i), (1)

for nonzero values of w̃i, where βεa and βεb are parameters that are determined by 91

model fitting. If w̃i equals zero, βhf,i is set to zero as well. 92

For all humans and animals the uptake of new parasites is Poisson distributed with 93

a rate determined by the current state of the system, the transmission parameters, the 94

time step size and the population sizes. We choose a time step size of one month and a 95

population size of 100,000 for fitting and the analyses in this paper. 96
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Fig 2. Schematic of the the agent-based model for O. viverrini transmission and
control. The state variables are described in Table 2 and the transmission parameters
are described in Table 3. Worm counts are mapped to egg output with a nonlinear
monotonically increasing piecewise function ρ derived from purging studies (Section
S1.6.2). While ρ is applied to the mean worm burden in cats and dogs and then
multiplied with the number of cats and dogs, respectively, it is applied to each
individual worm count in humans and subsequentially summed up over humans.

Variable Type Description Range
sexi Boolean 0 for female, 1 for male {0, 1}
age

(t)
i Float Age in days [0, 100× 365]

worms
(t)
i Integer Number of adult worms in in-

dividual
[0, 105]

epg
(t)
i Integer Eggs per gram in individual’s

stool
[0, ρ(105)]

beta multiplier
(t)
i Float Multiplier to βhf,i from educa-

tion campaign
[0, 1]

eating
(t)
i Boolean Individual is consuming under-

cooked fish
{0, 1}

latrine
(t)
i Boolean Individual has access to a la-

trine
{0, 1}

latrine use
(t)
i Boolean Individual uses latrine if acces-

sible
{0, 1}

dogs(t) Integer Total number of worms in dogs ≥ 0
cats(t) Integer Total number of worms in cats ≥ 0
snails(t) Integer Number of infected snails [0, 107]
fish(t) Integer Number of infected fish [0, 106]

Table 2. State variables in the ABM. All variables with superscript (t) can change
over time. The upper part of the table contains the variables which are tracked for
each individual human as indicated by subscript i. The lower part of the table
contains the state variables of nonhuman hosts. The maximum number of worms an
individual can carry is set to a biologically implausible value to facilitate the
parameter fitting process and is never reached under fitted parameter values.
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Parameter Description Unit
βsh Transmission rate to snails from eggs in hu-

man stool
1/(Day × Animals)

βsd Transmission rate to snails from eggs in dog
stool

1/(Day × Animals)

βsc Transmission rate to sanils from eggs in cat
stool

1/(Day × Animals)

βfs Transmission rate to fish from snails 1/(Day × Animals)
βhf,i Transmission rate to individual i from fish 1/(Day × Animals)
βdf Transmission rate to dogs from fish 1/(Day × Animals)
βcf Transmission rate to cats from fish 1/(Day × Animals)

Table 3. Transmission parameters of the ABM. Further parameters of the ABM are
described in the supplementary Section S1.6.

2.3 Population-based model 97

The PBM we use for comparison with the ABM is an ordinary differential equation 98

model that has been described and analysed in previous work [15,25]. A schematic of 99

the model is given in Fig 3. The equations and a complete table of parameters are 100

given in the supplementary Section S2. 101

wh

wc

wd

if is

βhf

βcf

βdf

βsh

βsc

βsd

βfs

Fig 3. Schematic of the population-based model for O. viverrini transmission and
control. The state variables are described in Table 4, the transmission parameters
roughly correspond to the transmission parameters of the ABM listed in Table 3. As
opposed to the ABM, where βhf,i varies over individuals, there is only a single βhf in
the PBM. Also, the PBM does not translate worm burden in definitive hosts to egg
output which results the in the transmission parameters βsh, βsd and βsc acting on
mean worm burden instead of egg count. Further details of the PBM are provided in
supplementary Section S2.

Instead of tracking worms in humans individually, the PBM tracks the mean 102

number of worms across humans. This means that the PBM, as opposed to the ABM, 103

does not provide a distribution of worm burden and therefore prevalence as a direct 104

output. To obtain a distribution, we use a negative binomial parameterized by an 105
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Variable Description
wh Mean worm burden per human host
wd Mean worm burden per dog host
wc Mean worm burden per cat host
is Proportion of infectious snails
if Proportion of infectious fish

Table 4. State variables of the population-based model.

aggregation parameter k having the probability mass function, 106

p(wi) =
(k + wi − 1)!

i!(k − 1)!
(1 + wh/k)−k−i(wh/k)i, (2)

which provides the distribution of worm counts, wi, for a given mean worm burden, 107

wh [12]. The prevalence, P , which corresponds to the proportion of non-zero worm 108

counts, is given by 109

P = 1− (1 + wh/k)−k. (3)

We substitute the mean worm burden and prevalence from the field data collected 110

in 2012 for wh and P in Equation (3) and solve numerically for k to estimate the level 111

of aggregation in the field data. We then assume k to be constant over time [12] and 112

substitute the calculated value of k into Equation (2) to obtain a distribution of 113

individual worm burden, wi, for any mean worm burden, wh, calculated during a PBM 114

model run. 115

2.4 Transmission parameter fitting 116

We fit the transmission parameters included in Table 3 to the 2012 data. The data 117

from 2018 is not used to fit transmission parameters. For both ABMs, we fit the 118

parameters which govern the distribution of βhf,i as described in Section 2.2. The 119

parameters βsh, βsc and βsd are not identifiable for all models given the data and we 120

fix these three parameters to be equal to a parameter βsx which is fitted instead. 121

The transmission parameters are calibrated such that the models reach an 122

equilibrium that matches various target summary statistics calculated from the 2012 123

data listed in Table 5. To create summary statistics that capture the worm 124

distribution in a clinically significant way, we bin the worm burden of positive humans 125

into 3 categories according to World Health Organization criteria [26]: Individuals 126

having between 1 EPG and 999 EPG are classified as having low worm burden, 127

between 1,000 EPG and 9,999 EPG as medium worm burden and above 10,000 EPG 128

as high worm burden. The summary statistics used for fitting are the proportions of 129

individuals that have low, medium or high worm burden as well as the mean of EPG 130

within each of those groups. We use these distributional summary statistics only for 131

the fitting of the ABMε, as the ABMΓ and the PBM cannot reach the target 132

prevalence when simultaneously being fitted to the distributional target values. In 133

contrast, the distribution of βhf,i in the ABMε has a proportion of individuals with a 134

value of zero that results in the target prevalence by design. 135

We fit the ABMs using Trust Region Bayesian Optimization (TuRBO) with local 136

Gaussian processes implemented with the Python package BoTorch [29,30]. The PBM 137

parameters required to reach a target equilibrium were calculated analytically. 138
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Summary statistic Target value ABMΓ ABMε PBM
Prevalence humans 0.6066 • •
Worms per human 55.70 • • •
Low EPG prevalence 0.411 •
Medium EPG prevalence 0.17 •
High EPG prevalence 0.025 •
Low EPG mean 244.93 •
Medium EPG mean 3369.23 •
High EPG mean 17280.48 •
Worms per dog 0.53 • • •
Worms per cat 5.63 • • •
Prevalence snails 0.0029 • • •
Prevalence fish 0.2715 • • •

Table 5. Target summary statistic values used to fit transmission parameters. A
bullet signifies that the summary statistic was used to fit the respective model.

2.5 Mass drug administration modelling 139

For the comparison of intervention impact predictions, we start all models at 140

equilibrium, run them for one year without interventions and subsequently deploy 141

yearly MDA for five years with coverages constant over time ranging from 0% to 90%. 142

In the ABMs, this corresponds to reducing the worm count to 0 for a random selection 143

of individuals corresponding to the coverage. For the PBM model, we reduce the mean 144

worm count by the MDA coverage. We run each ABM simulation with 10 random 145

seeds. To compare the predictions over different coverages we assess the state variables 146

one year after the last round of MDA. This scheme of five years of MDA and 147

subsequent assessment approximates the MDA and survey scheme of the population 148

from which the data in 2012 and 2018 was obtained (Section 2.1). 149

2.6 Heterogeneity in access to MDA and education campaign 150

In order to match the model predictions for prevalence and mean worm burden to the 151

2018 data in a second step, we employ heterogeneity in MDA adherence and include 152

an education campaign. For modelling heterogeneity in MDA adherence, treatment is 153

still distributed randomly but individuals have different probabilities of being reached 154

by MDA campaigns which stay fixed over time. We assume these probabilities to 155

follow a beta distribution with mean 0.8 and examine a range of variances between 0 156

and 0.3, where a larger variance implies increased heterogeneity. The mean of 0.8 157

translates to a coverage of 80%, which corresponds to the estimated effective coverage 158

in the study area between 2012 and 2018 as estimated by expert opinion. We assign 159

the drawn probabilities of MDA participation to individuals in descending order of 160

their βhf,i. This means that those individuals with the highest rate of acquiring 161

worms βhf,i are least likely to be reached by the MDA campaign. As the individuals’ 162

probabilities of being reached during the MDA campaigns stays fixed over time, this 163

also implies serial correlation of MDA adherence. 164

For the yearly education campaign, we assume that all individuals are reached and 165

that, for each campaign, the effect is the multiplication of beta multiplier
(t)
i with a 166

factor equal to one minus the education campaign’s efficacy, which we examine within 167

a range of 0 to 0.5. 168

We run simulations for one year in equilibrium followed by five years of yearly 169

MDA and education campaigns and assess the state variables one year after the final 170
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intervention. The simulations are run over combinations within the explored range of 171

MDA variance and education campaign efficacy. Using Gaussian process regression, 172

we predict the combinations of education campaign efficacy and MDA variance which 173

reproduce the mean worm burden and prevalence from the 2018 data at the end of the 174

model run. 175

3 Results 176

We obtain good fits in equilibrium for all the the target summary statistics used for 177

fitting with the parameter values listed in Table 6. A kernel density estimate of the 178

worm distribution among the individuals in the 2012 data and in the models at 179

equilibrium is provided in Fig 4. It shows a very high agreement between the ABMε
180

and the data, while the equilibrium state of the PBM and the ABMΓ are very similar 181

but show some discrepancy to the data. This high agreement in equilibrium worm 182

distribution between ABMΓ and the PBM can be expected, since we assume that the 183

worm uptake of individuals in the ABMs follows a Poisson distribution at each time 184

step. 185

The goodness of fit can also be evaluated by comparing the 2012 data with the 186

model states in equilibrium at the beginning of the time series in Fig 5. While all 187

models can fit the prevalence and mean worm burden targets (Fig 5a), only the ABMε
188

can fit all distributional targets as well (Fig 5b). The PBM and the ABMΓ show the 189

same pattern in derivation from the data at equilibrium: They underestimate the 190

prevalence and mean EPG for the group with low worm burden while the reverse is 191

true for the moderate worm burden: both the PBM and the ABMΓ overestimate the 192

prevalence of individuals in this group and the mean EPG within this group. Finally, 193

for the high worm burden, there is a slight underestimation of the mean worm burden 194

within this group by the ABMΓ and the PBM, while all models fit the prevalence of 195

high worm burden well. 196

Parameter ABMΓ ABMε PBM
log10 β

Γ
µ -7.14 – –

log10 β
Γ
σ -13.45 – –

βεa – -8.88 –
βεb – 0.99 –
log10 βhf – – -7.25
log10 βdf -8.88 -8.80 -8.88
log10 βcf -7.84 -7.85 -7.84
log10 βsx -15.96 -15.83 -11.85
log10 βfs -7.87 -7.86 -7.87

Table 6. Fitted parameter values for all models. The first five parameters in the table
are parameters determining the transmission from snails to humans and are specific to
the respective models. The remaining parameters are part of all three models. The
fitted values for βdf , βcf and βfs are very close to each other for all models. The fitted
values for βsx are close for the ABMs but different for the PBM since βsx acts on the
total egg output in the ABMs but acts on mean worm burden in the PBM.
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(a) Distribution of EPG with a regular scale on the y-axis.
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Fig 4. Kernel density estimate of EPG in the 2012 data and in the equilibrium state
of all models on a regular and on a log scale on the y-axis. The x-axis is plotted on a
log scale. The dashed vertical red lines indicate the transition from low to medium
and from medium to high EPG burden, respectively. The PBM and the ABMΓ show
very strong overlap.

Fig 5 also allows the comparison of the impact prediction of the MDA campaign 197

with 80% coverage made by the models. There is a remarkable agreement between the 198

predictions of all models with regards to the prevalence and overall mean worm 199

burden variables (Fig 5a). The most notable difference is the smaller drop in 200

prevalence predicted by the PBM after the initial distributions of MDA. 201

There is more difference between the predictions of the models in terms of 202

distributional summary statistics (Fig 5b). Most notably, the PBM predicts a sharp 203

drop in the number of individuals with high worm burden with no more individuals 204

remaining in this category after 2 years of MDA campaign. While the predictions of 205

the models mostly agree in terms of prevalence of low and medium worm burden, the 206

mean EPG within these groups shows some disagreement. 207

Comparing the predictions of the models in Fig 5 with field data measured after 5 208

rounds of yearly MDA (“Data 2018”), we see that all models overestimate the 209

remaining prevalence by a factor of almost 2 (Fig 5a). All models underestimate 210

worms per human, though the predictions still lie within the confidence interval, which 211

is large for this variable due to the high degree of aggregation. From Fig 5b, we see 212

that the overestimation in prevalence is entirely attributable to an overestimation of 213

the prevalence of individuals with a low worm burden, while the prediction of 214

moderate worm burden prevalence matches the data well and the predicted high worm 215

burden prevalence lies below the data though within the confidence interval. 216

Fig 6 depicts the value of the state variables after 5 years of yearly MDA (indicated 217
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by the red dashed vertical lines in Fig 5) for coverages between 0% and 90%. The high 218

agreement between models for the overall mean and prevalence variables persists over 219

the entire range of coverages (Fig 6a). For the distributional summary statistics, there 220

is more disagreement between the models over the range of coverages, again with the 221

ABMΓ and the PBM being closer together in predictions (Fig 6b). Fig 6 again 222

includes the 2018 data. We see that no model predicts a reduction prevalence as seen 223

in the data with any level of coverage between 0% and 90%. On the other hand, all 224

models predict the reduction in mean worm burden to match the field data at a 225

coverage of 40%, which lies below the estimated coverage 80% under which the 2018 226

data was generated. For the distributional summary statistics, the 2018 data can be 227

reproduced for all variables except for the overall prevalence, the prevalence of low 228

mean worm burden and the mean EPG in the group of high worm burden. However, 229

the required coverage for attaining the targets varies over summary statistics. 230
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(a) Time series for overall mean and prevalence summary statistics. All models were
calibrated to fit the 2012 data in equilibrium but not the 2018 data.
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(b) Time series for distributional summary statistics. Only the ABMε model was calibrated
to fit the 2012 data in equilibrium, none of the models was fit to the 2018 data.

Fig 5. Time series showing the mean of the summary statistics from model runs with
10 random seeds for each model variant. The error bands indicate the minimum and
maximum values over the random seeds. All runs start at the fitted equilibrium. After
1 year in equilibrium, yearly MDA is conducted at a coverage of 80%.
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(a) Mean and prevalence summary statistics after 5 years of MDA campaigns over a range of
MDA coverages.
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(b) Distributional summary statistics after 5 years of MDA campaigns over a range of MDA
coverages.

Fig 6. Summary statistics after 5 years of yearly MDA campaign at the time point
indicated by the vertical red dashed line in Fig 5. Each model variant is run with 10
random seeds for each MDA coverage and the mean is taken for the respective
summary statistic. The error bands show the minimum and maximum values observed
over the random seeds. The data from the year 2018 is plotted if available. At an
MDA coverage of 80%, the model prediction should ideally match the data, as
indicated by the black diamond.

Fig 7 shows which combinations of education campaign efficacy and variance in the 231

beta distribution of MDA participation (“MDA variance”) are required in the model 232

under the assumption of an 80% MDA coverage to achieve the same prevalence and 233

mean worm burden as seen in the 2018 data. Both target prevalence and target mean 234
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worm burden are achieved at the intersection of the lines which is indicated by the 235

marker labeled “optimum”. The ABMΓ requires an MDA variance of 0.24 and an 236

education efficacy of 45% while the ABMε requires a lower MDA variance of 0.21 as 237

well as a lower education efficacy of 33%. Fig 7 also indicates which change to the 238

intervention is important for replicating which variable. For both model variants, the 239

target prevalence can be achieved with a wide range of MDA variance levels while the 240

education efficacy is required to lie in a much narrower band. Therefore, the model 241

predicts the education campaign to be main driver for the observed reduction in 242

prevalence. Conversely, the heterogeneity in MDA adherence is the main driver of the 243

observed persistence of substantial mean worm burden across the population. Fig 8 244

shows model runs using the optimal values of MDA variance and education campaign 245

efficacy as indicated in Fig 7. The prevalence and mean worm burden now fit the 2018 246

data as expected. The distributional summary statistics in Fig 8b show that the 247

reduction in prevalence is mainly achieved by reducing the prevalence of individuals 248

with low worm burden. In fact, the model prediction of low worm burden prevalence 249

now fits the 2018 data even though it was not used to fit the adapted intervention 250

characteristics. The increase in mean worm burden by MDA variance is mainly 251

achieved through increased prevalence of high mean worm burden. While the models 252

without MDA variance estimated very little persistence of high worm burden, the 253

models with MDA variance predict high worm burden at the upper end or above the 254

confidence interval of the 2018 data. 255
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Fig 7. Required combinations of education campaign efficacy and MDA variance in
the agent-based models to attain the same prevalence and intensity of infection as seen
in the 2018 data after 5 MDA campaigns with an estimated coverage of 80%. Both
target values are met at the intersection of both lines, as indicated by the marker
labeled “optimum”.
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(a) Time series for overall mean and prevalence summary statistics from model runs adapted
to match the prevalence and mean worm burden in the 2018 data.
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(b) Time series for distributional summary statistics from model runs adapted to match the
prevalence and mean worm burden in the 2018 data.

Fig 8. Simulations run with MDA variance and education efficacy such that target
reduction in mean worm burden and prevalence can be achieved. The predictions for
mean worm burden and prevalence now match the 2018 data. The “baseline” model
runs without the adaptations are also plotted for comparison and are the same as in
Fig 5.

Fig 9 depicts the evolution of the aggregation parameter k for worms over time 256

under the MDA campaigns with 80% coverage in the PBM as well as the ABMs with 257

and without fitted education campaigns and heterogeneity in MDA adherence. The 258

field data which is also plotted shows a decrease in the aggregation parameter k when 259

comparing the data from before the MDA campaigns in 2012 to the data collected 260

after MDA campaigns in 2018. Low prevalence after interventions has also been 261
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associated with a high degree of aggregation for hookworm infection [31]. For the 262

PBM, k is constant by assumption. For the ABMs without education and 263

heterogeneity in MDA adherence, k drops sharply after each round of MDA. This 264

indicates an increased degree of heterogeneity which occurs because individuals who 265

received MDA are now free of worms and the remaining worm burden is carried only 266

by those 20% of individuals that did not receive MDA. As time passes since the last 267

round of MDA, individuals that received MDA start acquiring worms again and catch 268

up in worm counts compared to those who did not receive MDA which reduces 269

aggregation and therefore increases k. The ABMs with the adapted heterogeneity in 270

MDA adherence and education campaign exhibit sustained reductions in k. This is 271

because individuals with lowest worm uptake rates are most likely to be reached by 272

the MDA campaign. These individuals are slower to start taking up worms again after 273

MDA, which would increase prevalence and therefore k. In addition, the education 274

campaigns further reduce the uptake rates of all individuals and therefore slow down 275

the rebound of prevalence after an MDA campaign. The prediction of k perfectly fits 276

the 2018 data for the ABMs with education campaigns and the heterogeneity in MDA 277

adherence because the MDA variance and education campaign efficacy were chosen to 278

fit the mean worm burden and the prevalence, which are the sole determinants of the 279

aggregation parameter k. 280
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Fig 9. Time series of aggregation parameter k for worms in indivudals in the model
runs depicted in Fig 8. For the ABMs, values are calculated by numerically solving
Equation (3) for k given the mean worm burden and prevalence at each time step. For
the PBM, k is constant over time by assumption.

4 Discussion 281

Previous PBMs of Opisthorchis viverrini could accurately capture the prevalence of 282

infection in reservoir and intermediate hosts, as well as the prevalence of infection and 283

mean worm burden in humans [15,25]. However, as compartmental models, they could 284

not capture the distribution of worm burden in humans, nor how the relationship 285

between prevalence of infection and mean worm burden changes due to repeated MDA 286

campaigns. Here, we presented the first AMBs of O. viverrini transmission that allow 287

us to incorporate heterogeneities among humans in uptake of the parasite and 288

adherence to treatment in order to better reproduce the distribution of worm burden 289

in humans before and after mass-drug administration campaigns. 290

May 5, 2023 16/21

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.09.23289707doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.09.23289707
http://creativecommons.org/licenses/by/4.0/


We conducted a thorough comparison of the ABMs with the PBM to show the 291

utility of both types of models. Both perform similarly well in reproducing the impact 292

of interventions in transmission reduction, again emphasizing the utility of PBMs in 293

macroparasite modelling. However, the ABMs are better able to capture the 294

distribution changes in response to MDA campaigns when incorporating plausible 295

heterogeneities in MDA adherence combined with education campaigns. 296

We show that education campaigns, and therefore behavior change, was necessary 297

to explain the reduction in prevalence; and that this could not be explained solely by 298

MDA campaigns. On the other hand, we show that a high degree of heterogeneity in 299

MDA adherence is a plausible cause for the persistence of high worm burden in some 300

individuals, highlighting the importance of reaching these individuals in future MDA 301

campaigns. 302

The mechanisms of systematic MDA adherence and an education campaign can be 303

easily added to ABMs. For the compartmental model, in contrast, modelling an 304

evolution of the aggregation parameter k would become necessary and it is not clear 305

how heterogeneity in MDA adherence and an education campaign would translate to 306

changes of k (see also Fig 9). In contrast to results from ABMs for hookworm 307

epidemiology and control [32], we find that the aggregation parameter k is not 308

increasingly reduced over multiple yearly MDA campaigns when assuming random 309

adherence due to quick rebounds in infection rates. 310

There are several important factors we have not considered for simplicity or 311

because of data unavailability. MDA campaigns have been conducted in the study 312

area prior to 2012, albeit on an irregular basis [11] and we lack data on the timing and 313

the coverage of these campaigns. The assumption of an equilibrium at the start of the 314

simulation period may therefore be inappropriate and yield parameter fits which 315

underestimate transmission intensities. However, relaxing this assumption would 316

require additional data on the timing and coverage levels of these interventions. 317

We have also not considered inaccuracies of the EPG measurement technique. 318

Specifically, sensitivity may not be perfect, leading to an underestimation of 319

prevalence, and the EPG counts for high worm burden may be subject to large 320

variances . We also assumed MDA to have perfect efficacy, leading to clearance of all 321

parasites when an individual receives the drug. This assumption is not realistic, 322

especially in individuals with high worm burden, but there is little data to better 323

estimate the efficacy of the campaigns . Even though we have sample sizes of several 324

hundred individuals, the uncertainty for the proportion of high worm burden 325

individuals is high as only very few individuals fall into this category. Specifically, for 326

the year 2012 there were 25 individuals with high worm burden, while in 2018, there 327

were only two individuals. In the absence of data that could provide realistic 328

assumptions of EPG measurement sensitivity or MDA efficacy, we chose the 329

simplifying but extreme assumption of perfect diagnostic sensitivity and perfect MDA 330

efficacy. 331

An obvious drawback of the ABMε is the direct derivation of the transmission 332

parameter distribution from the field data, which means that we are using the data we 333

fit to also to parameterize the model. While this may limit the generalizability of 334

results, it may be appropriate for studying a specific population. There may also be 335

situations where the field data cannot be captured as well with a gamma distribution, 336

and the results suggest that ABMε may be a valid alternative in such a situation. One 337

could also criticize that ABMε fixes the proportion of people with a worm uptake rate 338

equal to zero and thereby the prevalence at equilibrium. However, the ABMΓ
339

effectively does the same by drawing a low value of βhf,i for some individuals such 340

that they never have any parasite uptake. While the ABMs allow setting a lot of 341

parameters at the level of individuals, we often lack information on how to specify 342
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these variables. For example, the choice of a beta distribution for the MDA adherence 343

was chosen for simplicity and may not reflect reality. We also did not include 344

heterogeneity in the efficacy of the education campaign both, for simplicity and due to 345

a lack of data, even though heterogeneity is likely to exist in reality. We expect that 346

including heterogeneity in education campaign efficacy at the individual level will add 347

a degree of freedom that would allow us to even better model the impact of the 348

interventions on the distribution of worm burden in the population. 349

A clear next step is to integrate the ABMs with disease models as they better 350

capture individuals with the highest worm burden and therefore the highest risk of 351

acquiring chronic disease. Furthermore ABMs allow us to track the treatment history 352

and the aggregate worm burden over time of each individual, as well as additional risk 353

factors. Currently ongoing studies associating worm burden and disease will allow the 354

appropriate parameterization of such models that can then be used to predict the 355

impact of interventions on the incidence of cholangiocarcinoma based on the history of 356

infection and treatment at an individual level. 357
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