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Abstract
Neurocritical care patients may benefit from personalized treatment based on their cerebral autoregula-
tory function. The pressure reactivity index is an important, prevalent metric used to estimate the state
of a patient’s cerebral autoregulation and guide clinical decision-making. However, the pressure reactiv-
ity index is highly sensitive to hyperparameter choices and intrapatient variability. In this manuscript,
we develop a new personalized pressure reactivity index methodology (pPRx) that increases robustness
and reduces the noise of the pressure reactivity index calculation. Using data from traumatic brain injury
patients and simulated data, we first show that pressure reactivity index sensitivity to hyperparameters
and interpatient variability is large enough to influence clinical interpretation of cerebral autoregulatory
function. We identify that patient heart rate is closely related to errors in the pressure reactivity index,
which has vital implications for extending the use of PRx to patients with different regular heart rates,
such as pediatric populations. We then remove this heart rate-specific sensitivity in the pPRx method-
ology by adjusting for patient heart rate at resolutions of single heartbeats. Implementing the pPRx
methodology decreases error, noise, and sensitivity, and allows the pressure reactivity index to be more
robust to variability across patient populations. We also leverage our data and analysis to identify ideal
averaging windows in the standard method.

1 Introduction
Neurological injuries are a prevalent cause of long-term disability and death. In the United States, there are
approximately 64,000 traumatic brain injury (TBI)-related deaths[1] and 160,000 stroke-related deaths[2]
annually. Poor patient outcomes often result from secondary perfusion insults following initial neurological
injury. Therefore, optimizing perfusion to reduce secondary injury is a key goal in clinical decision support.
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Cerebral perfusion, typically represented by its proxy, cerebral blood flow (CBF), depends on cerebral
vascular resistance (CVR) and cerebral perfusion pressure (CPP). CPP is the pressure gradient formed
between mean intracranial pressure (mICP) and mean arterial blood pressure (mABP) (eq. 1). Current
clinical guidelines recommend targeting mICP below 22 mmHg to mitigate the risk of secondary injuries[3].
However, a precision medicine approach that considers the state of the patient’s vasculature may improve
patient outcomes.

CBF =
CPP

CV R
=

mABP −mICP

CV R
(1)

Cerebral autoregulation (CA) is an intrinsic mechanism of the cerebral vasculature that maintains ad-
equate CBF over large pressure gradients by altering CVR[4, 5]. CA can be impaired in patients with
neurological injuries. Retrospective studies have shown that patients have better functional outcomes when
their CPP is close to a value that optimizes CA function, known as CPPopt[6, 7]. Therefore, in contrast
to current population-wide ICP-guided therapy, patients may benefit from patient-specific therapy where a
patient’s CPP is targeted to their CPPopt[8–11]. Proper evaluation of CA function is crucial for accurately
estimating CPPopt.

CA function can be estimated using various metrics, including transfer function analysis and the pressure
reactivity index (PRx)[5, 6, 12]. PRx is the metric commonly used in CPPopt-guided therapy. PRx is
calculated by first taking a non-overlapping moving average of ICP and ABP time series over a specific
window size and then calculating the Pearson correlation coefficient between a given number of these averaged
ABP and ICP samples[13]. A graphical depiction of the PRx calculation is shown in Fig. 1. The primary
reason for averaging is to remove frequencies that occur faster than CA operates[14–16]. Correlation is
calculated with the assumption that intact CA should be able to buffer changes in ABP before they are
transmitted into ICP. Thus, a low correlation coefficient indicates functioning CA. The size of the averaging
and correlation window are hyperparameters in the PRx calculation because they are chosen a priori[17, 18].
Values for these hyperparameters vary in literature (see Table 1) and the impact of hyperparameter choice
is not well understood. When discussing hyperparameter pairs, we will use the notation Avg: x seconds,
Corr: y samples, to indicate the hyperparameter pair with an averaging window of x seconds and correlation
window of y samples.

Averaging Window Correlation Window
(Seconds) (Samples)
10 40[19]
10 30 (most common)[20–28]
5 40[12, 13, 29–31]
15 30[32]∗

6 40[6, 33, 34]

Table 1 Common hyperparameters used to calculate PRx

It is important to understand the im-
pact of these hyperparameters on the
clinical interpretation of PRx. Typically,
PRx >0.25 indicates that CA is highly
impaired or absent and is predictive of
a higher risk of mortality[28, 35], while
PRx <0 indicates that CA is intact.
Therefore, 0.25 is the critical thresh-
old of PRx that distinguishes between
‘functional’ CA and ‘absent’ CA. If un-
certainty or error in the PRx estimate is larger than this critical threshold, the clinical interpretation of the
functionality of CA based on this PRx estimate could be completely incorrect. If uncertainty or error in
the PRx estimate is close to this critical threshold, the interpretation of CA functionality could be mostly
incorrect (e.g. CA is thought to be impaired when it is absent or functional when it is impaired).

The purpose of this manuscript is threefold. First, we quantify PRx estimation sensitivity to hyperpa-
rameters and patient variability. Second, we test the hypothesis that a personalized parameterization of the
PRx algorithm will provide a more robust and stable estimation of functionality. Third, we investigate ideal
hyperparameters for improving the robustness of PRx estimation in the standard method.

∗Howells recommends using 15-50 second averages but does not use any correlation window. For consistency, we chose correlations
that would result in the same amount of data captured in [24, 25](5 minutes)

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2023.05.08.23289682doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.08.23289682
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 Standard Algorithm for Calculating PRx. a: ABP (blue) and ICP (red) are averaged over a non-overlapping
averaging window. b: A given number of these averaged samples are collected, and the Pearson correlation coefficient is calculated
(c) on a 4/5 overlap sliding window.

2 Methods
Data
Patient Data Patient data were taken from patients enrolled in the Transforming Research and Clinical
Knowledge in Traumatic Brain Injury (TRACK-TBI) study[36], a prospective, multicenter study of patients
with traumatic brain injury. Written informed consent was obtained and the study was approved by the
institutional review boards of enrolling sites. We extracted two datasets which we term “development”
and “validation” datasets respectively. We used the development dataset for the initial investigation and
the development of our techniques and the validation dataset for validating our findings. The development
dataset, included patients from a single center to ensure standardized physiological measurements and clinical
practice. We extracted 21 four-hour windows of data (which is the time recommended to calculate a target
cerebral perfusion pressure (CPPopt)[30]) from 11 patients. The validation dataset included 10 four-hour
windows from 8 additional patients from two separate centers to ensure that our results were not dependent
on the hospital. Patient demographics are shown in Table 2.

Figure 2 Simulated Data Set Development. Step 1 shows
the power spectrum of the six base frequencies (Table 3) used
to create ICP and ABP. Blue shows a representative ABP
waveform. Red indicates three ICP waveforms created from com-
binations of the base frequencies. Three CA phenotypes were
created: Functional CA, Impaired CA, and Absent CA. The fre-
quencies used to create each ICP waveform are given above the
red arrows

To mitigate the impact of missing data on our
analyses, datasets were only chosen if missing or er-
roneous data made up less than 10% of the four-hour
time series. Missing data comprised 1.7%± 1.7% of
the development data set and 0.5% ± 0.7% of the
validation data set. Physiologically implausible val-
ues >400 or <0 for ABP and >100 or <0 for ICP
were set to null. Segments of null data shorter than
one second were linearly interpolated to fill in a por-
tion of the pressure waveform. This interpolation
did not notably impact PRx estimate. When miss-
ing data segments were longer than one second, we
omitted the averaging and correlation calculations
that would have included these missing data seg-
ments so that these missing data segments would
not affect the final PRx estimate.

Simulated Data Continuous evaluation of global CA function in humans is not currently possible.
Therefore, validating which hyperparameter would give the true PRx estimate and calculating PRx estima-
tion error is infeasible for patient data. To quantify PRx estimation error, we created simulated data based
on physiologically relevant signals. Fig. 2 shows a graphical description of simulated data creation. For
the development data set, we created 200 simulated datasets, each containing ABP and ICP for three CA
phenotypes: “Functional CA,” “Impaired CA,” and “Absent CA,” resulting in 600 time series. For the val-
idation dataset, we created an additional 20 simulated datasets containing the same three CA phenotypes
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Variable† All, n=19 Development Cohort,
n=11

Validation Cohort, n=8 p-value

Demographics
Age, years 44.45±15.68 41.8±16.5 48±14.76 0.04
Sex, male 14 (74%) 9 (82%) 5 (62.5%) 0.67

Injury Characteristics
Injury Cause
- Traffic Incident 12 (63%) 6 (55%) 6 (75%) 0.20
- Fall 4 (21%) 4 (36%) 0
- Other 3 (16%) 1 (9%) 2 (25%)
Admission time after
injury (hrs)

0.8 [0.67,1.30] 1 [0.7,1.5] 0.68 [0.58,0.85] 0.16

Admission GCS 3 [3,11] 3 [3,5] 8 [3,14] 0.13
Admission mGCS 1 [1,5] 1 [1,3] 6 [2.25,6] 0.05
Decompressive
Hemicraniectomy

6 (31%) 5 (45%) 1 (13 %) 0.3

Monitoring Data
Injury to Monitor
Time (hrs)

7.78 [6.47, 19.6] 7.3 [6.0, 16.5] 15.12 [6.64, 20.92] 0.32

CNS Data Duration
(days)

4 [1.63, 13.46] 1.64 [1.34, 4.20] 13.46 [4.04, 18.37] 0.08

ICP Monitor Type
- IPM 11 (57%) 9 (81%) 2 (25%)
- EVD 4 (21%) 0 4 (50%)
- Both 4 (21%) 2 (20%) 2 (25%)

Outcome
Hospital Length of
Stay (days)

22.3 [13.22,
27.92]

15.1 [14.2-22.3] 27.9 [14.52, 35.76] 0.36

In-Hospital Mortality 8 (42%) 6 (55%) 2 (75%) 0.41
6-Month Mortality 10 (52%) 8 (73%) 2 (25%) 0.11
6-Month GOSE 1 [1.0, 3.5] 1 [1, 2] 3 [1,6] 0.24

Table 2 Patient Characteristics and Monitoring Data. The injury was closed for all patients. GCS stands for Glasgow Coma
Scale and mGCS stands for motor Glasgow Coma Scale. IPM stands for Intraparenchymal Monitor. EVD stands for External
Ventricular Drain. GOSE stands for Glasgow Outcome Scale-Extended. P-value was calculated using Chi-squared (categorical
data), Kruskal–Wallis (non-normal distributions), or t-test (normal distributions) to ensure statistical similarity between
groups. All data reported as mean+/-standard deviation, median [interquartile range], or proportion (%) as appropriate

resulting in 60 time series. CA phenotypes were based on studies showing that as CA becomes impaired,
slower frequencies of ABP are translated from to ICP[24, 37, 38].

Five different four-hour 125 Hz waveforms were created (Fig. 2.1). These waveforms were based on
frequencies present in documented patient waveforms defined in (Table 3). Heart rate was randomly chosen
between 40-140 beats per minute to emulate many possible average heart rates. ABP was created by summing
all frequencies except for F4, which represent frequencies only present in ICP[40]. Three ICP waveforms
corresponding to functional, impaired, and absent CA were then created (Fig. 2.2a). For functional CA,
ICP should reflect fast frequencies (F1, F2), and frequencies only present in ICP (F4)[12, 24, 37, 41].
Therefore, ICPCAFunctional = F1 + F2 + F4. For impaired CA, ICP should reflect frequencies used in
intact CA, and dampened slower frequencies (F3/1000, F5/1000) [24, 37, 38]. Therefore, ICPCAImpaired =
F1 + F2 + F3/1000 + F4 + F5/1000. The assumption underlying PRx is that when CA is absent, ICP
and ABP are highly correlated, indicating that most frequencies present in ABP will be reflected in ICP:
therefore ICPCAabsent = F1 + F2 + F3 + F4 + F5.
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ICP waveforms are induced by traveling ABP waves, which causes ICP to lag behind ABP by approxi-
mately 6.8 seconds[42]. Therefore, ICP waveforms were shifted by 6.8 seconds. The amplitudes of ICP and
ABP were then rescaled according to a randomly selected patient from the TrackTBI cohort. PRx is meant
to capture the correlation between ABP and ICP after removing the effects of heart rate (F1) and respira-
tion (F2). Therefore, ‘true’ PRx was defined as the correlation coefficient between F3 and F5 in ABP and
all frequencies slower than F2 in ICP.

Analysis
Interpretations of the metrics we used to quantify error and sensitivity of the PRx calculation are given in
Table 4.

Signal
Name

Interpreta-
tion

Timescale

F1 Heart Rate 40-140
beats/minute

Scaled in fre-
quency and
amplitude to
match randomly
selected patient

F2 Respiration 10
breaths/minute

F3 Random 30 second
period

Random external
changes to the
patient[38, 39]

F4 Waves only
present in
ICP

90 second
period

Found only in
ICP[40]

F5 Random 16-minute
period

Slow random ex-
ternal changes to
the patient

Table 3 Physiologically relevant frequencies used in
simulated data

PRx Calculation: To quantify the sensitivity
of PRx to hyperparameters, we calculated PRx for
every combination of averaging windows between 1
and 30 seconds and correlation windows between 2
and 65 averaged samples. We chose this broad range
to capture every methodology presented in the lit-
erature. According to standard methods, averaging
windows did not overlap and correlation windows
overlap by 4/5[24]. Unless otherwise noted, the re-
ported PRx value is the median PRx across the
four-hour dataset. Median was used because the
PRx calculation has a high variance.

PRx Estimation Error: To assess the PRx
estimation error calculated with a given hyperpa-
rameter pair, we calculated the statistical estimator
bias, which is the difference between the estimated
PRx value and the true PRx value. Because each
hyperparameter results in different time windows,
the output of each PRx method was interpolated to
compare values directly. The PRx estimation error
for each hyperparameter and dataset was calculated
according to equations 2 and 3. For patient data, where true PRx is not known, we calculated empirical
error, and set the “true value” of PRx as the average PRx (PRx) from a range of the common hyperpa-
rameters (Avg: 5-20 seconds and Corr: 20-50 samples). For simulated data where the true value of PRx is
known, the error was calculated using equation 2 but PRxtn is replaced with the predefined true PRx value.

Empirical Errorj =
1

TN

TN∑
n=1

(PRx(tn)j − PRxtn) (2)

PRx(tn) =
1

J

J∑
j=1

PRx(tn)j (3)

Here, tn is a time point, TN is the total time, j is the hyperparameter pair, J is the total number of
hyperparameters analyzed, and PRx(tn)j is the estimated PRx at time tn for hyperparameter j.

Standard Deviation of Empirical Error: To assess whether the impact of intrapatient variability
on PRx estimation error using a given hyperparameter (j), we calculated the standard deviation (SD) of
empirical error across all datasets (d) for a specific hyperparameter j (equation 4).

SD of Empirical Errorj =√∑D
d=1(Empirical Errorj,d − EE)2

D − 1

(4)

Calculating PRx Estimation Sensitivity: To assess the PRx estimation sensitivity to hyperparame-
ters, we iterated through every hyperparameter pair and calculated the percent difference between the PRx
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value estimated using the hyperparameter pair and the PRx value estimated a small change in hyperparam-
eter pairs (e.g., ±1 second or ±1 sample). Sensitivity is interpreted as the average percent change in PRx
value given a small change in hyperparameter choice.

Noise: To assess the uncertainty or noise for an individual dataset, we calculated the standard deviation
of PRx over time.

Evaluation Metric Interpretation
PRx Estimation Error Difference between PRx estimate

from a single hyperparameter com-
pared to true PRx

Standard Deviation
(SD) or range of Error

How much patient variability influ-
ences error

Sensitivity
∆PRx/∆window

PRx sensitivity to hyperparame-
ters or missing data (see discussion)

Range of PRx values How much PRx can change across
the five common hyperparameters

Noise Noise in PRx estimate

Table 4 Interpretation of Metrics Used to Evaluate
PRx Performance

Correlating PRx estimation error and sen-
sitivity with average heart rate: To investigate
whether average heart rate was associated with PRx
estimation error and sensitivity, we used all 31 four-
hour datasets (from 19 patients) to compute linear
regressions between average heart rate and median
PRx, range of PRx values, and empirical error.

Developing Personalized
Algorithm for PRx Estimation
To investigate our hypothesis that personalizing the
PRx algorithm by averaging over patient heartbeats
would provide a more robust and stable estimation
of CA, we first identified all heartbeats in ABP sig-
nals. Heartbeats were found using a sliding peak
identification method. Data were segmented into one-minute and one-second windows with one-second over-
lap. In each window, the beginning of each systolic phase was identified using Matlab’s findpeaks function
on the inverted ABP segment. To ensure the dicrotic notch was not mistaken as a peak, the minimum peak
prominence was set as half of the range of max ABP to min ABP during the minute window (see Fig. 5a.
for example heartbeat identification). PRx was calculated as before, but the averaging window width was
set as a given number of heartbeats rather than seconds.

Identifying Ideal Hyperparameters
Hyperparameters were identified as ‘ideal’ if they minimized error and SD of error in PRx estimate for both
patient and simulated data.

All calculations were done in Matlab and are publically available at: https://github.com/jenniferk-
briggs/PRx.

3 Results
PRx is Sensitive to Hyperparameters
Using the development dataset, we calculated PRx for every combination of averaging windows between 1
and 30 seconds and correlation windows between 2 and 65 samples. To validate our PRx calculation, we
computed the lagged cross-correlation between the PRx estimate present in the TrackTBI dataset and our
PRx estimation using hyperparameters Avg: 10 sec, Corr: 30 samp. (Supp Fig. 1). We used a lagged cross-
correlation because the PRx calculation is sensitive to the starting time, which is not recorded in the clinical
dataset. The average lagged cross-correlation was 0.89, with a standard deviation of 0.05 and an average lag
of -0.02 seconds. The primary reasons the cross-correlation was not =1 were this time lag and differences in
quality control and artifact removal.

We first compared PRx estimation empirical error using the five common hyperparameters given in
Table 1. The hyperparameter pair Avg: 10 sec, Corr: 40 samp had the lowest average empirical error and
smallest SD of empirical error compared to the five common hyperparameters (Fig. 3a). Overall, shorter
averaging windows (5-6 seconds) were positively biased (hyperparameter overestimates PRx), whereas longer
averaging windows were negatively biased (hyperparameter underestimates PRx). These results indicate
that hyperparameter choice impacts PRx estimation.

Clinical decision-making is often based on CPP values that correspond to the minimization of PRx[9].
We next investigated if hyperparameters influence the occurrence and value of the minimum estimated PRx.
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Figure 3 PRx Estimate is Highly Sensitive to Hyperparameters. a) Violin plots showing the PRx estimate empirical
error using five common hyperparameters. Data points indicate a four-hour dataset. b) Time courses of PRx for three represen-
tative datasets using the five common hyperparameters. The datasets i, iii, v correspond to datasets in c. Black circles indicate
the minimum PRx estimate. For patient v, the PRx estimate is shown on the left y-axis and the CPP corresponding to the
minimum PRx estimate is shown on the right axis. CPP bars are colored according to the hyperparameter pair resulting in
the corresponding PRx minimum. The dashed line indicates the range of CPP values where PRx was minimized. c) The top
panel shows 3D contour plots for patient i (left) and v (right). Differences in contour plot topography indicate that PRx esti-
mation is sensitive to intrapatient variability. The scatter plot shows sensitivity (left y-axis) and range of PRx values over the
five common hyperparameters (right y-axis) for all datasets, with black circles outlining five datasets corresponding to contour
plots. The bottom panel shows 2D contour plots from five representative datasets. The color indicates the PRx estimate for
each hyperparameter.

Fig. 3b shows one-hour windows when PRx reached a minimum (Roman numerals correspond to datasets in
Fig. 3c). For dataset i (Fig. 3b), the value of minimum PRx remained consistent across hyperparameters.
Further, the PRx calculation from each hyperparameter estimated that minimum PRx would occur within a
few minutes of each other. This represents the ideal situation. For dataset iii, the PRx calculation from each
hyperparameter still estimated that minimum PRx would occur at roughly the same time, but the estimated
PRx value ranged between functional CA (PRx = -0.6) and absent CA (PRx = 0.25). In dataset v, the
time when the PRx estimates reached their respective minimum varied by up to 30 minutes depending on
the hyperparameter. Additionally, the CPP (right y-axis in blue bars) corresponding to the minimum PRx
ranged from 50-59 mmHg. Therefore, the estimated minimum PRx value and the CPP value corresponding to
minimum PRx are sensitive to hyperparameter choice. These results indicate that PRx estimation sensitivity
to hyperparameters may be large enough to directly influence the clinical interpretation of a patient’s CA
functionality and clinical decision-making.

We quantified the global sensitivity to hyperparameters at a granular level using the average percent
change in PRx estimate given a small change in hyperparameter (Fig 3c left y-axis of scatter plot). Results
ranged from 1.6% - 213% depending on the patient, indicating that a small change in hyperparameters
could have a large impact on the PRx estimate. For example, for patient ii, using 18 correlation samples and
5, 6, or 7-second averaging windows results in median PRx values of 0.31, 0.28, and 0.17, respectively. These

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2024. ; https://doi.org/10.1101/2023.05.08.23289682doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.08.23289682
http://creativecommons.org/licenses/by-nc-nd/4.0/


PRx estimates cross the critical threshold of PRx (=0.25) and will result in different clinical interpretations
of the patient’s CA functionality.

We also examined if PRx estimation was variable across the common hyperparameters. Using all hyper-
parameters analyzed, the PRx estimate ranged between 0.32 and 1.57. Considering the maximum possible
range of PRx values is 2 (PRx can range from -1 and 1), these results correspond to a PRx estimation un-
certainty between 16% - 79% (Supp. Fig. 2). Restricted to the common hyperparameters, the range of the
PRx estimate was between 0.05 and 0.34 (Fig. 3c right y-axis of scatter plot). This large uncertainty com-
pared to the critical threshold of PRx (=0.25) further indicates that the PRx sensitivity to hyperparameters
is large enough to interfere with clinical decision-making.

PRx estimation is sensitive to intrapatient variability
The large uncertainty in the value of PRx empirical error for each hyperparameter (Fig. 3a) indicates that
error is influenced by patient variability. Uncertainty in the empirical error was smallest when PRx was
estimated using large averaging windows (e.g. empirical error for PRx calculated using Avg: 10 sec, Corr 40
samp had a range of 0.09) and was the largest when PRx was estimated using small averaging windows (e.g.
empirical error for PRx calculated using Avg: 5 sec, Corr: 40 samp had a range of 0.45). Therefore, when
calculating PRx using small averaging windows (< 10 sec), this patient-dependent uncertainty in PRx is
larger than the critical threshold and therefore could impact the clinical interpretation of CA functionality.

We further quantified PRx estimation sensitivity to patient variability. Fig. 3c shows contour plots
of PRx calculated using all hyperparameter combinations for five representative datasets. The different
colors on a single contour plot, corresponding to different PRx estimates, indicate that PRx is sensitive
to hyperparameters, as shown previously. The different types of contours (e.g., horizontal (ii.) or diagonal
and curved (iv. and v.)) indicate that the extent and behavior of PRx sensitivity are heterogeneous across
patients.

Together, these results indicate that PRx is sensitive to hyperparameters and variability across patients.
Therefore, a patient-specific adjustment to the PRx algorithm may be necessary for ensuring accuracy in
PRx estimate for all patients.

PRx, PRx Error, and PRx Sensitivity is Associated with Heart Rate
We sought to identify a source of this patient-dependent PRx sensitivity. Averaging in the PRx algorithm
was originally meant to remove the influence of heart rate and respiration[12]. Therefore, we explored if
heart rate was associated with sensitivity and error in the PRx estimate. By visual inspection, there is a
relationship between average heart rate and error in the simulated dataset (Fig. 4a). For patient data,
median PRx from all common hyperparameters had a linear relationship with average heart rate (Fig. 4b).
The range of common hyperparameters was also related to average heart rate (Fig. 4c). Finally, while there
was a nearly significant linear relationship (p=0.08) between average heart rate and PRx for hyperparameter
pair Avg: 5 sec, Corr: 40 samp, this relationship was not present for other hyperparameter pairs (e.g. Avg:
10 sec, Corr: 40 samp) (Fig. 4d,e). These results imply that heart rate is related to intrapatient variability
and sensitivity to hyperparameters in the PRx estimate, indicating that there may be a way to reduce error
by reparameterizing PRx based on heartbeats.

Personalized PRx Algorithm (pPRx) Results in Reduced Error, Sensitivity to
Hyperparameters, and Noise
To test the hypothesis that accounting for heart rate while keeping algorithmic efficiency high would reduce
error and sensitivity in PRx, we first identified all heartbeats in the patient and simulated data and averaged
over heartbeats rather than seconds (Fig. 5a). For example, if the original hyperparameter pair was Avg: 5
sec, Corr: 40 samp, we instead averaged over five heartbeats and then correlated over 40 of these averaged
samples (Fig. 5a). After identifying all heartbeats, we calculated PRx for all hyperparameters in both
patient and simulated data. We call this new algorithm the personalized heartbeat-based PRx algorithm,
pPRx, and the standard seconds-based algorithm sPRx. The pPRx calculation did not notably impact
computation time, which is required for real-time computation of PRx in operational settings.
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Figure 4 PRx Estimate Depends on Heart Rate. a) Scatter plot showing
that error in median PRx depends on heart rate for three levels of CA function -
intact CA (blue), impaired CA (red), and absent CA (yellow) in simulated data. b-
e show scatter plots relating average heart rate to different PRx evaluation metrics.
The black line indicates linear regression with 95% confidence intervals shown as
dashed lines. Bolded p-values indicate statistical significance or near significance.
b) There is a linear relationship between average heart rate and median PRx (Avg:
10 sec, Corr: 30 Samp). c) There is a linear relationship between average heart rate
and the range of the five common hyperparameters. d) There is no relationship
between average heart rate and empirical error in PRx (Avg: 10 sec, Corr: 40 samp),
e) There is a nearly linear relationship between average heart rate and empirical
error in PRx (Avg: 5 sec, Corr: 40 Samp).

We compared the performance
of sPRx and pPRx using simulated
and patient data in the develop-
ment and validation datasets. For
simulated data, the pPRx calcula-
tion was less sensitive to hyperpa-
rameters and intrapatient variabil-
ity and had a lower average esti-
mation error than sPRx (Fig. 5b,
Table 5). For patient data, the
pPRx calculation decreased noise of
PRx estimation for both datasets
(Table 5, Fig. 5c,d,). The pPRx
calculation was less sensitive to
hyperparameters than pPRx (Fig.
5e, Table 5) and did not have a no-
table impact on average empirical
error (Fig. 5f, Table 5). The pPRx
calculation decreased the standard
deviation of empirical error for pa-
tient data for both datasets (Table
5). The standard deviation of em-
pirical error is indicative of patient
variability across the population.
Therefore, the pPRx estimate re-
duces patient-dependent error com-
pared to sPRx.

Average PRx was not noticeably
different between the two averaging
methodologies (Fig. 5g.), indicat-
ing that the interpretation of the
sPRx likely extends to the pPRx.
For simulated data, sPRx had the
smallest error for intact CA pheno-
types and underestimated the true

PRx value for absent and impaired CA phenotypes (Fig. 4a, Table. 5). The pPRx calculation decreased
this CA functionality-specific error in simulated data. A similar trend was present using patient data - for
patients absent CA (PRx >0.25), the pPRx calculation yielded a larger PRx value than the sPRx calculation
(Fig. 5g.).

We evaluated if the pPRx calculation affected the previously observed relationship between PRx and
heart rate. The pPRx calculation did remove the relationship between empirical error (using hyperparam-
eters Avg: 5 sec, 40 samp) and average heart rate for PRx (Fig. 5i.) and between the range of common
hyperparameters and average heart rate (Fig. 5j.). The pPRx calculation did not remove the linear rela-
tionship between median PRx and average heart rate (Fig. 5h). Together, these results indicate that the
pPRx calculation removes heart rate-associated PRx sensitivity and error without greatly altering the PRx
estimate.

Ideal Hyperparameters in Standard Methodology Improve PRx Estimate
We also investigated if there exist ideal hyperparameter values that decrease sensitivity to patient variability
using the standard PRx algorithm. We defined hyperparameter pairs to be ‘ideal’ if they minimized the
standard deviation (SD) of error (or empirical error) and average error in simulated and patient data (Fig
6a-d) in the development dataset. The hyperparameter pairs that fit this description were averaging windows
between 9-10 seconds and correlation windows between 35-55 samples. The 10-second averaging 40 sample
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Figure 5 Personalized PRx (pPRx) is More Robust to Hyperparameters and Patient Variability than sPRx.
a) Methodological schematic showing representative ABP signal from patient data with black lines indicating heartbeat start
times (left). ABP (teal) and ICP (red) are averaged over a given number of these heartbeats (right). b) Violin plots showing
that in simulated data, pPRx algorithm (blue) decreases estimation error and uncertainty in estimation error compared to the
sPRx (purple). c) Representative time series from patient data showing pPRx (blue) is less variable than sPRx (purple). d-e
show a comparison of the performance of the pPRx (blue) and sPRx (purple) for 21 development datasets using one-tailed
paired t-tests. Dots indicate a single dataset. d) pPRx estimate has decreased noise. e) pPRx estimate is less sensitive to
hyperparameters than sPRx. f) There is no difference in the absolute value of the empirical error of pPRx and sPRx. g) Sorted
median PRx estimate for patient data for the pPRx (blue) and sPRx (purple) averaging methods. Arrows indicate that for
patients with absent CA, the heartbeat method estimates a higher PRx than the standard method, while the opposite is the
case for functional CA. h-j show scatter plots relating average heart rate with different PRx evaluation metrics for the combined
development and validation datasets. The black line indicates linear regression with 95% confidence intervals shown as dashed
lines. Bolded p-values indicate statistical significance or near significance. We chose these three evaluation metrics because they
were shown to have a linear relationship with sPRx in Fig 4. h) There is a linear relationship between the average heart rate
for both pPRx (left) and sPRx (right). i) pPRx (left) removes the nearly significant linear relationship between average heart
rate and empirical error of sPRx (right). j) pPRx (left) is not linearly related to average heart rate, while pPRx is (right).

correlation hyperparameter pair, which we refer to as the ideal hyperparameter pair, was the only common
hyperparameter pair (Table 1) that fit within this range. This ideal hyperparameter pair significantly
decreased the standard deviation of empirical error compared to other common hyperparameters in both
the development and validation datasets (Fig 6e-h). In the development dataset, the ideal hyperparameter
pair improved PRx sensitivity and error compared to other hyperparameter pairs (Supp. Table 1).

4 Discussion
Neurological injuries are a leading cause of death throughout the world. The pressure reactivity index (PRx)
is a metric used to evaluate cerebral autoregulation (CA) function and guide clinical decision-making for
patients in neurocritical care. The hyperparameters in the PRx calculation are the lengths of the averaging
and correlation windows. The objectives of this study were: (i) to quantify the sensitivity of the standard
PRx algorithm (sPRx) to hyperparameters and intrapatient variability, (ii) to develop a new, personalized
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*bold indicates method that performed better between datasets

sPRx pPRx
Develop-
ment

Validation Develop-
ment

Validation

Sensitivity of PRx to Hyperparameters
Average Range of PRx Error (simulated) 0.17 0.11 0.06* 0.08*
— Intact CA 0.15 0.07 0.00* 0.00*
— Impaired CA 0.18 0.11* 0.06* 0.13
— Absent CA 0.19 0.16 0.11* 0.00
Range of PRx Values (patient) 0.20 0.19 0.16* 0.18*
Sensitivity (patient): ∆PRx/∆window 74.09% 44.73% 55.21%* 39.66%*
Sensitivity of PRx to Patient Variability
SD of Error (simulated) 0.24 0.19 0.18* 0.16*
SD of Empirical Error (patient) 0.06 0.05 0.05* 0.04*
PRx Estimation Error
Average Error (simulated) -0.23 -0.22 -0.18* -0.19*
— Intact CA -0.01 -0.02 0.00* 0.00*
— Impaired CA -0.43 -0.43 -0.41* -0.38*
— Absent CA -0.25 -0.38 -0.13* -0.17*
Max Empirical Error (patient) 0.27 0.27 0.23* 0.23*
Average Empirical Error (patient) 0.03* 0.05 0.03* 0.04*
Noise (patient) 0.30 0.31 0.29* 0.30*

Table 5 pPRx Calculation Decreases Sensitivity of PRx to Hyperparmaters and to Patient Variability, Error
in PRx, and Noise Compared to sPRx Calculation. Bold value* indicates which method had better performance
compared within Development or Validation datasets. Numbers represent the average metric value across all datasets and
across the five common hyperparameters. For simulated data, the average across all CA phenotypes is given in the top
column of the corresponding metric and the average within the three different types of CA is given in italics. SD standards for
standard deviation. Max Empirical Error is the maximum absolute value of empirical error

PRx algorithm (pPRx) that improves robustness to hyperparameters and intrapatient variability, and (iii)
to investigate ideal hyperparameters for sPRx that improve robustness to intrapatient variability.

Recomendations Based on Findings
We developed the personalized pressure reactivity index (pPRx) that personalizes the averaging window
based on patient heart rate. The pPRx algorithm decreased noise and estimation sensitivity to intrapatient
variability for two independent datasets, allowing for greater reliability of PRx and its use for clinical decision
support (Fig. 5, Table 5). The code for this new algorithm will be made publically available (see methods).
Additionally, in the standard PRx (sPRx) algorithm, we recommend using averaging windows between 9-
10 seconds and correlation windows between 40-55 samples. These ideal hyperparameters decrease PRx
estimation error and sensitivity to intrapatient variability in the development and validation datasets (Fig.
6, Supp. Table 1).

A central challenge in studying PRx is that it cannot be directly validated due to the invasive requirements
of ICP measurement and the lack of a ‘gold standard’ global continuous CA evaluation metric. Previous
studies have shown that PRx is a more successful predictor of mortality than other CA metrics[43] and is a
good predictor of the lower limit of autoregulation in animals [44, 45]. However, quantifying true PRx error is
not possible with patient data. Therefore, we took two approaches to evaluate the PRx estimation. For patient
data, we quantified PRx sensitivity using multiple empirical metrics (Table 4). We also created simulated
data that allowed us to quantify PRx estimation error directly. Using these approaches, we quantified two
types of PRx estimation sensitivity: sensitivity to hyperparameters and sensitivity to intrapatient variability.
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Figure 6 10 Second Averaging Window and 40 Sample Correlation Window Improves sPRx Estimate. a) Contour
plots showing standard deviation (SD) of error in sPRx for simulated data for many hyperparameter pairs. Black shading
indicates hyperparameter pairs resulted in a minimum SD of error. b) Contour plots showing average error in simulated data.
White indicates hyperparameter pairs resulted in a minimum error. c) As in a but for patient data. d) As in c but for patient
data. e) One-hour time series of the standard deviation of empirical error across all patients in the development data set for
the five common hyperparameters. The hyperparameter pair that minimizes the standard deviation of empirical error is bolded
(red). f) Comparison between the standard deviation of empirical error across all patients in the development data set for
each time point. The averaging window of 10 seconds and correlation window of 40 samples had a significantly smaller error
(p<0.0001) than other common hyperparameters. g) As in e for the validation dataset. h) As in f for the validation dataset.
Analysis was paired one-way ANOVA with multiple comparisons.

Our results indicate that sPRx sensitivity to hyperparameter choice is large enough to impact clini-
cal decision-making. The average uncertainty (quantified as the range over all PRx estimates from many
hyperparameter pairs: Avg 1-30 sec, Corr 2-65 samp) was 0.93, which is much greater than the PRx crit-
ical threshold that distinguishes between ‘intact’ CA and ‘absent’ CA (≈0.25). Additionally, on average,
these results indicate that the sPRx estimate can range nearly 50% of all possible values by changing the
hyperparameters (Supp. Fig. 2). The average uncertainty in the sPRx estimate using only common hyper-
parameters found in the literature (Table 1) was 0.20, which is very close to the critical threshold (Fig 3c,
Table 5). Therefore, on average, the sPRx estimation sensitivity to hyperparameters is large enough that
clinical decision-making and CA interpretation may be impacted by changing hyperparameters (even when
using common hyperparameter pairs).

Our results also indicate that sPRx is highly sensitive to intrapatient variability. The range of empirical
error, which indicates how much patient variability influences error, was near to, or larger than, the critical
threshold for the five different hyperparameters (Fig 3a), indicating that patient variability may influence
sPRx enough to interfere with its clinical interpretability.

We identified heart rate as a major variable related to sPRx estimation sensitivity (Figs 3, 4). Heart rate
variability and average resting heart rate are associated with age, ethnicity, and sex even after controlling
for other health factors[46, 47]. Therefore, sPRx may result in larger errors for certain patient demographics,
particularly pediatrics who are known to have much higher resting heart rates than the adult population.
By personalizing PRx to heart rate, we remove this algorithmic bias.

We developed the personalized pressure reactivity index (pPRx) by reparameterizing the averaging
window to heartbeats rather than seconds. On average, the pPRx calculation was less sensitive to hyper-
parameters and intrapatient variability and had lower estimation noise compared to the sPRx calculation
(Fig. 4, Table 5). There are likely two reasons that the pPRx calculation improved performance. First,
computed averages depend on sample size. In the PRx algorithm, the samples are individual heartbeats. In
the sPRx calculation, which is parameterized by time, the heart rate directly affects the number of samples
in the averaging window, and by extension, the computed average. Second, if there are a non-integer number
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of heartbeats within a fixed time averaging window, each window will have a variable ratio of the high and
low portions of the pressure waveforms, causing instability in the computed average. The pPRx calculation
ensures that each window contains an equal number of complete pressure waveforms.

The pPRx calculation is more robust than sPRx to changes in patient state and CA fuctionality. Patient
state, including heart rate, can change rapidly. Since our results indicate that error in the sPRx calculation
is heart rate dependent, a sudden change in patient state could increase estimation error. Alternatively, since
the pPRx identifies heart rates in real time, a change in the patient’s state will be immediately accounted
for. Our results from simulated data indicate the sPRx calculation underestimates true PRx for patients
with impaired and absent CA (Fig. 4a, Table 5). For simulated data, the pPRx calculation was more
accurate for all phenotypes of CA functionality (Table 5). Further, for patient data, the pPRx calculation
yielded a larger PRx estimate than the sPRx calculation for patients with impaired CA. The larger PRx
estimate from the pPRx calculation is likely a more accurate assessment of CA functionality (given our
results showing that the sPRx calculation underestimates true PRx).

One response to the finding that sPRx calculation is highly sensitive to hyperparameters is to agree on
a single, ideal hyperparameter pair to use across all applications. Using the development dataset, we found
that PRx calculated using the ideal hyperparameter pair of Avg: 10 sec, Corr: 40 samp was the most robust
to intrapatient variability (Fig. 6f). These findings were confirmed in the independent validation dataset
(Fig. 6g). Correspondingly, there was not a linear relationship between heart rate and PRx empirical error
calculated using this ideal hyperparameter pair, whereas there was a nearly significant relationship for other
hyperparameter pairs (e.g. Avg: 5 sec, Corr: 40 samp) (Fig. 4d,e). This finding supports our hypothesis
that variability in heart rate is a factor underlying the sensitivity of the sPRx calculation to intrapatient
variability.

Defining an ideal hyperparameter pair does not remove the fact that the sPRx calculation is very sensitive
to hyperparameters. Sensitivity to hyperparameters also indicates that the sPRx estimation is sensitive to
missing data. For example, assume the averaging window for sPRx is set to ten seconds but there are two
seconds of data missing. This ten second averaging window will only contain eight seconds worth of data
and will result in the same computed average as an eight second averaging window. Therefore, in the sPRx
algorithm, missing data has a similar effect as changing hyperparameters.

Missing data are common in clinical settings, so a substantial sensitivity to missing data will be clini-
cally impactful. For example, in Fig. 3c patient ii, changing the averaging window by one second, which
corresponds to missing one second of data per averaging window changes the median PRx estimation from
0.17 to 0.28, which crosses the critical threshold and changes the clinical interpretation of CA functionality.
More broadly, in real clinical settings missing data are common, highly complex, and are often a function
of the external environment via the healthcare process [48, 49]. The examples above do not represent a full
characterization of pPRx and sPRx robustness to data missingness. Such an analysis is an important topic
for future work. As our sample size was relatively small in this study (19 patients total), and we did not
include time series with large amounts of missing data, our results are likely a conservative estimate of the
possible error and sensitivity of PRx (because the prevalence of outliers generally increases as sample size
increases). Further analysis should be done on larger cohorts.

As opposed to the sPRx calculation, the pPRx calculation did not yield a linear relationship between
average heart rate and empirical error of PRx or between average heart rate and range of PRx values (Fig.
5 h,i). This is expected because the pPRx accounts for the computational influence of heart rate on the
computed average. Alternatively, the pPRx calculation did not remove the relationship between the average
heart rate and median PRx, possibly indicating a physiological relationship between PRx and average heart
rate. CA function and PRx (calculated using sPRx method) have been associated with heart rate-related
factors, such as age, disease state, and vascular comorbidities (see review articles [5, 50]). Therefore, it is
not surprising that the average heart rate is related to PRx even after removing the computational influence
of heartbeats on the computed average. Further investigation into the physiological relationship between
average heart rate and heartbeat method-derived PRx would be very interesting.

5 Conclusion
The pressure reactivity index (PRx) is an important proxy for cerebral autoregulatory function and for
aiding clinical decision-making for neurocritical care patients. Here, we show that the PRx calculation is
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sensitive to hyperparameters and intrapatient variability, partly due to variability in average heart rate.
Reducing this sensitivity is crucial for increasing the usefulness of PRx, particularly when PRx is applied to
demographic groups with different average heart rates and heart rate variability. Therefore, we developed
a new personalized heartbeat-specific PRx algorithm (pPRx) that reduces error, noise, patient sensitivity,
and hyperparameter sensitivity compared to the standard method.
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Supp. 1 Validation of PRx against clinical PRx datasets. Blue indicated our lagged PRx estimate. Red represents PRx estimate
output by clinical PRx datasets

Supp. 2 Range of median PRx values over all hyperparameters analyzed
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*bold indicates better preformance

sPRx pPRx
Averaging (seconds or heart-
beats)

10 Sec 10 Sec 5 Sec 10 HB 10 HB 5 HB

Correlation (Samples) 30 40 (ideal) 40 30 40 40

Standard Deviation of Error
(simulated)

0.21 0.21 0.32 0.18 0.18 0.16*

Average Error (simulated) -0.21 -0.22 -0.22 -0.18* -0.18* -0.19
Standard Deviation of Em-
pirical Error (patient)

0.04 0.02* 0.12 0.02* 0.05 0.09

Maximum Absolute Value
Empirical Error (patient)

-0.08 -0.06* 0.27 0.10 -0.08 0.23

Average Empirical Error (pa-
tient)

0.002 -
0.0015*

0.11 0.02 -0.006 0.09

Noise (patient) 0.30 0.31 0.26* 0.29 0.29 0.26*

Table 1 Comparing the Performance of the Personalized pressure reactivity index (pPRx) and standard
pressure reactivity index (pPRx) for three different hyperparameters Bold value* indicates the method and
hyperparameter pair that had the best performance. Metrics are assessed for the development dataset only. Numbers
represent the average metric value for all datasets.
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