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Abbreviations 1 

C3    Complement protein C3 gene 2 

C5     Complement protein C5 gene 3 

CPB2    Carboxypeptidase B2 4 

CPB2    Carboxypeptidase B2 gene 5 

Cpb2-/-    Genetic deficiency of CPB2 in mice 6 

CPN    Carboxypeptidase N 7 

Cpn-/-    Genetic deficiency of CPN in mice 8 

C statistic   Concordance statistic 9 

C-terminus    Carboxy-terminus 10 

HLA    Human leukocyte antigen 11 

HR    Hazard ratio 12 

IDI    Integrated discrimination improvement 13 

proCPB2   Procarboxypeptidase B2 14 

SNP    Single-nucleotide polymorphism 15 

TAFI    Thrombin-activatable fibrinolysis inhibitor 16 
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Essentials  1 

• Carboxypeptidase B2 (CPB2) is a metalloprotease with anti-fibrinolytic and anti-inflammatory 2 

properties. 3 

• We investigated the impact of CPB2 polymorphisms on graft loss after kidney transplantation. 4 

• The rs3742264-A SNP in the donor, linked to higher CPB2 levels, decreased the risk of graft loss. 5 

• CPB2 could have a protective effect on graft survival by inactivating complement anaphylatoxins. 6 
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Abstract 1 

 2 

Introduction  3 

Plasma carboxypeptidase B2 (CPB2) is an enzyme that cleaves C-terminal amino acids from proteins, 4 

thereby regulating their activities. CPB2 has anti-inflammatory and anti-fibrinolytic properties and can 5 

therefore be protective or harmful in disease. We explored the impact of functional carboxypeptidase 6 

B2 gene (CPB2) polymorphisms on graft survival following kidney transplantation. 7 

Methods 8 

We performed a longitudinal cohort study to evaluate the association of functional CPB2 polymorphisms 9 

(rs2146881, rs3742264, rs1926447, rs3818477) and complement polymorphisms (rs2230199, rs17611) 10 

with long-term allograft survival in 1,271 kidney transplant pairs from the University Medical Center 11 

Groningen in The Netherlands. 12 

Results 13 

The high-producing CPB2 rs3742264 polymorphism in the donor was associated with a reduced risk of 14 

graft loss following kidney transplantation (hazard ratio, 0.71 for the A-allele; 95%-CI, 0.55–0.93; 15 

P=0.014). In fully adjusted models, the association between the CPB2 polymorphism in the donor and 16 

graft loss remained significant. The protective effect of the high-producing CPB2 variant in the donor 17 

could be mitigated by the hazardous effect of gain-of-function complement polymorphisms. Additionally, 18 

we compiled a genetic risk score of the four CPB2 variants in the recipients and donors, which was 19 

independently associated with long-term allograft survival. Furthermore, this genetic risk score 20 

substantially improved risk prediction for graft loss beyond currently used clinical predictors. 21 

Conclusion 22 

Kidney allografts from deceased donors possessing a high-producing CPB2 polymorphism are at a 23 

lower risk of graft loss after kidney transplantation. Furthermore, our findings suggest that CPB2 might 24 

have a protective effect on graft loss through its ability to inactivate complement anaphylatoxins. 25 
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Introduction 1 

Transplantation is the best treatment option for patients with kidney failure due to its association with 2 

reduced mortality, the risk attenuation of cardiovascular disease and improvement of quality of life.[1–3 

4] In recent decades, surgical advances and improved immunosuppressive regimens have drastically 4 

lengthened graft survival from months to years, whereas the long-term outcomes after kidney 5 

transplantation have not improved at the same rate.[5] A critical driver of poor long-term outcomes is 6 

the damage incurred by the kidney allografts prior to, during, and after transplantation as a consequence 7 

of donor conditions (i.e., brain death), ischemia-reperfusion, and allosensitization. A growing body of 8 

evidence implicates the innate immune system as well as the coagulation cascades are a major driver 9 

of graft injury, since they are independently associated with long-term transplant outcome.[6,7] Notably, 10 

the cross-talk between these two systems is increasingly recognized as an vital contributor to graft loss 11 

and is, therefore, seen as a potential therapeutic target in transplantation.[8] 12 

 As enzymes with both anti-fibrinolytic and anti-inflammatory qualities, carboxypeptidases are a 13 

target of interest within this scope. Carboxypeptidases are a family of zinc-containing proteolytic 14 

enzymes that cleave carboxy-terminus (C-terminus) amino acids from biologically active proteins, 15 

thereby regulating their activities.[9] These enzymes can be soluble or membrane-bound and have a 16 

preference for either hydrophobic or basic amino acids.[9,10] Carboxypeptidase B2 (CPB2), also known 17 

as thrombin-activatable fibrinolysis inhibitor (TAFI), is synthesized by the liver and is one of only two 18 

carboxypeptidases present in plasma (Fig. 1A).[10] CPB2 circulates as an inactive proenzyme 19 

(proCPB2) and is predominantly activated by plasmin bound to glycosaminoglycans or by the thrombin–20 

thrombomodulin complex (Fig. 1B).[11] Since there are no known physiological inhibitors, CPB2 activity 21 

is assumed to be regulated by its very short half-life of 8 – 15 minutes at 37 °C.[12] Once activated, 22 

CPB2 inhibits fibrinolysis by cleaving C-terminal lysine residues from partially degraded fibrin, thereby 23 

preventing the binding of fibrinolytic components (Fig. 1C – D).[13–16] Besides the anti-fibrinolytic 24 

activity during fibrin clot formation, CPB2 can also exert anti-inflammatory properties.[10,17–20] More 25 

specifically, a number of studies have demonstrated that complement anaphylatoxins C3a and C5a are 26 

physiological substrates of CPB2.[10] CPB2 cleaves the C-terminal arginine residue of C3a and C5a, 27 

generating the metabolites C3adesArg and C5adesArg and limiting the pro-inflammatory effects of these 28 

anaphylatoxins (Fig. 1C and E).[10] 29 
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 While CPB2 circulates in plasma at a concentration of around approximately 75 nM, it is 1 

characterized by a wide reference range in healthy individuals (50–250 nM).[21,22] Although no 2 

individuals with a complete CPB2 deficiency have been identified to date, genetic polymorphisms are 3 

thought to explain around 25% of the variation in plasma CPB2 levels.[23] CPB2 gene (CPB2)  4 

polymorphisms have not been investigated in the transplant context; however, since CPB2 has anti-5 

inflammatory as well as anti-fibrinolytic properties, altered circulating CPB2 levels could hypothetically 6 

protect or predispose the graft to injury depending on the context.[24–26] Furthermore, considering the 7 

contribution of complement activation to allograft injury and dysfunction in kidney transplantation, CPB2 8 

is of further interest because of its modulatory effect on this system.[6,27]  9 

Here, we employed a large cohort of 1,271 renal transplant donors and recipients and leveraged 10 

human genetics to determine the role of CPB2 in kidney transplantation. Looking at functional CPB2 11 

polymorphisms in donor-recipient pairs, and also evaluating potential effect modification by other 12 

relevant complement system polymorphisms, we investigated the association between these 13 

polymorphisms and long-term graft survival to assess the role of CPB2 on graft survival in kidney 14 

transplantation.15 
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Methods 1 

 2 

Study design and subjects 3 

For this longitudinal cohort study, transplant recipients were enrolled who received a single kidney 4 

allograft between March 1993 until February 2008 at the University Medical Center Groningen, as 5 

described previously.[28–31] Exclusion criteria were: Lack of DNA, re-transplantation, technical 6 

complications during surgery, and loss of follow-up. In brief, a total of 1,271 out of 1,430 donor-recipient 7 

kidney transplant pairs were included. All subjects provided written informed consent. The Institutional 8 

Review Board approved the study protocol (METc 2014/077), which adhered to the Declaration of 9 

Helsinki. The endpoint of our study was graft loss during follow-up with a maximum of 15 years. Graft 10 

loss was defined as the need for dialysis or re-transplantation. 11 

 12 

DNA extraction and genotyping 13 

Peripheral blood mononuclear cells were isolated from blood or splenocytes that were collected from 14 

both the donor and recipient. DNA was extracted with a commercial kit as instructed by the manufacturer 15 

and stored at -80°C. Genotyping of the SNPs was determined via the Illumina VeraCode GoldenGate 16 

Assay kit (Illumina, San Diego, CA, USA), according to the manufacturer’s instructions. The promoter 17 

of CPB2 contains several polymorphisms, of which the rs2146881 G > A CPB2 SNP is the most 18 

extensively studied. The minor allele of this polymorphism has been associated with lower plasma levels 19 

of CPB2.[32–35] In addition, we chose the rs3742264 G > A (505 G/A, Ala147Thr) and the rs1926447 20 

C > T (1040 C/T, Thr325Ile) CPB2 SNPs. The minor allele of the rs3742264 is associated with higher 21 

plasma levels, whereas the minor allele of the rs1926447 is linked to lower CPB2 levels.[32–35] Lastly, 22 

we included the rs3818477 A > C (i4 + 164) CPB2 SNP, of which the minor allele has previously been 23 

shown to associate with lower CPB2 levels as well.[32] Additionally, we genotyped two common 24 

functional polymorphism in the C3 and C5 gene: (i) The rs2230199 C>G (Gly102Arg) C3 SNP and (ii) 25 

The rs17611 G>A (2404 G/A, Val802Ile) C5 SNP.[36,37] We assessed the combinations of the A-allele  26 

of the CPB2 rs3742264 (referred to as the CPB2high variant) with the GG-genotype of the C3 SNP 27 

(referred to as C3102G variant) or the AA-genotype of the C5 SNP (referred to as C5V802 variant). 28 

Genotype clustering and calling were performed using BeadStudio Software (Illumina). 29 

 30 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 14, 2023. ; https://doi.org/10.1101/2023.05.08.23289675doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.08.23289675
http://creativecommons.org/licenses/by-nd/4.0/


Page 9 of 37 

  

Genetic risk score 1 

We compiled a polygenic CPB2 risk score for graft loss based on the presence of the four CPB2 2 

polymorphisms in the donor and the recipient. To account for the strength of the association of the CPB2 3 

polymorphisms with graft loss, the score for the presence of a single CPB2 variant was multiplied by the 4 

regression coefficient (that is the logarithm of the hazard ratio) creating a weighted risk score.[38] A 5 

regression coefficient is negative when a CPB2 variant decreases the risk of graft loss and positive 6 

when a CPB2 variant increases the risk of graft loss. The total sum of the protective and hazardous 7 

CPB2 polymorphisms in the donor and recipient combined constitute the value of the CPB2 genetic risk 8 

score.  9 

 10 

Statistical analysis  11 

The data are displayed as mean ± standard deviation, median [interquartile ranger (IQR)], or as the total 12 

number of patients with percentage [n (%)]. For a two-group comparison, the Mann-Whitney U test, the 13 

Student t-test, or the χ2 test was used. CPB2 genotypes were tested for associations with 15-year death-14 

censored graft survival by Kaplan-Meier analysis with log-rank testing. Associations of CPB2 genotypes 15 

with graft loss were further examined by Cox proportional hazards regression analysis with stepwise 16 

adjustments for other relevant clinical variables. The models for graft loss included adjustment for 17 

recipient demographics (model 2), donor demographics (model 3) or transplant characteristics (model 18 

4). Furthermore, Cox regression models were built with a stepwise forward selection including all 19 

variables that significantly associated with graft loss in univariable analysis. Lastly, associations of CPB2 20 

genotypes with graft loss were verified in subgroups by Cox proportional hazards regression analysis. 21 

For continuous variables the subgroups were based on below versus above the median or mean. 22 

 We determined Harrell’s concordance statistic (C statistic) to test how well a model distinguished 23 

between transplant recipients who developed graft loss and those who did not, additionally taking follow-24 

up into account.[39] As our outcome variable graft loss is dichotomous, the Harrell’s C statistic 25 

corresponds to the area under the ROC curve.[40] A value of “1” indicates perfect discrimination, while 26 

a value of “0.5” indicates a performance equal to chance. The added value of the CPB2 genetic risk 27 

score to predictive models for graft loss was tested by the integrated discrimination improvement (IDI). 28 

The IDI indicates the ability of the new model to improve average sensitivity without decreasing average 29 

specificity.[39,41] Statical testing was two-tailed and P<0.05 was regarded as significant. Statistical 30 
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analyses were performed using SPSS software version 25 (SPSS Inc, Chicago, IL, USA) and STATA 1 

Statistical Software: Release 17 (StataCorp., College Station, TX, USA). 2 
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Results 1 

 2 

Patient population 3 

The baseline demographics of the 1,271 donor-recipient pairs, including transplant characteristics are 4 

provided in Table 1. During a mean follow-up period of 6.2 ± 4.2 years, 215 kidney transplant recipients 5 

lost their grafts (16.9%), whereas 191 recipients died with a functioning graft (15.0%). Deceased donor 6 

kidney transplantation, absence of cyclosporin and corticosteroids for immunosuppression, as well as 7 

donor and recipient blood type AB were significantly more prevalent in patients who progressed to graft 8 

loss. Furthermore, on average patients who developed graft loss were younger, while their donors were 9 

typically older, and both cold as well as warm ischemia times were significantly longer. Lastly, delayed 10 

graft function occurred more frequently in patients who experienced graft loss. The above-mentioned 11 

clinical characteristics were all significantly associated with graft loss in univariable analyses (Table 1). 12 

We genotyped four common polymorphisms of the CPB2 (Fig. 1F – I): (i) the rs2146881 G > A 13 

in the promoter region at position ~438 (Fig. 1F), (ii) the rs3742264 G > A encoding for a Thr to Ala 14 

substitution at position 147 (Fig. 1G), (iii) the rs1926447 C > T resulting in a Thr to Ile substitution at 15 

position 325 (Fig. 1H), and (iv) rs3818477 A > C in intron 4 (Fig. 1I). The observed genotypic frequencies 16 

are shown in Table 1. For the CPB2 rs2146881 G > A SNP, the frequency of the minor allele was 17 

significantly lower in recipients compared to donors (P < 0.0001) and to the European cohort of the 1000 18 

genomes project (P < 0.0001, supplementary data). Furthermore, the frequencies of the CPB2 19 

rs3818477 A > C SNP in the donors significantly differed from those reported by the European cohort of 20 

the 1,000 genomes project (P = 0.02), but not compared to recipients (P = 0.39, supplementary data). 21 

No differences were seen in genotypic frequencies between the donors, recipients, and the European 22 

cohort of 1,000 genomes project for the other CPB2 polymorphisms (supplementary data). The 23 

distribution of all four polymorphisms was in Hardy−Weinberg equilibrium.  24 

 25 

A high-producing CPB2 variant associates with graft loss after kidney transplantation 26 

We first examined whether polymorphisms in CPB2 associated with graft loss after kidney 27 

transplantation. Of all the assessed CPB2 genetic variants, only the rs3742264 polymorphism in the 28 

donor significantly associated with 15-year death-censored graft survival (P = 0.022). Kaplan–Meier 29 

survival analysis revealed that the minor allele of the CPB2 rs3742264 SNP in the donor was associated 30 
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with a lower risk of graft loss after transplantation (Fig. 2A, P = 0.044). The cumulative incidence of graft 1 

loss after 15 years of follow-up was 19.9% in the reference GG-genotype group, 14.6% in the GA-2 

genotype group, and 13.3% in the AA-genotype group, respectively. For further analysis the GA- and 3 

AA-genotype were combined to one group (Fig. 2B, P = 0.013), since the incidence of graft loss was not 4 

significantly different between these genotypes. In univariable analysis, the minor allele of the CPB2 5 

rs3742264 SNP in the donor was significantly associated with improved 15-year death-censored graft 6 

survival (HR, 0.71; 95%-CI, 0.55 – 0.93; P = 0.014). Multivariable models were constructed using a 7 

stepwise forward selection procedure including all variables that were significantly associated with graft 8 

loss in the univariable analysis (Table 2). In the final model, the CPB2 rs3742264 SNP in the donor, 9 

recipient age, the occurrence of delayed graft function, recipient blood type, and donor age were 10 

included. After adjustment, the minor allele of the CPB2 rs3742264 SNP in the donor was significantly 11 

associated with a reduced risk of graft loss (HR, 0.67; 95% CI: 0.51 – 0.88, P = 0.004). 12 

 Furthermore, we performed a subgroup analysis for the donor type, since deceased organ 13 

donors are often characterized by coagulopathies.[42] Kaplan-Meier curves demonstrated that the 14 

association remained significant between the CPB2 rs3742264 SNP in the donor and long-term graft 15 

survival for kidney allografts from deceased donors (Fig. 2C, P = 0.012). The association, however, lost 16 

statistical significance for kidney allografts from living donors (Fig. 2D, P = 0.84). Taken together, our 17 

results show that the high-producing CPB2 rs3742264 polymorphism in deceased organ donors is 18 

associated with a reduced risk of graft loss after kidney transplantation. 19 

 20 

CPB2 associates with graft loss potentially through inactivation of complement anaphylatoxins  21 

Next, we investigated if the association between the high-producing CPB2 rs3742264 SNP and long-22 

term graft survival was mediated via CPB2 ability to inactivate complement anaphylatoxin C3a and C5a. 23 

On this basis, we tested the combined effect of the high-producing CPB2 variant with gain-of-function 24 

complement polymorphisms on graft loss after kidney transplantation.  25 

First, we combined the high-producing CPB2 polymorphism with a common functional 26 

polymorphism in C3 gene (C3) rs2230199 resulting in a glycine to arginine substitution at position 102. 27 

The minor allele of this polymorphism results in a C3 variant (C3102G) that is less well inhibited, leading 28 

to increased C3 activation and higher C3a formation.[43] Next, donor-recipient pairs were separated 29 

into four groups according to the presence or absence of the C3 and CPB2 polymorphism in the donor. 30 
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Kaplan–Meier survival analyses showed a significant difference in graft failure rates among the four 1 

groups (P = 0.022, Fig. 3A). Kidney allografts possessing the CPB2high variant and the reference C3102R 2 

variant had the best outcome (15-year death-censored graft survival: 77.2%), whereas kidney allografts 3 

possessing the C3102G variant and the refence CPB2normal variant had the worst outcome (15-year death-4 

censored graft survival: 50.2%). Moreover, kidney allografts possessing either both variants or no 5 

variants showed similar outcomes, suggesting that the protective effect of the CPB2high variant could be 6 

mitigated by the hazardous effect of the C3102R variant. 7 

Next, we combined the high-producing CPB2 polymorphism with a common functional 8 

polymorphism in C5 gene (C5) rs17611 resulting in a valine to isoleucine substitution at position 802. 9 

The G-allele of this polymorphism results in a C5 variant (C5V802) that is more susceptible to cleavage, 10 

leading to enhanced C5a production.[44] Once again, donor-recipient pairs were separated into four 11 

groups according to the presence or absence of the C5 and CPB2 polymorphism in the donor. Kaplan–12 

Meier survival analyses showed a significant difference in graft failure rates among the four groups (P 13 

= 0.009, Fig. 3B). Kidney allografts possessing the CPB2high variant and the reference C5I802 variant had 14 

the best outcome (15-year death-censored graft survival: 78.7%), whereas kidney allografts possessing 15 

the C5V802 variant and the refence CPB2normal variant had the worst outcome (15-year death-censored 16 

graft survival: 53.2%). Moreover, kidney allografts possessing either both variants or no variants 17 

experienced similar outcomes, suggesting once again the protective effect of the CPB2high variant could 18 

be mitigated by the hazardous effect of the C5V802 variant. In conclusion, our data implies that the 19 

association of the high-producing CPB2 rs3742264 SNP with graft loss is possibly mediated via CPB2’s 20 

ability to inactivate complement anaphylatoxin C3a and C5a. 21 

 22 

A CPB2 genetic risk score improves risk prediction for graft loss 23 

In addition to analyzing the CPB2 polymorphisms separately, we also compiled a genetic risk score of 24 

the four CPB2 variants in both the recipients and donors. Each polymorphism was weighted based on 25 

its hazard ratio, creating a positive coefficient for hazardous SNPs and a negative one for protective 26 

SNPs. Overall, a genetic risk score below zero indicates the presence of more protective CPB2 SNPs 27 

in the donor-recipient renal transplant pairs, while a genetic risk score above zero alludes to more 28 

hazardous CPB2 SNPs in a transplant pair.  29 
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The CPB2 genetic risk score significantly associated with 15-year death-censored graft survival 1 

in univariable analysis (HR, 1.30; 95%-CI, 1.14 – 1.49; P<0.001 per SD increase). Multivariable analysis 2 

was performed with stepwise adjustments for additional relevant clinical variables (Table 3), including 3 

recipient characteristics (model 2), donor characteristics (model 3), and transplant variables (model 4). 4 

In Cox regression analysis, the CPB2 genetic risk score remained significantly associated with graft loss 5 

independent of potential confounders. Thereafter, we investigated whether the CPB2 genetic risk score 6 

(including the CPB2 rs3742264 SNP) was a better predictor of graft loss than the CPB2 rs3742264 SNP 7 

in the donor alone by multivariable regression with a stepwise forward selection (supplementary data). 8 

In the final model, the CPB2 genetic risk score containing the CPB2 rs3742264 SNP was included, 9 

whereas the single CPB2 rs3742264 SNP in the donor was excluded. After adjustment, the CPB2 10 

genetic risk score was associated with graft loss with a hazard ratio of 1.31 per SD increase (95%-CI: 11 

1.14 – 1.50; P<0.001). In addition, the hazard ratio of the CPB2 genetic risk score was consistent and 12 

remained significant in subgroup analyses (Figure 3); except for living donors and in female recipients. 13 

The 95%-CI of the various subgroups had substantially overlapped with the general hazard ratio, 14 

signifying the consistency of the impact of the CPB2 genetic risk score across the subgroups. 15 

Finally, the performance of the CPB2 genetic risk score for the prediction of graft loss was also 16 

assessed (Table 4). The CPB2 genetic risk score had a Harrell’s C of 0.59 (95% CI: 0.55 – 0.63). 17 

Moreover, when added to a model of the CPB2 s3742264 SNP in the donor (c-statistic, 0.55; 95%-CI, 18 

0.51 – 0.59), the CPB2 genetic risk score significantly improved the Harrell’s C (c-statistic increase, 19 

0.035; 95%-CI, 0.005 – 0.066; P = 0.02). As additional variables were included and the discriminative 20 

accuracy to predict graft loss of the model improved. The Harrell’s C of the models with the recipient, 21 

donor and transplant characteristics significantly increased with the addition of the CPB2 genetic risk 22 

score (Model 3 – 5), while only a trend was seen in the model with all variables that were significantly 23 

associated with graft loss in multivariable regression analysis (Model 6). Lastly, the CPB2 genetic risk 24 

score significantly increased the predictive value of the models according to the IDI.  25 

26 
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Discussion  1 

Here, we report that kidney transplantation from allografts possessing a high-producing CPB2 2 

polymorphism results in a significantly attenuated risk of graft failure. We propose that the higher survival 3 

rate could be explained by the ability of CPB2 to inactive complement anaphylatoxins (i.e., C3a and 4 

C5a), since the protective effect of the CPB2 polymorphism on graft loss could be reversed by gain-of-5 

function polymorphisms in complement genes (i.e. C3 and C5). Furthermore, we demonstrated that a 6 

genetic risk score based on four CPB2 polymorphisms in the donor as well as the recipient was a 7 

important determinant of long-term graft survival. The present data also proposes CPB2 as a novel 8 

potential therapeutic strategy to improve kidney transplantation outcomes, especially since therapeutic 9 

strategies informed by human genetic evidence are more than twice as likely to lead to approved 10 

therapeutics.[45,46] 11 

CPB2, because of its anti-fibrinolytic activity, has predominantly been studied in cardiovascular 12 

disease and thrombotic disorders.[22] Increased levels of CPB2 are anticipated to induce a 13 

hypofibrinolytic state and thereby represent a potential risk factor for various coagulation disorders. 14 

Accordingly, thrombus formation was shown to be ameliorated in mice that are deficient in CPB2 (Cpb2-15 

/-) upon ferric chloride (FeCl3)-induced vena cava thrombosis.[47] Numerous studies have subsequently 16 

used human genetics to investigate the role of CPB2 in thromboembolic diseases by evaluating the 17 

association between CPB2 polymorphisms and disease risk.[22] Recently, a meta-analysis of 23 studies 18 

investigated the impact of CPB2 variants on the risk of cardiovascular disease, failing to confirm a 19 

significant association.[48] Nevertheless, in sub-analyses an increased risk of cardiovascular disease 20 

was detected with a certain CPB2 polymorphisms, suggesting an intricate relationship between CPB2 21 

and thrombotic disease. 22 

Apart from having anti-fibrinolytic activity during clot formation, CPB2 also has an anti-23 

inflammatory role.[10] These anti-inflammatory properties are mediated through the cleavage of C-24 

terminal arginine from pro-inflammatory mediators such as complement anaphylatoxins, bradykinin, 25 

osteopontin, and vascular endothelial growth factor-A.[10,17–20] Recent In-vivo evidence by Song and 26 

collaegues, demonstrates that CPB2 dampened inflammation in autoimmune arthritis.[49] After the 27 

induction of anti-collagen antibody-induced arthritis, Cpb2–/– mice exhibited more severe arthritis, 28 

whereas C5–/– mice were protected against arthritis.[49] Intriguingly, an anti-C5 antibody prevented the 29 

development of severe arthritis in Cpb2–/– mice. In line with these results, Cpb2–/– mice also had a greater 30 
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complement-mediated influx of inflammatory cells in a model of zymosan-induced peritonitis [49]. 1 

Furthermore, rheumatoid arthritis patients carrying a CPB2 variant, resulting in a longer half-life of CPB2, 2 

were also less likely to develop severe disease.[49] Altogether, these studies reveal the profound ability 3 

of CPB2 to reduce inflammation, especially through the inactivation of complement anaphylatoxins. 4 

 To our knowledge, our study is the first to explore the role of CPB2 in kidney transplantation in 5 

relation to graft survival. Plasma levels of CPB2 have previously been reported to be elevated in kidney 6 

transplant recipients compared to healthy controls.[50,51] Consequently, CPB2 has been postulated to 7 

contribute to the hypofibrinolysis seen in this patient population, thereby negatively impacting transplant 8 

outcome. Micro-thrombi are frequently formed within the graft during kidney transplantation, which can 9 

then lead to poor initial kidney graft function.[42,52,53] Despite these conjectures, however, we found 10 

that the rs3742264 CPB2 polymorphism in kidney allografts reduced the risk of graft failure. Particularly, 11 

this CPB2 variant has previously been associated with higher levels.[32–35] Hence, we hypothesized 12 

that the association found was mediated by CPB2 ability to inactivate C3a and C5a, especially since 13 

complement anaphylatoxins are known to impact graft outcome in kidney transplantation.[6,36,54–57] 14 

To test this, we looked at the combined impact of the CPB2 variant with C3 or C5 polymorphisms that 15 

have been reported to lead to higher C3a and C5a levels.[43,44] In lin with our hypothesis, we found 16 

kidney allografts possessing the CPB2 variant as well as a complement gain-of-function had almost 17 

identical outcomes compared to kidney allografts carrying neither variant. We, therefore, propose that 18 

in kidney transplantation, high CPB2 levels improve graft survival by reducing complement-mediated 19 

inflammation.  20 

 CPN and CPB2 are the only two carboxypeptidases present in plasma.[10] The current 21 

paradigm is that carboxypeptidase N (CPN) is the main regulator of C3a and C5a, whereas CPB2 would 22 

be primarily involved in fibrinolysis. However, in-vitro experiments revealed the ability of CPB2 to 23 

inactivate C3a and C5a.[19] Moreover, CPN is less efficient in cleaving C5a into C5aDesArg than CPB2, 24 

whereas for C3a both enzymes were equally efficient.[19] Moreover, studies using Cpb2–/– mice 25 

confirmed that inactivation of complement anaphylatoxins is regulated by CPB2 in-vivo. In a model of 26 

hemolytic uremic syndrome (HUS), the disease was exacerbated in Cpb2–/– mice, compared to both 27 

controls and Cpn–/– mice.[17] In addition, Cpb2–/– mice presented with the clinical HUS triad of 28 

thrombocytopenia, uremia, and microangiopathic hemolytic anemia.[17] The exacerbated disease in 29 

Cpb2–/– mice was attenuated by the treatment with an anti-C5 antibody, and survival after treatment was 30 
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comparable to wild-type mice.[17] Altogether, our study adds to a growing body of evidence that shows 1 

that implicates CPB2 as a chief regulator of C3a and C5a. 2 

Regarding donor-recipient nuances, we found an association between a CPB2 polymorphism 3 

in donors with the risk of graft loss, but not recipients. These results reveal that it is not CPB2 production 4 

by the recipient, but instead the local CPB2 production by the donor kidney that positively impacts graft 5 

survival in kidney transplantation. Furthermore, when we performed a subgroup analysis for donor type, 6 

we observed a significant association between the CPB2 polymorphism in deceased donors and graft 7 

loss. Although a similar protective effect was seen for the CPB2 polymorphism in living donor, this was 8 

not significant. Donor kidneys from deceased organ donors have inferior outcomes and lower graft 9 

survival rates than kidneys retrieved from living donors.[58] These discrepancies are attributed to the 10 

immunological activation, systemic inflammation, and coagulopathies seen in deceased organ 11 

donors.[6,27,42] It is therefore not surprising that the protective effect of CPB2 may be stronger in 12 

deceased organ donors, especially since C5a levels are higher in these donors compared to their living 13 

counterparts.[54,59] Our findings also suggest that donor pre-treatment with CPB2 might be a promising 14 

strategy to increase graft function and survival. Recently, a recombinant homolog of CPB2 was shown 15 

to alleviate vascular cell damage by decreasing C3a- and C5a-induced neutrophil extracellular trap 16 

formation and suggested as an early intervention for COVID-19.[60] Conversely, donor pre-treatment 17 

with CBP2 would not be possible until it is known whether other donor organs (i.e., the liver, heart, and 18 

lungs) would also benefit from this. Alternatively, rather than enhancing CPB2 levels, blocking the 19 

generation of C3a and C5a through a complement inhibitor could be a better approach.[55–57] Lastly, 20 

our findings stress the potential importance of early complement inhibition as a potential mitigation factor, 21 

as well as that the inhibition needs to be able to get into the kidney allograft given the importance of 22 

donor genotypes. 23 

 Several limitations of this study warrant consideration. First and foremost, although the 24 

associations found are expected to be causal, this cannot be proven by our study because it is 25 

observational in nature. Further studies will therefore be needed to confirm that the observed 26 

associations are indeed causal. Second, the relationship between polymorphisms and systemic levels 27 

of CPB2 could not be determined in our cohort because of a lack of samples, as well as the relationship 28 

of CPB2 levels with C3a and C5a concentrations. However, it is important to note, that current available 29 

assays can not differentiate between the anaphylatoxin (C3a or C5a) and its metabolite (C3adesArg or 30 
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C5adesArg). In contrast, crucial strengths of our study are the analysis of four functional polymorphisms 1 

in a large sample size of donor-recipient pairs, the clinically meaningful endpoint, and the 15-year follow-2 

up time.  3 

In conclusion, we found that patients receiving a donor kidney carrying the A-allele of the CPB2 4 

polymorphism rs3742264 have a lower risk of late graft loss. Considering the A-allele is a high-producing 5 

CPB2 variant, our findings imply a beneficial effect of CPB2 on long-term allograft survival in renal 6 

transplantation. 7 
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Tables  1 

Table 1: Baseline characteristics of the donors and recipients. 2 

 

All Patients 

(n = 1271) 

Functioning graft  

(n = 1056) 

Graft loss 

(n = 215) 
P-value* HR P-value# 

Recipient       

CPB2 rs2146881 

polymorphism 

GG, n (%) 1221 (96.2) 1017 (96.5) 204 (94.9) 

0.26  0.17 GA, n (%) 48 (3.8) 37 (3.5) 11 (5.1) 

AA, n (%) 0 (0) 0 (0) 0 (0) 

CPB2 rs3742264 

polymorphism 

GG, n (%) 571 (44.9) 465 (44.0) 106 (49.3) 

0.36 

 

0.26 GA, n (%) 569 (44.8) 481 (45.5) 88 (40.9) 

AA, n (%) 131 (10.3) 110 (10.4) 21 (9.8) 

CPB2 rs1926447 

polymorphism 

CC, n (%) 618 (48.8) 513 (48.8) 105 (48.8) 

0.06 

 

0.68 TC, n (%) 547 (43.2) 455 (43.3) 92 (42.8) 

TT, n (%) 101 (8.0) 83 (7.9) 18 (8.4) 

CPB2 rs3818477 

polymorphism 

AA, n (%) 493 (38.8) 405 (38.4) 88 (40.9) 

0.66 

 

0.45 AC, n (%) 608 (47.8) 507 (48.0) 101 (47.0) 

CC, n (%) 170 (13.4) 144 (13.6) 26 (12.1) 

Female sex, n (%) 532 (41.9) 449 (42.5) 83 (38.6) 0.29  0.21 

Age, years 47.9 ± 13.5 48.5 ± 13.4 45.0 ± 13.2 <0.001 0.99 0.027 

Dialysis vintage, weeks 172 [91 – 263] 174 [87 – 261] 168 [109 – 270] 0.15  0.10 

Blood group Donor 

Type O, n (%) 567 (44.6) 474 (44.9) 93 (43.3) 

0.004 

0.46 0.002 

Type A, n (%) 536 (42.2) 448 (42.4) 88 (40.9) 0.46 0.002 

Type B, n (%) 113 (8.9) 98 (9.3) 15 (7.0) 0.35 0.002 

Type AB, n (%) 55 (4.3) 36 (3.4) 19 (8.8) Ref 0.008 

Immunosuppression 

Anti-CD3 Moab, n (%) 19 (1.5) 14 (1.3) 5 (2.3) 0.27  0.51 

ATG, n (%) 103 (8.1) 79 (7.5) 24 (11.2) 0.07  0.14 

Azathioprine, n (%) 72 (5.7) 53 (5.0) 19 (8.8) 0.027  0.29 

Corticosteroids, n (%) 1201 (94.5) 1002 (94.9) 199 (92.6) 0.17 0.51 0.01 

Cyclosporin, n (%) 1085 (85.4) 911 (86.3) 174 (80.9) 0.044 0.66 0.016 

Interleukin-2 RA, n (%) 199 (15.7) 163 (15.4) 36 (16.7) 0.63  0.12 

Mycophenolic acid, n (%) 907 (71.4) 775 (73.4) 132 (61.4) <0.001  0.06 

Sirolimus, n (%) 38 (3.0) 33 (3.1) 5 (2.3) 0.53  0.54 

Tacrolimus, n (%) 97 (7.6) 77 (7.3) 20 (9.3) 0.31  0.39 

Donor       

CPB2 rs2146881 

polymorphism 

GG, n (%) 680 (54.8) 556 (54.0) 124 (58.5) 

0.47  0.19 GA, n (%) 478 (38.5) 402 (39.1) 76 (35.8) 

AA, n (%) 83 (6.7) 71 (6.9) 12 (5.7) 

CPB2 rs3742264 

polymorphism 

GG, n (%) 577 (45.5) 462 (43.8) 115 (53.5) 

0.033 0.78 0.022 GA, n (%) 574 (45.2) 490 (46.5) 84 (39.1) 

AA, n (%) 118 (9.3) 102 (9.7) 16 (7.4) 

CPB2 rs1926447 

polymorphism 

CC, n (%) 617 (48.6) 516 (48.9) 101 (47.2) 

0.38  0.92 TC, n (%) 538 (42.4) 440 (41.7) 98 (45.8) 

TT, n (%) 114 (9.0) 99 (9.4) 15 (7.0) 

CPB2 rs3818477 

polymorphism 

AA, n (%) 459 (36.2) 389 (36.9) 70 (32.6) 

0.30  0.16 AC, n (%) 637 (50.2) 527 (50.0) 110 (51.2) 

CC, n (%) 172 (13.6) 137 (13.0) 35 (16.3) 

Female sex, n (%) 626 (49.3) 521 (49.3) 105 (48.8) 0.89  0.96 

Age, years 44.4 ± 14.4 44.1 ± 14.6 46.1 ± 13.4 0.044 1.02 <0.001 

Donor type 

Living, n (%) 282 (22.2) 257 (24.3) 25 (11.6) <0.001 

 

Ref 0.002 

 Deceased, n (%) 989 (77.8) 642 (75.7) 190 (88.4) 1.94 

Blood group 

Type O, n (%) 642 (50.6) 541 (51.3) 101 (47.2) 

0.033 

0.39 0.004 

Type A, n (%) 502 (39.6) 414 (39.3) 88 (41.1) 0.42 0.01 

Type B, n (%) 97 (7.6) 82 (7.8) 15 (7.0) 0.36 0.012 

Type AB, n (%) 27 (2.1) 17 (1.6) 10 (4.7) Ref 0.035 

Transplantation       

Highest PRA, in % 10.1 ± 23.6 9.98 ± 23.7 10.9 ± 25.0 0.54  0.75 

Total HLA mismatches 2 [1 – 3] 2 [1 – 3] 2 [1 – 3] 0.48  0.11 

CIT, in hours 17.7 [10.9 – 23.0] 17.0 [8.6 – 23.0] 20,0 [15.3 – 25.0] <0.001 1.03 0.001 

WIT, in minutes 37.0 [31 – 45] 37.0 [30 – 45] 38.0 [32 – 45] 0.12 1.02 0.003 

DGF, n (%) 415 (32.7) 289 (27.4) 126 (58.6) <0.001 3.79 <0.001 
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The baseline demographics of all donor-recipient transplant pairs as well as subgroup analysis for graft 1 

loss after 15 years of follow-up. Data are displayed as mean ± standard deviation, median [IQR] and the 2 

total number of patients with percentage.  3 

Abbreviations: ATG, Anti-thymocyte globulin; CD3, cluster of differentiation 3; CIT, cold ischemia time; 4 

CPB2, Carboxypeptidase B2; DGF, delayed graft function; HLA, human leukocyte antigen; PRA, panel-5 

reactive antibody; RA, receptor antagonist; WIT, warm ischemia time. Bold P-values indicate P-values 6 

that are statistically significant (P-value < 0.05). 7 

      P-value* shows the P-value for the differences in baseline demographics among the groups, tested 8 

by Mann–Whitney U test or Student’s t-test for continuous variables, and χ2 test for categorical variables. 9 

     P-value# shows the P-value for univariable analysis for graft loss after 15 years of follow-up.  10 

11 
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Table 2: Multivariable analysis of 15-year death-censored graft survival. 1 

Variables not in the equation Variables in the equation 

 

Variables P-value Variables P-value Hazard Ratio 

Warm ischemia time 

(minutes) 
0.07 

rs3742264 in the donor 

(G versus A) 
0.004 0.67 (1.21 – 3.82) 

Corticosteroids 0.09 
Recipient age 

(years) 
<0.001 0.98 (0.97 – 0.99) 

Cold ischemia time 

(hours) 
0.11 Delayed graft function 

(yes versus no) 

<0.001 4.02 (3.03 – 5.32) 

Donor type 

(living versus deceased) 
0.13 

Recipient blood type 

(ABO versus other) 
0.001  

Cyclosporin 0.35 
Donor age 

(years) 
0.002 1.02 (1.01 – 1.03) 

Donor blood type 

(ABO versus other) 
0.98    

 2 

Multivariable cox regression was performed with a stepwise forward selection. Only variables that with 3 

a P-value < 0.05 in the univariate analysis were included. Data are presented as hazard ratio with 95% 4 

confidence interval (CI) and P-value. In the final model, the CPB2 SNP (rs3742264-T) in the donor, 5 

recipient age, the occurrence of delayed graft function, recipient blood type, and donor age were 6 

included, whereas warm ischemia time, use of corticosteroids, cold ischemia time, donor type, use of 7 

cyclosporin, and donor blood type were not. 8 
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Table 3: Associations of CPB2 genetic risk score with graft loss. 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

Data are presented as the hazard ratio with a 95% confidence interval (CI) and P-value. 9 

Model 1: Crude model. 10 

Model 2: Adjusted for model 1 plus recipient characteristic’s: recipient age, recipient sex, recipient blood 11 

type and dialysis vintage.  12 

Model 3: Adjusted for model 1 plus donor characteristic’s: donor age, donor sex, donor blood type, and 13 

donor origin.   14 

Model 4: Adjusted for model 1 plus transplant characteristic’s: cold and warm ischemia time, the total 15 

HLA-mismatches, and the occurrence of delayed graft function (DGF). 16 

17 

 CPB2 genetic risk score 

Hazard ratio 

(per SD) 
95% CI P-value 

Model 1 1.302 1.140 – 1.488 <0.001 

Model 2 1.309 1.139 – 1.505 <0.001 

Model 3 1.279 1.118 – 1.463 <0.001 

Model 4 1.268 1.102 – 1.458 0.001 
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Table 4: Additive value of the CPB2 genetic risk score for the prediction of graft loss 1 

 2 

Data are presented as Harrell’s concordance statistic (Harrell’s C) with a 95% confidence interval (CI) 3 

and integrated discrimination improvement (IDI) with P-value. *Change in C-statistics compared to the 4 

model without the CPB2. 5 

Model 1: Crude model. 6 

Model 2: CPB2 rs3742264 polymorphism in the donor 7 

Model 3: Adjusted for recipient characteristic’s: recipient age, recipient sex, recipient blood type and 8 

dialysis vintage.  9 

Model 4: Adjusted for donor characteristic’s: donor age, donor sex, donor blood type, and donor origin.   10 

Model 5: Adjusted for plus transplant characteristic’s: cold and warm ischemia time, the total HLA-11 

mismatches, and the occurrence of delayed graft function. 12 

Model 6: Adjusted for the occurrence of delayed graft function, recipient blood type, donor age and use 13 

of corticosteroids. 14 

15 

 

Harrell’s C (95% CI) 

Change (95%-CI)* P-value IDI (%) P-value Without the CPB2 

genetic risk score 

with the CPB2 

genetic risk score 

Model 1 0.500 0.588 (0.546 – 0.629) N/A N/A N/A N/A 

Model 2 0.550 (0.514 – 0.586) 0.585 (0.544 – 0.626) 0.035 (0.005 – 0.066) 0.02 0.7 0.003 

Model 3 0.566 (0.525 – 0.607) 0.615 (0.575 – 0.656) 0.051 (0.016 – 0.086) 0.004 1.2 0.001 

Model 4 0.623 (0.587 – 0.660) 0.645 (0.608 – 0.682) 0.028 (0.003 – 0.053) 0.03 1.0 0.003 

Model 5 0.704 (0.668 – 0.740) 0.722 (0.685 – 0.759) 0.021 (0.000 – 0.042) 0.06 1.0 0.005 

Model 6 0.734 (0.700 – 0.769) 0.744 (0.711 – 0.777) 0.012 (-0.001 – 0.025) 0.08 1.1 0.007 
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Figures 1 

Figure 1: Illustration of the CPB2 pathway and examined CPB2-related polymorphisms. 2 

 3 

(A) A precursor form of CPB2 (proCPB2) is produced in the liver and released into the plasma fraction 4 

of the blood. (B) There, it can interact with plasmin and the thrombin-thrombomodulin complex to gain 5 

its enzymatic, carboxypeptidase activity as mature CPB2. (C – E) The main effects of CPB2 are exerted 6 

on (C) fibrinolysis and anaphylatoxin. (D) The effect on fibrinolysis is mediated through fibrin by CPB2-7 

dependent removal of C-terminal lysine and arginine residues, thus thrombus resorption by fibrinolytic 8 

mechanisms. (E) The neutralization of anaphylatoxins such as C3a and C5a is mediated by C-terminal 9 

lysis of arginine residues, creating C3aDesArg and C5aDesArg variants with decreased inflammatory 10 

potency, resulting in anti-inflammatory effects. (F – I) In this study, we assessed the associations of four 11 

single-nucleotide polymorphisms (SNPs) in kidney allograft donors and recipients on graft survival. 12 

These SNPs were (F) rs2146881 (G>A), (G) rs3742264 (p.Ala169Thr), (H) rs1926447 (p.Ile347Thr), 13 

and (I) rs3818477 (A>C). (pro)CPB2, (pro)carboxypeptidase B2; C3a, complement 3a; C5a, 14 

complement 5a; fbrn, fibrin; flysis, fibrinolysis;  15 

16 
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Figure 2: Kaplan-Meier curves for 15-year death-censored kidney graft survival according to the 1 

presence of a carboxypeptidase B2 gene polymorphism in the donor. 2 

 3 

(A) Cumulative 15-year death-censored kidney graft survival with the rs3742264 G>A polymorphism in 4 

the carboxypeptidase B2 gene (CBP2) in the donor. (B) Next, the GA- and AA-genotype were combined 5 

in one group since the graft loss incidence did not significantly differ between these genotypes. A 6 

subgroup analysis for donor type was performed. Cumulative 15-year death-censored kidney graft 7 

survival with the rs3742264 G>A polymorphism in (C) deceased kidney donors and (D) living kidney 8 

donors. The Log-rank test was used to compare the graft loss incidence between the different groups. 9 
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Figure 3: Kaplan-Meier curves for 15-year death-censored kidney graft survival according to the 1 

presence of a carboxypeptidase B2, C3 and C5 gene polymorphism in the donor. 2 

 3 

(A) Cumulative 15-year death-censored kidney graft survival according to the presence of the 4 

rs3742264 G>A polymorphism in the carboxypeptidase B2 gene (CBP2) and the rs2230199 C > G 5 

polymorphism in the C3 gene (C3). Pairs were divided into four groups according to the absence (black 6 

line), presence of the CPB2 variant (blue line), presence of the C3 variant (yellow line) or both (green 7 

line). (B) Cumulative 15-year death-censored kidney graft survival according to the presence of the 8 

rs3742264 G>A polymorphism in the carboxypeptidase B2 gene (CBP2) and the rs17611 G > A 9 

polymorphism in the C5 gene (C5). Pairs were divided into four groups according to the absence (black 10 

line), presence of the CPB2 variant (blue line), presence of the C5 variant (yellow line) or both (green 11 

line). Log-rank test was used to compare the incidence of graft loss between the groups. 12 

13 
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Figure 4: Hazard ratios for CPB2 genetic risk score among subgroups. 1 

 2 

Forest plot of CPB2 genetic risk score sub-analyses, demonstrating consistency of the hazard ratios for 3 

graft loss in the different subgroups with the exception of donor origins of the kidney allografts and 4 

recipient sex. The association between the CPB2 genetic risk score and graft loss was not observed in 5 

kidney transplants from living donors or in female recipients. No significant interaction was seen 6 

between the CPB2 genetic risk score and the various clinical variables of the subgroups. 7 
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Supplementary Data 1 

Table S1: Genotypic frequencies of CPB2 polymorphisms in donors and recipients 2 

CPB2 Donor Recipient P-valuea 
1000 genome 

project 
P-valueb P-valuec 

rs2146881 

GG 54.8 (680) 96.2 (1221) 

<0.0001 

57.1 (287) 

0.62 <0.0001 GA 38.5 (478) 3.8 (48) 37.2 (187) 

AA 6.7 (83) 0 (0) 5.8 (29) 

rs3742264 

CC 45.5 (577) 44.9 (571) 

0.69 

44.3 (223) 

0.37 0.75 CT 45.2 (574) 44.8 (569) 44.1 (222) 

TT 9.3 (118) 10.3 (131) 11.5 (58) 

rs1926447 

GG 48.6 (617) 48.8 (618) 

0.65 

48.1 (242) 

0.60 0.22 GA 42.4 (538) 43.2 (547) 41.4 (208) 

AA 9.0 (114) 8.0 (101) 10.5 (53) 

rs3818477 

AA 36.2 (459) 38.8 (493) 

0.39 

41.0 (206) 

0.02 0.10 AC 50.2 (637) 47.8 (608) 42.7 (215) 

CC 13.6 (172) 13.4 (170) 16.3 (82) 

 3 

1271 donor-recipient renal transplant pairs were analyzed for the presence of genetic variants in the 4 

carboxypeptidase B2 gene (CPB2). The frequencies of these polymorphisms were compared to those 5 

reported by the European cohort of the 1000 genomes project. Genotype frequencies are displayed as 6 

percentages with the corresponding total number of patients [% (n)].  7 

a P-value for the Pearson Chi-square test for differences in the genotype frequency between donors and 8 

recipients. 9 

b P-value for the Pearson Chi-square test for differences in the genotype frequency between donors and 10 

the European cohort of the 1000 genome project. 11 

c P-value for the Pearson Chi-square test for differences in the genotype frequency between recipients 12 

and the European cohort of the 1000 genome project. 13 
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Table S2: Competitive analysis of clinical factor associations with graft loss.  1 

Variables not in the equation Variables in the equation 

 

Variables P-value Variables P-value Hazard Ratio 

Cold ischemia time 

(in hours) 
0.10 

CPB2 genetic risk score 

(per SD) 
<0.001 1.31 (1.14 – 1.50) 

Warm ischemia time   

(in minutes) 
0.14 

Recipient age 

(in years) 
<0.001 0.98 (0.97 – 0.99) 

Donor type 

(living versus deceased) 
0.17 

Delayed graft function 

(yes versus no) 
<0.001 3.80 (2.86 – 5.05) 

rs3742264 in the donor 

(T versus C) 
0.35 

Recipient blood type 

(ABO versus other) 
0.001  

Cyclosporin 0.83 
Donor age 

(in years) 
0.007 1.01 (1.00 – 1.02) 

Donor blood type 

(ABO versus other) 0.99 Corticosteroids 0.035 0.56 (0.33 – 0.96) 

 2 

Multivariable cox regression was performed with a stepwise forward selection. Only variables that with 3 

a P-value < 0.05 in the univariate analysis were included. Data are presented as hazard ratio with 95% 4 

confidence interval (CI) and P-value. In the final model, the CPB2 genetic risk score, recipient age, 5 

occurrence of delayed graft function, recipient blood type, donor age and use of corticosteroids were 6 

included, whereas cold ischemia time, warm ischemia time, donor type, CPB2 SNP (rs3742264-T) in 7 

the donor, use of cyclosporin, and donor blood type were not. 8 
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