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 2 

ABSTRACT 29 

Background: Alzheimer’s disease neuropathologic changes (AD-NC) are important for 30 

identify people with high risk for AD dementia (ADD) and subtyping ADD. 31 

Objective: Develop imputation models based on clinical measures to infer AD-NC.  32 

Methods: We used penalized generalized linear regression to train imputation models 33 

for four AD-NC traits (amyloid-𝛽, tangles, global AD pathology, and pathologic AD) in 34 

Rush Memory and Aging Project decedents, using clinical measures at the last visit 35 

prior to death as predictors. We validated these models by inferring AD-NC traits with 36 

clinical measures at the last visit prior to death for independent Religious Orders Study 37 

(ROS) decedents. We inferred baseline AD-NC traits for all ROS participants at study 38 

entry, and then tested if inferred AD-NC traits at study entry predicted incident ADD and 39 

postmortem pathologic AD.  40 

Results: Inferred AD-NC traits at the last visit prior to death were related to postmortem 41 

measures with R2=(0.188,0.316,0.262) respectively for amyloid-𝛽, tangles, and global 42 

AD pathology, and prediction Area Under the receiver operating characteristic Curve 43 

(AUC) 0.765 for pathologic AD. Inferred baseline levels of all four AD-NC traits 44 

predicted ADD. The strongest prediction was obtained by the inferred baseline 45 

probabilities of pathologic AD with AUC=(0.919,0.896) for predicting the development of 46 

ADD in 3 and 5 years from baseline. The inferred baseline levels of all four AD-NC traits 47 

significantly discriminated pathologic AD profiled eight years later with p-48 

values<1.4 × 10−10. 49 

Conclusion: Inferred AD-NC traits based on clinical measures may provide effective 50 

AD biomarkers that can estimate the burden of AD-NC traits in aging adults.  51 
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INTRODUCTION 55 

The accumulation of Alzheimer’s disease neuropathologic changes (AD-NC), 56 

such as amyloid-𝛽 and intracellular neurofibrillary tangles, underlying Alzheimer’s 57 

disease dementia (ADD) has been observed even during the initial stages of ADD when 58 

cognition is normal [1]. Higher levels of AD-NC during the early stages of ADD have 59 

been shown to be associated with an increased risk of ADD [2-6]. Separate therapies 60 

have been developed for targeting the peptide amyloid-𝛽 in extracellular amyloid 61 

plaques and the protein tau in intracellular neurofibrillary tangles [7-9]. Yet, conventional 62 

prediction models identifying adults at risk for clinical ADD do not inform on which AD-63 

NC traits underlie the risk of ADD. Thus, procedures that can accurately infer elevated 64 

levels of AD-NC traits in living adults with normal cognition have the potential to 65 

facilitate early targeted treatments [10-17].  66 

Direct measures of brain AD-NC traits can only be obtained at autopsy. Recent 67 

efforts to quantify AD-NC during life have focused on identifying biomarkers of AD-NC 68 

traits by using brain imaging or fluid AD biomarkers [18-20]. Recent work comparing tau 69 

and amyloid positron emission tomography (PET) brain imaging measures to indices 70 

measured at autopsy, suggests that current imaging may not reliably detect the early 71 

stages of AD pathology [21, 22]. Particularly, brain imaging and CSF biomarkers are not 72 

widely available due to their costs, invasiveness, and difficultly to deploy at scale. 73 

Studies focusing on serum biomarkers have advanced rapidly in recent years, yet the 74 

field has not converged on specific biomarkers that can be employed in the general 75 

population [23-27].  76 
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Rapid advances in machine learning methods such as penalized generalized 77 

linear regression [28] have been employed to impute missing data or infer data that are 78 

difficult to be measured directly in biomedical research fields [29-34]. Similarly, the 79 

penalized generalized linear regression method could be deployed to develop 80 

imputation models based on clinical measures in older adults to infer levels of AD-NC 81 

traits. Such imputation models learn the predictive information of postmortem AD-NC 82 

traits like tangles from clinical measures obtained prior to death in decedents 83 

undergoing autopsy. The imputation model works by mathematically “explaining” the 84 

variation of observed AD-NC traits measured in decedents by their equivalence of 85 

weighted linear combinations of predictive clinical measures. Once imputation models 86 

developed for AD-NC traits are validated in an independent cohort, they can be applied 87 

to any older adults with similar clinical measures to infer AD-NC traits.  88 

Comprehensive clinical and postmortem data are necessary to develop and 89 

validate imputation models for AD-NC traits. This multi-stage study leveraged clinical 90 

and postmortem data from two harmonized, independent, longitudinal prospective 91 

cohort studies –– Rush Memory and Aging Project (MAP) and the Religious Orders 92 

Study (ROS) [35]. First, we trained imputation models for four AD-NC traits (amyloid-𝛽, 93 

tangles, global AD pathology, and pathologic AD diagnosis) by applying the penalized 94 

generalized linear regression method to clinical measures obtained at the last visit 95 

before death and postmortem AD-NC indices measured at autopsy in MAP decedents. 96 

Second, we validated the imputation models in a second independent cohort (ROS) 97 

which collected the same clinical and postmortem AD-NC traits. Third, we applied the 98 

imputation models to clinical measures collected in adults without dementia at study 99 
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entry to infer baseline levels of AD-NC traits that were on average about eight years 100 

before death for decedents (or before last visit for living participants). We demonstrated 101 

the efficacy of these interfered baseline AD-NC traits as effective AD biomarkers, by 102 

showing their predictivity of future clinical ADD and discrimination of postmortem 103 

pathologic AD.  104 

 105 

MATERIALS AND METHODS 106 

Participants 107 

Participants were community-dwelling older adults enrolled without known dementia and 108 

with at least two annual visits in one of two ongoing longitudinal prospective cohort 109 

studies of chronic conditions of aging –– MAP (n=1179 with ~500 autopsied) and ROS 110 

(n=1103 with ~600 autopsied). Both cohorts employed a harmonized data collection 111 

battery administered by the same research assistants facilitating joint analyses. For this 112 

study, we included adults without clinical evidence of dementia at enrollment with at 113 

least two annual follow-up cognitive assessments.  At study entry, 1742 adults had no 114 

cognitive impairment (NCI) and 540 adults had mild cognitive impairment (MCI) (Table 115 

S1). The duration of annual follow-up for participants ranged from 2 to 26 years, with an 116 

average follow-up of 8 years (SD, 5.42 years) [Fig S1; Tables S1-S2].  117 

 118 

Assessment of AD-NC Traits 119 

After the death of ROS/MAP participants, their brains were removed and 120 

hemisected following the standard procedure, as previously described [35]. Tissue 121 
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blocks were dissected from predetermined regions and used for postmortem diagnosis 122 

of pathologic AD.  Structured autopsy collected indices of AD/ADRD pathologies that 123 

were collected blinded to all prior clinical and cognitive data. This study focuses on the 124 

development of imputation models to infer the following four AD-NC traits that were 125 

measured in autopsied decedents (Table S2).  126 

Amyloid-β was labeled with an N-terminus–directed monoclonal antibody (10D5; 127 

Elan, Dublin, Ireland; 1:1,000). Immunohistochemistry was performed as previously 128 

described using diaminobenzidine as the reporter, with 2.5% nickel sulfate to enhance 129 

immunoreaction product contrast.  130 

PHFtau (Tangles) was labeled with an antibody specific for phosphorylated tau 131 

(AT8; Innogenetics, San Ramon, CA; 1:1,000). Amyloid-β load and tangles were 132 

quantified in 8 brain regions (anterior cingulate cortex, superior frontal cortex, mid 133 

frontal cortex, inferior temporal cortex, hippocampus, entorhinal cortex, angular 134 

gyrus/supramarginal gyrus, and calcarine cortex). Overall amyloid-β load was calculated 135 

through averaging mean percent area of amyloid-β deposition per region, across 136 

multiple brain regions. Tangles densities were derived by averaging tangles densities 137 

across corresponding brain regions. Measures of amyloid-𝛽 and tangles were further 138 

square-root transformed to improve their asymptotic normality as previously reported 139 

[36, 37].  140 

Global AD Pathology: A modified Bielschowsky silver stain was used to 141 

visualize neuritic plaques, diffuse plaques, and neurofibrillary tangles in five cortical 142 

areas (hippocampus, entorhinal, midfrontal, middle temporal, and inferior parietal). 143 

Neuritic and diffuse plaques, and neurofibrillary tangles were counted in the region that 144 
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appeared to have the maximum density of each pathology as previously described. A 145 

standardized score was created for each neuropathology in each region by dividing the 146 

raw count by the standard deviation of the mean for the same neuropathology in the 147 

same region. This standardization procedure puts the pathologic indices on a relatively 148 

common scale. A summary global AD pathology score was made based on the average 149 

of the greatest density of neuritic plaques, diffuse plaques, and neurofibrillary tangles in 150 

one mm2 [38, 39]  151 

Pathologic Diagnosis of AD: The National Institute on Aging-Reagan criteria 152 

were used with intermediate and high likelihood cases indicating a pathologic diagnosis 153 

of AD, which is a binary indicator with value 1 denoting the present of pathologic AD 154 

and 0 denoting the absent of pathologic AD [40].  155 

 156 

Assessment of Composite Cognition Score and Cognitive Status 157 

A structured cognitive assessment was administered annually. The 158 

neuropsychological battery included 19 tests that assessed five cognitive abilities 159 

(episodic memory, semantic memory, working memory, visuospatial ability/perceptual 160 

orientation, and perceptual speed). Raw test scores were standardized for each test 161 

using baseline means and standard deviations (SDs) of both cohorts; the resulting Z-162 

scores were then averaged across these cognitive tests to derive a single summary 163 

composite cognition score as described in prior publications [35, 41].  164 

Cognitive diagnoses were made in a three-step process. Cognitive testing was 165 

scored by a computer program and the results were reviewed by a neuropsychologist to 166 

diagnose cognitive impairment. Then participants were evaluated by a physician who 167 
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used available cognitive and clinical data to classify cognitive status at each annual 168 

visit. Dementia required meaningful decline in cognitive function with impairment in 169 

multiple areas of cognition, and AD required dementia and progressive loss of episodic 170 

memory. Individuals with cognitive impairment who did not meet dementia criteria were 171 

diagnosed with mild cognitive impairment (MCI). Individuals without dementia or MCI 172 

were classified as having no cognitive impairment (NCI). Clinical diagnosis of cognitive 173 

status was based on published criteria [42-44]. Participants with dementia due to 174 

primary cause other than AD are excluded in this study. At the time of death, select 175 

clinical data from the entire study were reviewed by a neurologist, blinded to 176 

postmortem data, to render a final cognitive status diagnosis[35].  177 

 178 

Clinical Covariates  179 

Diverse clinical measures were used to develop imputation models for four AD-180 

NC traits.  Table S3 shows the complete list and groupings of the 57 clinical measures 181 

examined in this study, including both cross-sectional and longitudinal variables. Cross-182 

sectional clinical measures were collected only once for each participant, such as sex, 183 

education, and APOE genotype. Longitudinal clinical measures were collected each 184 

time during participants’ annual visits. Baseline clinical characteristics are provided in 185 

Tables S2, S4, and S5 and a heat map (Fig S2) is included to show the inter-186 

correlations of the clinical variables examined in this study. The measures analyzed in 187 

this study were selected after excluding cross-sectional variables with a high proportion 188 

of missing values and those that were highly correlated with other selected clinical 189 

measures (correlation>0.95). Samples with missing values in the selected cross-190 
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sectional clinical measures were excluded. Missing values of longitudinal clinical 191 

measures were assumed to be missed at random and were imputed from the measured 192 

values at the nearest visit of the same participant, by using the “fill(.direction = "up")” 193 

function from R library “tidyr”. That is, if a participant had a missing value at last visit for 194 

a longitudinal variable, the missing value would be imputed as the measured value of 195 

this variable in this participant’s nearest previous visit with collected measurement. The 196 

percentage of missing data (i.e., missing rate) in the longitudinal clinical measurements 197 

at last visit and study baseline were presented in Fig, S3. The number of samples that 198 

were actually used in the analyses are presented in Tables S6, and S7.   199 

 200 

Analytic Approach 201 

A multi-stage analytic approach was employed to develop, validate, and 202 

demonstrate the effectiveness of the inferred the levels of four AD-NC traits at study 203 

entry as potential AD biomarkers.  204 

 205 

Developing imputation models to infer AD-NC traits 206 

Stage 1. Training imputation models.  207 

We trained an imputation model for each of the four AD-NC traits using 57 208 

clinical variables obtained in MAP participants at the last visit before death as 209 

predictors, by using the generalized linear regression model with Elastic-Net penalty 210 

(GLM-EN) [45] (Fig 1A). Only MAP decedents with autopsy were used for developing 211 

imputation models, because profiled AD-NC traits were required. By using the GLM-EN 212 
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method, variable selection was implemented and potential collinearity among clinical 213 

variables was accounted for during model training. Since the Elastic-Net penalty is a 214 

linear combination of L1 (i.e. LASSO) [46] and L2 (i.e., Ridge) [47] penalties on the 215 

coefficients of clinical variables, variable selection are handled by the L1 penalty (i.e., 216 

penalizing the L1 norm of the coefficient vector) while potential collinearity is accounted 217 

for by the L2 penalty (i.e., penalizing the L2 norm of the coefficient vector). Ten-fold 218 

cross validation was used during model training to select Elastic-Net penalty parameters 219 

(i.e., the proportions of L1 and L2 penalty) to ensure optimal imputation accuracy.  220 

Stage 2. Validating imputation models in a second independent cohort.  221 

Next, we validated the performance of the imputation models developed to infer 222 

four AD-NC traits using clinical variables measured at the last visit proximate to death in 223 

a second independent cohort with ROS decedents (Fig 1A). Prediction 𝑅2, the squared 224 

correlation between inferred and measured values, was used for assessing imputation 225 

accuracy for continuous AD-NC traits. Prediction accuracy for the dichotomous 226 

pathologic AD diagnosis was evaluated by the predicted area under curve (AUC) values 227 

of receiver operating characteristic curve (ROC) [48]. 228 

Stage 3. Infer AD-NC traits at study entry and test their effectiveness as AD biomarkers  229 

Once imputation models are trained and validated, they can be applied to any 230 

living adult with the same clinical variables measured. So, to illustrate the use of these 231 

imputation models, we applied these validated models to the clinical data obtained from 232 

ROS participants at study entry (i.e., baseline that was on average of eight years before 233 

death or last follow-up visit) to infer baseline AD-NC traits (Fig 1B). Scatter plots and 234 

ROC curves were used to evaluate the consistency between inferred AD-NC traits at 235 
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baseline and the corresponding measured postmortem AD-NC traits profiled at autopsy 236 

in ROS decedents. Then we examined the effectiveness of inferred AD-NC traits as 237 

potential AD biomarkers through two complementary analyses, one for evaluating the 238 

predictivity for incident ADD by Cox proportional hazard model (Stage 3A) and the other 239 

one for evaluating the discrimination of postmortem pathologic AD (Stage 3B).  240 

Stage 3A. We fitted Cox proportional hazard models using covariates of age, 241 

sex, education, and a single inferred baseline AD-NC trait in MAP cohort for predicting 242 

incident ADD. Then we evaluated the performance of the Cox models for predicting 243 

incident ADD in year 3 and year 5 from baseline in ROS cohort (Fig S4). Our fitted Cox 244 

proportional hazard risk prediction models [49-51] also accounted for the competing risk 245 

of death. The annual cognitive status diagnosis and the follow up year were used to 246 

identify the first occurrence of ADD. For each participant, the year of enrollment is 247 

considered as baseline (time 0), the year of first diagnosis of ADD is considered as the 248 

time when the event occurs (incident ADD), and the last visit of participants without the 249 

considered event during all follow-ups is considered as the right censored time for living 250 

participants or the time of death for dead participants without ADD. Sample size 251 

distributions with respect to cognitive status at baseline and the cognition event types 252 

are shown in Tables S1. All Cox models were trained using data from MAP participants 253 

(both living and deceased) and tested with data from ROS participants (both living and 254 

deceased).  255 

For fitting and testing Cox models for predicting incident ADD, we first used all 256 

individuals without dementia at baseline, and then fitted and tested another set of Cox 257 

models by using only individuals with NCI at baseline. For each set of Cox models fitted 258 
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by using MAP participants, we calculated model accuracy (AUC) for predicting incident 259 

ADD in year 3 and year 5 from baseline.  260 

Since Cox models provide a continuous risk score for incident ADD, by selecting 261 

a risk score threshold corresponding to ~80% specificity (the proportion of correctly 262 

predicted non-ADD in test ROS participant’s, i.e., 1 – false positive fraction), we could 263 

calculate sensitivity (the proportion of true positive predictions in all test cases, i.e., true 264 

positive fraction), and the overall classification accuracy (the proportion of true 265 

discrimination of ADD in all test samples). Samples with risk scores greater than the 266 

selected threshold were considered to develop ADD and less than the threshold as not 267 

developing ADD in a specific year. That is, given the known ADD status of participants 268 

in year 3 and year 5 from baseline, we can compare the predicted risk of incident ADD 269 

to the actual incident ADD status to calculate the overall classification accuracy, 270 

specificity, and sensitivity. Also, the sensitivity and specificity corresponding to a 271 

selected risk score threshold reflect risk model performance at one point in the ROC 272 

plots.  273 

We also sequentially added the other three inferred baseline AD-NC traits into 274 

the Cox model, in addition of covariates of age, sex, education, and inferred baseline 275 

amyloid-𝛽, and examined the prediction performance of these models. 276 

Stage 3B. We examined the discrimination of inferred baseline levels of AD-NC 277 

traits with respect to postmortem pathologic AD diagnosis (Fig 1B). Boxplots and two-278 

sample t-tests were used to evaluate the discrimination of postmortem pathologic AD by 279 

inferred baseline AD-NC traits. Only ROS decedents with profiled pathologic AD 280 

diagnoses were use in this discrimination analysis. 281 
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 282 

RESULTS 283 

Developed Imputation Models for Inferring AD-NC Traits  284 

Imputation models were trained to infer AD-NC traits by applying the GLM-EN 285 

method using clinical measures in MAP decedents at their last visit before death as 286 

predictors. Selected predictive clinical measures with standardized effect sizes 287 

|beta| >0.01 estimated by the imputation models are shown in Fig 2. Composite 288 

cognition score and APOE E4 allele were the strongest predictors that were selected for 289 

all four AD-NC traits. Yet, Fig 2 also illustrates that varied non-cognitive clinical 290 

measures including motor function such as motor gait and dexterity, health conditions 291 

such as anxiety and hypertension, and medications such as lipid lowering and anti-292 

inflammatory medications were also selected. The effect size for motor gait was nearly 293 

as strong as APOE for tangles, amyloid-beta, and global AD pathology.  294 

These estimated effect sizes of selected clinical measure predictors in the 295 

imputation models are used as weights to construct weighted sum with clinical 296 

measurements to infer AD-NC trait levels. So, while all four AD-NC traits are related and 297 

may share composite cognition score and APOE E4 allele as important predictors, the 298 

different sets of selected predictors by these four imputation models highlight that 299 

mathematically different combinations of clinical measures with different estimated 300 

effect sizes are necessary to best capture unique features of these inter-related AD-NC 301 

traits.  302 

 303 
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Validation of Imputation Models for Inferring AD-NC Traits  304 

To validate the imputation models developed in MAP decedents, we applied the 305 

imputation models to clinical measures obtained at the last visit prior to death for 306 

decedents in a second independent ROS cohort to infer their levels of four AD-NC traits. 307 

Scatter plots illustrate the correlations between the inferred levels of the three 308 

continuous AD-NC traits and their corresponding indices measured at autopsy (Fig S5, 309 

A-C). The prediction 𝑅2 was 0.188 for amyloid-𝛽, 0.316 for tangles, and 0.262 for global 310 

AD pathology (Table S8). An ROC plot (with AUC=0.765) illustrates the consistency 311 

between the inferred probabilities of pathologic AD based on clinical measures obtained 312 

at last visit before death versus the profiled pathologic AD status by autopsy (Fig S5D; 313 

Table S8). As would be expected for effective AD biomarkers, all four inferred AD-NC 314 

traits discriminated profiled pathologic AD at autopsy, with two-sample test P values <315 

10−28 (Box plots in Fig S5; Table S8). Together these results in a second independent 316 

cohort validated the accuracy of the imputation models developed in MAP for all four 317 

AD-NC traits. 318 

 319 

Inferred Baseline AD-NC Traits Predicted Incident ADD 320 

The imputation models were developed and validated using clinical measures at 321 

the last visit prior to death in MAP and ROS decedents. In further analyses we 322 

examined the effectiveness of inferred baseline AD-NC traits at study entry as AD 323 

biomarkers. To infer baseline levels of four AD-NC traits at study entry, we applied the 324 

validated imputation models to clinical data collected at baseline in all ROS participants 325 

(n=1103; both living and decedents), an average of 8 years before death for decedents 326 
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(or last follow-up for living participants) (Fig 1B). Scatter plots of the three continuous 327 

AD-NC traits and an ROC plot of the binary pathologic AD illustrate the correlation 328 

between the inferred baseline versus the profiled AD-NC traits by autopsy (Fig S6). 329 

Although the correlations were lower than the inferred AD-NC traits at last visit before 330 

death (Fig S5), the following analyses with Cox models still demonstrated the 331 

predictivity of the inferred baseline AD-NC traits for predicting incident ADD.  332 

We employed separate Cox models that considered covariates age, sex, 333 

education, and each one of the four inferred baseline AD-NC traits to examine the 334 

predictivity for incident ADD (Fig 3). Coefficient estimates of the inferred baseline AD-335 

NC traits in these Cox models were provided along with the corresponding p-values in 336 

Table S9. All inferred baseline AD-NC traits were strongly associated with incident 337 

ADD, with p-values < 10−30 in Cox models predicting incident ADD for adults without 338 

dementia at baseline, and p-values < 10−5 in Cox models for predicting incident ADD 339 

from adults with NCI at baseline.   340 

For all four AD-NC traits, model performance was higher in Year 3 (AUC ranging 341 

in 0.861 – 0.919) versus Year 5 (AUC ranging in 0.842 – 0.896) from baseline (Fig 3, 342 

Upper Row), for predicting incident ADD for adults without dementia at baseline. Of the 343 

four AD-NC traits, inferred baseline probabilities of pathologic AD had the highest 344 

predictivity (AUC 0.919 in Year 3; AUC 0.896 in Year 5) for incident ADD from adults 345 

without dementia at baseline. Similar results were observed when we restricted the 346 

analyses to the prediction of incident ADD in individuals with NCI at baseline (Fig 3, 347 

Lower Row). 348 
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By selecting a risk score threshold corresponding the ~80% specificity, we 349 

calculated sensitivity and accuracy based on the prediction results for all of the Cox 350 

models (Table 1). Inferred baseline probabilities of pathologic AD also had the highest 351 

accuracy rates (80%) and sensitivity for predicting incident ADD in Year 3 (0.911) and 352 

Year 5 (0.829) from baseline (Table 1), compared to the other AD-NC traits.  353 

In further analyses, we examined if adding covariates of additional inferred 354 

baseline AD-NC traits in a single Cox model would improve the prediction accuracy for 355 

incident ADD. As shown in Fig S7 (Upper Row), we observed slightly improved AUC 356 

for prediction of incident ADD in adults without dementia, when we sequentially added 357 

each of the four AD-NC traits. Yet, modeling all four AD-NC traits together did not yield 358 

better results than using inferred probabilities of pathologic AD alone (Last Column of 359 

Fig3 versus Fig S7). 360 

Sequentially adding the inferred baseline levels of three continuous AD-NC traits 361 

(amyloid-𝛽, tangles, and global AD pathology) in a single Cox model did not improve the 362 

prediction of incident ADD for adults with baseline NCI (Fig S7, Lower Row). Although 363 

adding the inferred baseline levels of the probabilities of pathologic AD improved the 364 

prediction accuracy of incident ADD for adults with baseline NCI, but the prediction 365 

accuracy was comparable as using the inferred baseline levels of the probabilities of 366 

pathologic AD alone (Last Column of Fig3 versus Fig S7). 367 

 368 

Inferred Baseline AD-NC Traits Discriminated Postmortem Pathologic AD  369 

By examining if the inferred baseline AD-NC traits would discriminate 370 

postmortem pathologic AD diagnosis, we presented boxplots of the inferred baseline 371 
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AD-NC traits of ROS decedents with respect to their postmortem pathologic AD 372 

diagnosis by autopsy in Fig 4. By two-sample t-tests, we showed that all four inferred 373 

baseline AD-NC traits discriminated individuals with postmortem pathologic AD 374 

diagnosis by autopsy, with significant p-values < 1.4 x 10-10.  375 

 376 

DISCUSSION 377 

This study applied the machine learning GLM-EN methods to clinical 378 

measurements and postmortem indices of four AD-NC traits (amyloid-𝛽, tangles, global 379 

AD pathology, and pathologic AD) obtained from the same older adults to develop 380 

imputation models that could be used to infer levels of four AD-NC traits based on 381 

clinical measurements. We validated these imputation models of AD-NC traits in a 382 

second independent cohort of older adults that collected similar clinical and postmortem 383 

indices. We applied the validated imputation models to clinical measures obtained at 384 

study entry to infer baseline AD-NC traits in adults about an average of eight years 385 

before death (decedents) or their last follow-up visit (living participants).  386 

Adults without dementia at study entry who had higher baseline levels of inferred 387 

AD-NC traits had a higher risk of developing incident ADD during follow-up years and 388 

they also had a higher risk of having postmortem pathologic AD. These data suggest 389 

that inferred levels of AD-NC traits based on clinical measures may provide a low cost, 390 

non-invasive effective AD biomarker that can estimate the burden of AD-NC traits 391 

during the chronic course of Alzheimer’s disease. Inferred AD-NC traits may provide a 392 

way to monitor the clinical course of the accumulation of AD-NC traits underlying 393 

Alzheimer’s disease, improve the homogeneity of clinical trials and catalyze early 394 
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targeted treatments to prevent the development of ADD in aging adults. Further studies 395 

to validate longitudinal inferred AD-NC traits will be needed.  396 

 397 

Novelty of this Study 398 

 Currently AD-NC traits in brain can only be measured at autopsy. Recent work has 399 

focused on identifying effective AD biomarkers that can be used to assess levels of AD-400 

NC traits in living adults, especially during early stages of AD when cognition is still normal.  401 

There are many prior studies that have examined the associations of clinical measures, 402 

such as APOE E4 allele, age, and cognitive measures, with future cognitive status or with 403 

different AD/ADRD indices measured at autopsy including the postmortem diagnosis of 404 

pathologic AD. Yet, it is important to note that the aim of these prior studies was not to 405 

infer levels of the different AD-NC traits examined in this study, nor to test their 406 

effectiveness as AD biomarkers [52-56].  407 

Brain imaging studies of AD-NC traits have tried to employ serial imaging or CSF 408 

fluid biomarkers as proxies to obtain measures of AD-NC traits in brains to assess the 409 

accumulation of amyloid-𝛽 and tangles in early stages of Alzheimer’s disease [18-20]. 410 

Recent work that compared tau and amyloid PET brain imaging to AD indices measured 411 

at autopsy, suggests that current imaging may not reliably detect the early stages of AD 412 

pathology [21, 22]. Yet, the expense and limited availability of brain imaging and the 413 

invasiveness of obtaining CSF biomarkers make them difficult to be deployed at scale for 414 

the general population. This study fills this gap by employing machine learning methods 415 

that could be used to mathematically infer an AD-NC trait like “tangles” and estimate its 416 

burden at any time point prior to death in any adult with the requisite clinical measures.  417 
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 Obtaining structured autopsy and diverse clinical measures during annual follow-418 

ups, especially within a year prior of death, in large numbers of older adults is difficult. 419 

Thus, it is novel to have two large cohorts like MAP or ROS with the same clinical and 420 

postmortem indices of AD-NC traits that can be leveraged to develop imputation models 421 

in one cohort and validate these imputation models in a second independent sample of 422 

older adults. The rarity of these resources may explain in part the paucity of previous 423 

studies trying to infer AD-NC traits based on clinical measurements alone.  424 

Another novel feature of this study is that we provide evidence that inferred 425 

baseline AD-NC traits on average 8 years before death for decedents (or before last visit 426 

for living participants) may be used as effective AD biomarkers as they predicted incident 427 

ADD and discriminated postmortem pathologic AD. That is, this study provides novel data 428 

demonstrating the feasibility and effectiveness of developing imputation models to infer 429 

AD-NC traits from clinical measures alone.  430 

 431 

Implications and Future Directions  432 

This study is best conceptualized as an important first step highlighting that new 433 

machine learning analytic techniques can be used to infer AD-NC traits based on 434 

clinical measures collected in older adults.  Further studies are still needed to determine 435 

if repeated inferred levels of AD-NC traits inform on trajectories of the accumulation of 436 

these different AD-NC traits. Currently, the temporal course of accumulation of these 437 

different AD-NC traits and the onset of their associations with impaired cognition are 438 

unknown. Such data are crucial to determine if inferred AD-NC traits could be used to 439 

assess the ongoing clinical course of Alzheimer’s disease, and to assess the efficacy of 440 
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guiding treatments targeting specific AD-NC traits. For example, separate therapies 441 

have been under study for targeting the peptide amyloid-𝛽 in extracellular amyloid 442 

plaques and the protein tau in intracellular neurofibrillary tangles [7-9].  443 

The analytic approach implemented in this study might also be extended to infer 444 

the presence of other pathologies that are hard to measure in living adults and untangle 445 

the effects of mixed-brain pathologies underlying late-life cognitive impairment and 446 

dementia.  Since many older adults with ADD show mixed-brain pathologies [57], further 447 

work will be needed to develop analytic approaches that can infer and account for the 448 

presence of different combinations of varied AD/ADRD pathologies.  449 

Brain imaging as well as serum or fluid biomarkers were not examined in this 450 

study, which could be used to validate the inferred levels of AD-NC traits by using our 451 

developed imputation models. Additionally, the brain imaging and fluid biomarkers might 452 

be included as additional predictors to enhance the imputation accuracy of AD-NC 453 

traits, which could be crucial for untangling the relative contributions of mixed-brain 454 

pathologies driving ADD in aging adults.  455 

 456 

Limitations and Strengths of this Study 457 

This study still has several limitations. First, participants were predominantly 458 

Americans of European descent and have higher than average levels of education, so 459 

our findings will need to be replicated in more diverse populations. Second, the current 460 

study used diverse clinical predictors, many of that might not be available outside the 461 

research setting such as the composite cognition score based on 19 cognitive tests 462 

designed for ROS/MAP studies. Further work is needed to identify a parsimonious set of 463 
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clinical predictors that are more widely available to enhance the use of this approach in 464 

diverse populations and geographic locations. Despite these limitations, this study is 465 

best conceptualized as an important first step highlighting the potential of using machine 466 

learning methods to infer AD-NC traits or other AD/ADRD pathologies based on clinical 467 

measures that can be collected via remote phenotyping or electronic health records.  468 

Nonetheless, this study has several strengths that lend confidence for the current 469 

findings. All subjects were recruited from the community, underwent an annual detailed 470 

clinical evaluation, and were without dementia based on their clinical assessment at 471 

study entry. Large numbers of men and women underwent annual assessments, and 472 

follow-up rates were very high (~90%) with an average of 8 years follow up. Uniform 473 

and structured procedures were employed for the collection of clinical measures and 474 

postmortem AD-NC traits in both MAP and ROS cohorts. An important strength of the 475 

current study design is that we developed imputation models in MAP cohorts, and then 476 

evaluated model performance in the second independent ROS cohort that employed 477 

similar staff and data collection procedures [58].  478 

 479 

  480 
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Figure Legends 692 

Fig 1. Overall study design to develop and validate imputation models that infer 693 

AD-NC traits based on clinical measures in older adults. A multi-stage analytic 694 

approach was employed to develop, validate, and demonstrate the effectiveness of 695 

inferred levels of four AD-NC traits derived from clinical measures as AD biomarkers.  A. 696 

We trained imputation models for four AD-NC traits using clinical data obtained at the last 697 

visit before death in MAP decedents that underwent autopsy (Fig 2). Then we validated 698 

these models in an independent cohort study (ROS) that collected the same clinical and 699 

postmortem measures. B. We tested the effectiveness as AD biomarkers for the inferred 700 

levels of four AD-NC traits at baseline, which were obtained by applying the validated 701 

imputation models to clinical measures obtained at study entry. We examined if the 702 

inferred baseline AD-NC traits predicted incident ADD (Fig 3) and discriminated adults at 703 

risk for postmortem (on average 8 years after baseline) pathologic AD in ROS cohort (Fig 704 

4).  705 

Fig 2. Machine learning methods were used to select different combinations of 706 

clinical measures to infer each of the four AD-NC traits. GLM-EN method was used 707 

to train an imputation model for each of the four AD-NC traits. Standardized effect sizes 708 

(beta) of selected predictive predictors with |beta| > 0.01 for each of the four imputation 709 

models were plotted. The inferred values of each of the inferred AD-NC traits are 710 

determined by the weighted averages of the corresponding selected predictors, with 711 

weights given by estimated standard effect sizes. Although all four AD-NC traits are 712 

inter-related and share cognition and APOE E4 allele as important predictors, different 713 

sets of selected predictors by their imputation models highlight that different 714 

combinations of clinical measures with different effect sizes are necessary for inferring 715 

the unique features of these inter-related AD-NC traits.   716 

 717 

Fig 3. Inferred baseline AD-NC traits predicted incident Alzheimer’s Disease 718 

Dementia (ADD).  We used Cox proportional hazard models to examine the predictivity 719 

of each of the inferred baseline AD-NC traits along with age, sex, and education 720 

covariates for incident ADD in 3 and 5 years after study entry. Top four panels show the 721 

prediction accuracies (ROC plots) with each the four inferred baseline AD-NC traits in 722 

adults without dementia (NCI+MCI) at study entry. Bottom four panels show prediction 723 

accuracies with each of the four AD-NC traits in adults with NCI at study entry. As 724 

expected for an effective AD biomarker, each of the inferred baseline AD-NC traits 725 

predicted ADD.   726 

Fig 4. Inferred AD-NC traits at study baseline discriminated postmortem pathologic 727 

AD profiled at autopsy. Pathologic AD here is the binary postmortem NIA-Reagan status 728 

profiled at autopsy, with value 1 representing pathologic AD (teal boxplots) and 0 729 

representing no pathologic AD (red boxplots). Two-sample t-test p-values are 1.4 × 10−10 730 

for amyloid-β (A), 1.2 × 10−11 for tangles (B), 9.8 × 10−12 for global AD pathology (C), and 731 

1.6 × 10−10 for pathologic AD (D). 732 

 733 
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Table 1. Prediction accuracy (with 95% confidence interval) and sensitivity with 
respect to selected risk score thresholds that ensure ~80% specificity by Cox 
models using a single inferred AD-NC trait. Values in this table are reflecting the Cox 
risk model prediction performance at one point in the ROC curves as shown in Fig 3, 
with corresponding risk score thresholds. Samples with predicted risk scores greater 
than the selected threshold were considered as Predicted Positives (incident ADD), 
otherwise Predicted Negatives (not developing ADD).  

 
Amyloid-𝜷 Tangles  

Global AD 
Pathology  

Pathologic AD  

Y3 Y5 Y3 Y5 Y3 Y5 Y3 Y5 

NCI/MCI 
-> 
ADD 
 

Accuracya 
(95% CI) 

0.798 
(0.773, 
0.822) 

0.788 
(0.763, 
0.813) 

0.802 
(0.777, 
0.825) 

0.795 
(0.771, 
0.818) 

0.801 
(0.775, 
0.823) 

0.796 
(0.771, 
0.819) 

0.809 
(0.784, 
0.831) 

0.803 
(0.778, 
0.826) 

Sensitivityb 0.772 0.699 0.822 0.756 0.797 0.764 0.911 0.829 

Specificityc 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 

NCI ->  
ADD 
 

Accuracya 
(95% CI) 

0.796 
(0.768, 
0.823) 

0.792 
(0.763, 
0.7819) 

0.794 
(0.765, 
0.821) 

0.791 
(0.761, 
0.818) 

0.795 
(0.767, 
0.823) 

0.793 
(0.764, 
0.820) 

0.804 
(0.775, 
0.830) 

0.805 
(0.777, 
0.832) 

Sensitivityb 0.650 0.634 0.550 0.609 0.600 0.658 0.950 0.902 

Specificityc 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 

a. Accuracy= (# True Positive Predictions + # True Negative Predictions) / (# of test 
samples) 
b. Sensitivity = (# True Positive Predictions) / (# Positives in test samples) = True 
Positive Fraction 
c. Specificity = (# True Negative Predictions) / (# Negatives in test samples) = 1−False 
Positive Fraction 
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FIGURES 
 
Fig 1. Overall study design to develop and validate imputation models that infer AD-NC traits based on clinical measures in 
older adults. A multi-stage analytic approach was employed to develop, validate, and demonstrate the effectiveness of inferred levels of 
four AD-NC traits derived from clinical measures as AD biomarkers.  A. We trained imputation models for four AD-NC traits using clinical 
data obtained at the last visit before death in MAP decedents that underwent autopsy (Fig 2). Then we validated these models in an 
independent cohort study (ROS) that collected the same clinical and postmortem measures. B. We tested the effectiveness as AD 
biomarkers for the inferred levels of four AD-NC traits at baseline, which were obtained by applying the validated imputation models to 
clinical measures obtained at study entry. We examined if the inferred baseline AD-NC traits predicted incident ADD (Fig 3) and 
discriminated adults at risk for postmortem (on average 8 years after baseline) pathologic AD in ROS cohort (Fig 4).  
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Fig 2. Machine learning methods were used to select different combinations of clinical measures to infer each of the four AD-
NC traits. GLM-EN method was used to train an imputation model for each of the four AD-NC traits. Standardized effect sizes (beta) of 
selected predictive predictors with |beta| > 0.01 for each of the four imputation models were plotted. The inferred values of each of the 

inferred AD-NC traits are determined by the weighted averages of the corresponding selected predictors, with weights given by estimated 
standard effect sizes. Although all four AD-NC traits are inter-related and share cognition and APOE E4 allele as important predictors, 
different sets of selected predictors by their imputation models highlight that different combinations of clinical measures with different 
effect sizes are necessary for inferring the unique features of these inter-related AD-NC traits.   
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Fig 3. Inferred baseline AD-NC traits predicted incident Alzheimer’s Disease Dementia (ADD).  We used Cox proportional hazard 
models to examine the predictivity of each of the inferred baseline AD-NC traits along with age, sex, and education covariates for incident 
ADD in 3 and 5 years after study entry. Top four panels show the prediction accuracies (ROC plots) with each the four inferred baseline 
AD-NC traits in adults without dementia (NCI+MCI) at study entry. Bottom four panels show prediction accuracies with each of the four 
AD-NC traits in adults with NCI at study entry. As expected for an effective AD biomarker, each of the inferred baseline AD-NC traits 
predicted ADD.   
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Fig 4. Inferred AD-NC traits at study baseline discriminated postmortem pathologic AD profiled at autopsy. Pathologic AD here 
is the binary postmortem NIA-Reagan status profiled at autopsy, with value 1 representing pathologic AD (teal boxplots) and 0 
representing no pathologic AD (red boxplots). Two-sample t-test p-values are 1.4 × 10−10 for amyloid-β (A), 1.2 × 10−11 for tangles (B), 

9.8 × 10−12 for global AD pathology (C), and 1.6 × 10−10 for pathologic AD (D). 
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