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Abstract 10 

Evidence of the benefits of greenspaces or greenness to human wellbeing in the 11 

context of COVID-19 is fragmented and sometimes contradictory. This calls for a 12 

meta-analysis of existing studies to clarify the matter. Here, we identified 621 studies 13 

across the world, which were then filtered down to 13 relevant studies covering 14 

Africa, Asia, Europe, and USA. These studies were meta-analysed, with the impacts 15 

of greenspaces on COVID-19 infection rate quantified using regression estimates 16 

whereas impacts on mortality was measured using mortality rate ratios. We found 17 

evidence of significant negative correlations between greenness and both COVID-19 18 

infection and mortality rates. We further found that the impacts on COVID-19 19 

infection and mortality are moderated by year of publication, greenness metrics, 20 

sample size, health and political covariates. This clarification has far-reaching 21 

implications on policy development towards the establishment and management of 22 

green infrastructure for the benefits of human wellbeing. 23 
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Introduction 24 

Global human population is changing rapidly following an exponential growth path, 25 

putting tremendous pressures on natural resources. Currently, it is approximately 7.9 26 

billion people1 and is predicted to reach above 9 billion by 2050 or 11 billion by 27 

21002. In response, nature fights back in various ways to bring down global 28 

population to a sustainable level. One of these ways is through global pandemics, 29 

e.g., COVID-19. Indeed, the world has been witnessing COVID-19 pandemic since 30 

2020, with over half a million of infection cases and over 20,000 deaths in 20203. In 31 

2022, these figures grew tremendously, reaching over 600 million cumulative cases 32 

with over 6 million cumulative deaths4. Subsequently, various studies, using different 33 

metrics of greenness (the total amount of vegetation in an area), were conducted 34 

across the globe to investigate whether greenness act as buffer infrastructure 35 

against the spread of COVID-19 infection rates and severity. 36 

 37 

However, the findings reported in these studies are mixed5,6. For example, ref.7 38 

found that a 0.1 increase in NDVI is linked to 4.1% reduction in COVID-19 incidence 39 

rate ratio in the USA. A similar pattern was observed using street-level indicators of 40 

greenness8. The mitigating effects of greenness have also been reported elsewhere: 41 

in China and India, an increase in greenness shows a strong negative association 42 

with the spread of COVID-19 infections and mortalities9,10. These negative effects 43 

may be interpreted as follows: activities of the Natural Killer (NK) cells in human 44 

body are boosted with frequent exposure to vegetation3,11 – NK cells, as part of the 45 

immune system, attack to eliminate virus-infected cells12. Also, by safeguarding 46 

against air pollution, vegetation contributes to lower health risks that may aggravate 47 

the severity of COVID-19 infection13,14. Additionally, green infrastructure often 48 

provides spacious environment for physical exercise, recreation, and social events 49 

with reduced chances of person-to-person contact15,16. As opposed to these negative 50 

correlations between greenness and COVID-19 infection rates, reports of positive 51 

correlations are also documented. For example, ref.6 found that urban greenspaces 52 

were associated with an increase in the spread of COVID-19 infections (see also 53 

ref.15,16).  54 

 55 
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These mixed findings could be linked to the differences in how COVID-19 severity 56 

was measured, e.g., as hospitalization rates, mortality rates, admission rate to ICU, 57 

etc.  Additional sources of differences in findings may be linked to differences in 58 

sample size, type and number of covariates considered, and choice of statistical 59 

tests17,18. Furthermore, the mixed findings may be linked to differences in how 60 

greenness was measured in different studies. Indeed, greenness was variously 61 

measured as street trees, botanical gardens, natural forests and grasslands, and 62 

residential gardens or as amount of greenness captured in NDVI or EVI or as quality 63 

of green infrastructure7,8,19,20. For example, ref.15 measured greenness as ‘green 64 

space density’ which is the proportion of specific vegetation types in a given spatial 65 

unit which they correlated with COVI-19 infection risk measured as ‘venue density’ 66 

(number of buildings visited by confirmed COVID-19 positive cases). Since 67 

greenspaces are attraction sites, they attract increasing number of visitors, thus 68 

increasing the infection risks, and leading to a positive correlation between 69 

greenness and infection rate15. Furthermore, the mixed findings may be linked to the 70 

use of various confounding factors in the model of COVID-19 infection and mortality 71 

rates. These factors may be age21, ethnicity22, and poverty level23, among others. 72 

 73 

The emergence of conflicting findings presents a challenge with regards to the 74 

generalization of the benefits of greenness to human wellbeing in the context of 75 

COVID-19 pandemic. In such context, a meta-analysis of existing evidence presents 76 

an opportunity to integrate the conflicting reported effects of greenness on COVID-19 77 

infection rates and severity to investigate whether generalization is possible. 78 

Scientifically rigorous methodologies are increasingly adopted in various studies to 79 

improve the validity of findings and lower between-study heterogeneity. These 80 

include the use of larger sample sizes, use of multiple predictors, choice of relevant 81 

statistical tests and covariates, and use of fine spatial scales23-26. Regardless of 82 

these advances, consolidation of measured effect sizes and determination of 83 

between-study heterogeneity is still needed. To date, several studies have 84 

investigated the relationships between the provision and quantity of greenness and 85 

its effects on the spread and severity of COVID-195,7,10,20. However, in the context of 86 

conflictual findings reported, a meta-analysis imposes itself or becomes an obligation 87 

if we are to clarify how greenness or green infrastructure relates to COVID-19. In the 88 

present study, our main objective is to provide such clarifications. 89 
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Results 90 

Characteristics of studies included in the meta-analysis 91 

A total of 621 studies across the world (Figure 1A) were identified through the search 92 

of Scopus, PubMed, and Google scholar platforms. After removing irrelevant and 93 

duplicate studies, 25 studies remained, covering Africa, Asia, Europe, and USA 94 

(Figure 1B). A review of the 25 full-text articles resulted in a removal of 12 studies 95 

that were either review/commentary in nature or did not report the required statistical 96 

parameters for meta-analysis. 97 

 98 

The study characteristics are summarized in Table S1. Nine studies that tested the 99 

relationships between greenness and COVID-19 infections and four studies that 100 

investigated the relationships between greenness and COVID-19 mortality rates 101 

were included in the final synthesis. Most of the studies (nine out of 13) were 102 

conducted in the United States of America (USA) whereas China, England, India, 103 

and South Africa each had one study (Figure 1B). A total of 7 out of 13 studies used 104 

more than one predictor of COVID-19 impact in each study with normalised 105 

difference vegetation index (NDVI) and abundance of greenness as the mostly used 106 

measures of greenness (Figure 2A). Because multiple predictors are used in a single 107 

study, a total of 45 different correlations between infection rates and greenness were 108 

produced in all 13 studies and 14 correlations between mortality rates and 109 

greenness were produced from four studies of COVID-19. We classified covariates 110 

into five broad groups: climatic, demographic, economic, health, and political. All 13 111 

studies considered at least one demographic covariate in their analyses, and only 112 

four studies included climatic, demographic, economic, health, and political 113 

covariates (Figure 2B).  114 

 115 

Greenness and COVID-19 infections 116 

We found a statistically significant negative effect of greenness on COVID-19 117 

infections (β = -0.08, 95% CI: -0.1396 – -0.0252; t=-2.90; p=0.006) with a prediction 118 

interval of [-0.3601 – 0.1954] (95% CI) (Figure 3). Between-study heterogeneity 119 

variance was estimated at τ2= 0.0184 (95% CI: 0.0185 – -0.0813), with an I2 value of 120 

94.1% (95% CI: 92.9% – 95.1%). Subgroup analyses reveal that between-study 121 

heterogeneity can be attributed to year of publication (X2=8.24; p=0.02), choice of 122 
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predictors (X2=129.68; p<0.01), and use of political covariates (X2=8.27; p<0.01) 123 

(see Table 1 and Figures S1 – S6). 124 

 125 

Greenness and COVID-19 mortalities 126 

We found that an increase in greenness was strongly linked to lower mortality rate 127 

ratio (MRR= 0.9272; 95% CI: 0.8788 – 0.9783; t=-3.05; p=0.009) with a prediction 128 

interval of [0.7683 – 1.1189] (95% CI) (Figure 4). Furthermore, an estimated 0.0069 129 

between-study heterogeneity variance (95% CI: 0.0032 – 0.0228) was observed with 130 

an I2 value of 92% (95% CI: 88.3% – 94.5%). We also found that year of publication 131 

(X2=19.10; p<0.01), sample size (X2=7.92; p<0.01), choice of predictors (X2=14.92; 132 

p<0.01), and use of health (X2=7.92; p<0.01) and political (X2=22.75; p<0.01) 133 

covariates strongly impact the degree of heterogeneity (see Table 2 & Figures S7 – 134 

S13). 135 

 136 

Publication bias 137 

Existence of publication bias was investigated using the Funnel approach and Orwin 138 

fail-safe number. The presence of funnel plot symmetry (Figure 5A) indicated a lack 139 

of publication bias for studies that investigate the effect of greenness on COVID-19 140 

infections (Fail-safe N: 45). Publication bias was, however, observed for studies that 141 

test the relationship between greenness and COVID-19 mortalities (Figure 5B; Fail-142 

safe N: 14). 143 

 144 

 145 

Discussion 146 

Our meta-analysis provides evidence that an increase in abundance or exposure to 147 

greenness is associated with a significant reduction in COVID-19 infection rates and 148 

death cases10,19,27. However, we found high heterogeneity between the studies that 149 

were included in the meta-analysis. Subgroup analyses revealed that heterogeneity 150 

in studies on COVID-19 infections and mortality is strongly predicted by the studies’ 151 

years of publication, choices of predictors (metrics of greenness), and inclusion of 152 

political covariates. Additionally, sample size and consideration of health covariates 153 

strongly affect heterogeneity of studies on COVID-19 mortalities. 154 

 155 
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The sensitivity of effect size to year of publication can be attributed to availability of 156 

data to adequately model the impact of COVID-19. The spread of COVID-19 and 157 

increased global testing for COVID-19 infection accelerated overtime, thus allowing 158 

successive studies to have an increasingly larger data pool28,29. This may also 159 

impact sample sizes that are adopted in each study. As more regions produce more 160 

data on COVID-19 infections and mortality, their eligibility to be included in studies 161 

investigating the correlations between COVID-19 and greenness may enhance study 162 

designs. In our subgroup analysis, we found that studies that used smaller sample 163 

sizes (n<2000) are likely to report larger effect sizes compared to studies with larger 164 

sample sizes. Given the importance of selecting an appropriate sample size30, the 165 

need to define an appropriate sample size for investigating the health benefits of 166 

green infrastructure remains critical. 167 

 168 

The diversity of greenness metrics, ranging from street trees to large forests, 169 

presents a unique challenge while measuring their impacts. Commonly, studies that 170 

cover large study areas use vegetation indices such as NDVI or EVI which are 171 

retrieved from satellite imagery31-33. Since health benefits of greenness are usually 172 

felt closer to the greenness34,35, several studies consider local greenness such as 173 

household gardens36, street trees37,38, and local parks39,40 in their analysis. However, 174 

this approach is only feasible when focusing on smaller areas. In some cases, 175 

subjective measures of greenness were used41,42. Our findings in the present study 176 

suggest that the choice of greenness metrics adopted in different studies affects the 177 

its effect size. The use of NDVI, EVI or vegetation canopy size produces large effects 178 

of greenness against COVID-19 infections and mortalities. In contrast, studies that 179 

use proximity or visitation patterns are likely to report marginal effects. 180 

 181 

All studies in our meta-analysis have included demographic covariates, and 92% of 182 

studies included economic covariates. While modelling the effects of greenness, the 183 

inclusion of demographic variables such as population density and age structure, as 184 

well as economic indicators such as gross domestic product (GDP) and household 185 

income level as covariates have been largely adopted7,9,27,43. Furthermore, the use of 186 

health covariates featured in several studies5,19,26. However, consideration of political 187 

covariates in the modelling of greenness benefits to human wellbeing in the context 188 

of COVID-19 is only starting to emerge5,6. Political factors such as promulgation of 189 
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mobility restrictions15,44 and face-masks mandates45 have shown to be significant 190 

predictors of COVID-19 impacts, although their inclusion in studies linking greenness 191 

to COVID-19 infection and severity remains limited. We found that the use of political 192 

covariates significantly affects the effect size. Inclusion of political covariables 193 

resulted in a greater effect size in studies of COVID-19 mortality and in a smaller 194 

effect size in studies of COVID-19 infections. This may suggest that existing policies 195 

are more effective in reducing COVID-19 fatalities than curbing the spread of 196 

infections. 197 

 198 

Overall, meta-analysing studies from Africa, Asia, Europe, and USA, we found strong 199 

support for beneficial effects of greenness to human in the face of COVID-19 200 

infection and severity, suggesting that positive correlations reported in some studies 201 

between greenness vs. infection and mortality rates15,16 might simply imply that the 202 

greenness metrics used in those studies (e.g., green space density or accessibility to 203 

greenspaces) do not fully capture important facets of greenness. This calls for a 204 

need to homogenize greenness metrics in studies to come. There is also a need for 205 

homogenization of COVID-19 severity metrics since we could not include 206 

hospitalization rate in the present study as a measure of COVID-19 severity because 207 

very limited studies have investigated hospitalization rate. Lastly, our results showed 208 

high degree of between-study heterogeneity which can be explained by year of 209 

publication, sample size, and choice of predictor variables and covariates. However, 210 

evidence from existing studies show that green infrastructure moderates the impact 211 

of COVID-19 by reducing prevalence of infections and associated mortalities.  212 

 213 

Nevertheless, our findings have some far-reaching implications for the establishment 214 

and management of green infrastructure: greenspaces must be acknowledged as 215 

critical infrastructure that has substantial broader public health values, and as such, 216 

deserve enough fundings from governments worldwide, especially in the developing 217 

world. 218 

 219 

 220 

 221 

 222 

 223 
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Methods 224 

Study selection 225 

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses 226 

(PRIMSA) guidelines46 were followed to search for literature that focus on green 227 

infrastructure and its impact on COVID-19. All search results were reviewed for 228 

relevance based on their title and abstract to be considered for meta-analysis (Figure 229 

6). Furthermore, reference lists of all included articles were reviewed to identify 230 

studies that meet the inclusion criteria.  231 

 232 

Search strategy  233 

Literature search was limited to PubMed, Scopus, and Google Scholar. The following 234 

search string was used to search for literature on the 17th of April 2023: 235 

("Greenspace" or "green space" or "greenery" or "greenness" or "vegetation" or 236 

"trees" or “forest” or “grass” or “grassland”) and ("COVID-19" or "SARS-CoV-2" or 237 

"coronavirus" or “COVID”). We did not apply any restrictions on publication date in 238 

the search. 239 

 240 

Eligibility criteria 241 

Inclusion criteria for this study were as follow: (a) original research that investigates 242 

effects of green infrastructure on COVID-19 infections and related mortalities; (b) full-243 

text is available; (c) publication is in English; (d) required statistical parameters for 244 

meta-analysis are reported in the main article or supplementary files (i.e., regression 245 

estimates for predicting COVID-19 infections, and mortality rate ratios for predicting 246 

COVID-19 mortalities). Exclusion criteria were review or commentary articles, articles 247 

without required parameters, and articles not in English (see Figure 6). 248 

 249 

Data extraction and analysis 250 

A predetermined template was used to collect study characteristics which are 251 

surname of first author, year of publication, country of study, measure of green 252 

infrastructure, temporal extent of study, sample size, measure of COVID-19, effect 253 

type, effect size, standard error or confidence interval, and list of covariates.  All data 254 

analysed in this study are available as Supplemental Information (Appendix 1). 255 

 256 
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All analyses were conducted in R version 4.2.347 (see R script in Supplemental 257 

Information). Two separate meta-analyses were conducted, focusing on impacts of 258 

greenness on COVID-19 infections (meta-analysis 1) and COVID-19 mortalities 259 

(meta-analysis 2). Regression estimates were used as pre-calculated effect type 260 

when analysing COVID-19 infections, and mortality rate ratios (MRR) were used as 261 

pre-calculated effect type when analysing COVID-19 mortalities. Subsequently, 262 

subgroup analyses were applied to the same data to test the effects of predictor 263 

variables, sample size, and selection of covariates. Random models were selected in 264 

each analysis using metagen function found in the “Metafor” R library48. 265 

 266 

Outcomes are reported as pooled regression estimates for COVID-19 infections and 267 

as pooled MRR for COVID-19 deaths. Furthermore, in each case, a 95% confidence 268 

interval (CI), t-value, and p-values are reported with p<0.005 considered as an 269 

indicator of statistical significance. Between-studies heterogeneity was quantified 270 

using Higgins & Thompson’s I2 statistic49 with the I2 value of less than 25%, 50% and 271 

75% indicating low, moderate, or high heterogeneity, respectively. Heterogeneity 272 

variance and prediction interval were also reported to measure the extent of 273 

between-study heterogeneity. Publication bias was tested using the Funnel 274 

approach50 (Sterne & Egger 2001) and the Orwin’s fail-safe number51. 275 
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Table 1: Stratified analyses of pooled estimate of COVID-19 infections and green 497 

infrastructure. 498 

Stratified analysis 
Number 

of 
results 

Pooled estimate  
[95% CI] 

Subgroup difference 
X2, df (p-value) 

Study year 45 −0.08 [−0.14; −0.03] 8.24, df = 2 (p = 0.02)  
2021 15 −0.07 [−0.15; 0.01]  
2022 20 −0.02 [−0.06; 0.02]  
2023 10 −0.32 [−0.57; −0.07]  

Sample size 45 −0.08 [−0.14; −0.03] 0.01, df = 1 (p = 0.91) 
Small (n<2000) 19 −0.09 [−0.16; −0.02]  
Large (n≥2000) 26 −0.08 [−0.18; 0.02]  

Predictor 45 −0.08 [−0.14; −0.03] 129.68, df = 4 (p < 0.01) 
Abundance 25 −0.06 [−0.12; −0.00]  
NDVI/EVI 11 −0.24 [−0.55; 0.07]  
Canopy 3 −0.44 [−0.62; −0.27]  

Visitation 5 0.01 [ 0.00; 0.01]  
Proximity 1 −0.02 [−0.08; 0.04]  

Covariates: demographic 45 −0.08 [−0.14; −0.03] NA 
With demographic covariates 45 −0.08 [−0.14; −0.03]  

Without demographic covariates 0   
Covariates: health 45 −0.08 [−0.14; −0.03] 1.35, df = 1 (p = 0.25) 

With health covariates 37 −0.06 [−0.11; 0.00]  
Without health covariates 8 −0.13 [−0.28; 0.01]  

Covariates: economic 45 −0.08 [−0.14; −0.03] NA 
With economic covariates 45 −0.08 [−0.14; −0.03]  

Without economic covariates 0   
Covariates: climatic 45 −0.08 [−0.14; −0.03] 0.35, df = 1 (p = 0.56) 

With climatic covariates 19 −0.12 [−0.27; 0.03]  
Without climatic covariates 26 −0.08 [−0.14; −0.02]  

Covariates: political 45 −0.08 [−0.14; −0.03] 8.27, df = 1 (p < 0.01) 
With political covariates 14 −0.01 [−0.04; 0.01]  

Without political covariates 31 −0.15 [−0.24; −0.05]  
*NDVI=Normalised Difference Vegetation Index; EVI= Enhanced Vegetation Index 499 
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Table 2: Stratified analyses of pooled mortality rate ratio of COVID-19 deaths. 512 

Stratified analysis 
Number 

of 
results 

Pooled mortality rate 
ratio 

[95% CI] 

Subgroup difference 
X2, df (p-value) 

Year of publication 14 0.93 [0.88; 0.98] 19.10, df = 2 (p< 0.01) 
2021 4 0.90 [0.78; 1.03]  
2022 6 0.99 [0.96; 1.02]  
2023 4 0.83 [0.73; 0.96]  

Sample size 14 0.93 [0.88; 0.98] 7.92, df = 1 (p< 0.01) 
Small (n<2000) 4 0.83 [0.73; 0.96]  
Large (n≥2000) 10 0.96 [0.91; 1.01]  

Predictor 14 0.93 [0.88; 0.98] 14.92, df = 2 (p< 0.01) 
Canopy 3 0.87 [0.72; 1.05]  

NDVI/EVI 5 0.87 [0.76; 0.99]  
Abundance 6 0.99 [0.96; 1.02]  

Covariates: demographic 14 0.93 [0.88; 0.98] NA 
With demographic covariates 14 0.93 [0.88; 0.98]  

Without demographic covariates 0   
Covariates: health 14 0.93 [0.88; 0.98] 7.92, df = 1 (p< 0.01) 

With health covariates 10 0.96 [0.91; 1.01]  
Without health covariates 4 0.83 [0.73; 0.96]  

Covariates: economic 14 0.93 [0.88; 0.98] 2.60, df = 1 (p= 0.11) 
With economic covariates 11 0.95 [0.89; 1.01]  

Without economic covariates 3 0.87 [0.72; 1.05]  
Covariates: climatic 14 0.93 [0.88; 0.98] 2.60, df = 1 (P = 0.11) 

With climatic covariates 11 0.95 [0.89; 1.01]  
Without climatic covariates 3 0.87 [0.72; 1.05]  

Covariates: political 14 0.93 [0.88; 0.98] 22.75, df = 1 (p< 0.01) 
With political covariates 7 0.85 [0.80; 0.92]  

Without political covariates 7 0.99 [0.97; 1.01]  
*NDVI=Normalised Difference Vegetation Index; EVI= Enhanced Vegetation Index 513 
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FIGURE CAPTIONS 526 

Figure 1. Geography of studies investigating the effects of greenness on COVID-19 527 

infection and mortality rates. (A) Geographical distribution of 621 studies that were 528 

retrieved through the search of Scopus, PubMed, and Google scholar; (B) 529 

Geographical distribution of studies from our search that focus specifically on the 530 

effects of greenness on COVID-19 infections and severity. 531 

Figure 2. Venn diagram showing the shared factors used in multiple studies that 532 

investigate the effects of greenness on COVID-19 infection and mortality rates. A) 533 

different metrics of greenness; B) socio-environmental and economic co-variates 534 

used those studies. 535 

Figure 3. Forest plot of the relationship between greenness and COVID-19 536 

infections. 537 

Figure 4. Forest plot of the relationship between greenness and COVID-19 538 

mortalities. 539 

Figure 5. Funnel plot to test for publication bias in studies on A) COVID-19 540 

infections, and B) on COVID-19 mortality. 541 

Figure 6. PRISMA low diagram for literature search and screening.  542 
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SUPPLEMENTAL INFORMATION 543 

TABLES 544 

Table S1. Characteristics of all studies included in the present meta-analysis. 545 

 546 

Figures S1-S6. Subgroup analyses of between-study heterogeneity can be 547 

attributed to year of publication (X2=8.24; p=0.02), choice of predictors (X2=129.68; 548 

p<0.01), and use of political covariates (X2=8.27; p<0.01). 549 

 550 

Figures S7-S13. Between-study heterogeneity of variance showing that year of 551 

publication (X2=19.10; p<0.01), sample size (X2=7.92; p<0.01), choice of predictors 552 

(X2=14.92; p<0.01), and use of health (X2=7.92; p<0.01) and political (X2=22.75; 553 

p<0.01) covariates strongly impact the degree of heterogeneity. 554 

 555 

Appendices 556 

Appendix 1. Data collected and analysed in this study. 557 

Appendix 2. R script used to reproduce the present study. 558 
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3.0%
2.5%
2.4%
2.7%
2.5%
2.7%
2.5%
2.9%
2.9%
3.0%
3.0%
3.0%
3.0%
3.0%

IV, Random, 95% CI

−0.08 [−0.14; −0.03]
[−0.36;  0.20]

0.31 [−0.16;  0.78]
0.46 [ 0.05;  0.87]
0.03 [−0.60;  0.66]

−0.43 [−0.70; −0.16]
−0.50 [−0.75; −0.25]
−0.35 [−0.70;  0.00]
−0.06 [−0.07; −0.05]

0.02 [ 0.00;  0.04]
0.02 [ 0.00;  0.03]

−0.02 [−0.03; −0.01]
0.02 [ 0.00;  0.03]
0.06 [ 0.04;  0.07]

−0.06 [−0.08; −0.04]
−0.09 [−0.10; −0.07]
0.11 [−0.01;  0.03]
0.00 [−0.02;  0.02]

−0.06 [−0.07; −0.04]
0.03 [ 0.01;  0.05]
0.02 [ 0.00;  0.04]

−1.13 [−1.78; −0.49]
−0.69 [−1.30; −0.08]
−0.87 [−1.59; −0.14]
−0.80 [−1.53; −0.07]
−0.31 [−0.56; −0.07]
−0.31 [−0.53; −0.09]
−0.32 [−0.56; −0.07]
−0.42 [−0.62; −0.22]
−0.12 [−0.30;  0.06]
0.01 [−0.23;  0.25]
0.01 [−0.18;  0.19]

−0.09 [−0.30;  0.13]
−0.08 [−0.11; −0.06]
−0.27 [−0.39; −0.16]
−0.27 [−0.39; −0.14]
−0.02 [−0.11;  0.08]
−0.27 [−0.39; −0.16]

0.14 [ 0.05;  0.23]
−0.34 [−0.46; −0.22]
−0.06 [−0.10; −0.02]
−0.02 [−0.08;  0.04]
0.00 [ 0.00;  0.01]
0.00 [ 0.00;  0.01]
0.01 [ 0.00;  0.01]
0.01 [ 0.00;  0.01]
0.01 [ 0.00;  0.01]

Estimate (ß)

−1.5 −1 −0.5 0 0.5 1 1.5

Estimate (ß)
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Study

Total (95% CI)
Prediction interval
Heterogeneity: Tau2 = 0.0069; Chi2 = 163.02, df = 13 (P < 0.01); I2 = 92%

klompmaker
russette
russette
russette
sikarwar
sikarwar
sikarwar
sikarwar
yang
yang
yang
yang
yang
yang

logIRR

−0.0269
−0.0862
−0.1079
−0.2291
−0.0737
−0.1701
−0.2147
−0.2765

0.0069
−0.0132

0.0103
0.0245

−0.0353
−0.0419

SE

0.0083
0.0284
0.0298
0.0357
0.0573
0.0604
0.0613
0.0636
0.0065
0.0008
0.0039
0.0232
0.0083
0.0071

Weight

100.0%

8.2%
7.4%
7.3%
7.0%
5.6%
5.4%
5.3%
5.2%
8.2%
8.2%
8.2%
7.6%
8.2%
8.2%

IV, Random, 95% CI

0.93 [0.88; 0.98]
[0.77; 1.12]

0.97 [0.96; 0.99]
0.92 [0.87; 0.97]
0.90 [0.85; 0.95]
0.80 [0.74; 0.85]
0.93 [0.83; 1.04]
0.84 [0.75; 0.95]
0.81 [0.71; 0.91]
0.76 [0.67; 0.86]
1.01 [0.99; 1.02]
0.99 [0.99; 1.00]
1.01 [1.01; 1.03]
1.02 [0.95; 1.04]
0.97 [0.95; 0.98]
0.96 [0.95; 0.97]

Incidence Rate Ratio

0.8 1 1.25

Incidence Rate Ratio
IV, Random, 95% CI
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Records Identified by searching electronic 

databases: n = 621 

PubMed: n = 155; Scopus: n = 457;  

Google Scholar: n = 5; Other: n = 4 

Records excluded based on 

title and abstract:  n = 571 

 
Full-text articles 

Reviewed: n = 43 

Full-text articles reviewed 

for eligibility: n = 25 

Not relevant: n = 5 

Required parameters not 

reported: N = 7 

Duplicates excluded: n = 18 

Articles included in the 

synthesis: n = 13 

COVID-19 

infections: n = 9 

COVID-19 

mortality: n = 4 
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