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Abstract 

 
We compared the accuracy of the machine learning classifier algorithms: 

Random Forest, Naïve Bayes, Decision Tree, and Artificial Neural Network to 

predict zoonoses using the Random Forest extracted features and the serology data 

for seven different zoonotic diseases as the targets. We identified Random Forest 

and Naïve Bayes as having the best performance overall. The Random Forest 

models above did well using Positive Predictive Value (PPV), Area Under the Curve 

(AOC) and Receiver Operating Characteristic (ROC) performance measures in 

identifying the positive cases for each of the diseases which is imperative when it 

comes to being able to identify the disease and then use this information to 

implement prevention and medical aid to specific areas and people where it is most 

needed. It also does well in predicting the negative values which is important to 

ensure the negatives are not false negatives.  

Naïve Bayes was found to be the best choice for accuracy and performance. 

NB works well because it treats each feature as independent and thus, any change 

in one feature will not affect the other in the NB model. Decision Tree could not 

capture the data and thus, underfit during the first initial modeling and after hyper 

tuning. Artificial Neural Network overfit the model by capturing all the data 

including noise in the initial model, but underfit after hyper tuning. Both Decision 

Tree and Artificial Neural Network classifier algorithms are not recommended as 

classifiers for this dataset. 
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1. Introduction 

KAP studies have mainly used regression models to study the relationships between 

zoonoses and social attitudes. For example, Kiffner et al. (2019) use linear mixed 

models to study the relationships between anthrax rates and human attitudes and 

practices in Tanzania. In their study of rabies in Bhutan, Rinchen et al. (2019) use 

multivariable logistic regression to estimate positivity rates. Saylors et al. (2021) 

similarly used multivariable logistic regression to study zoonoses and wildlife 

practices trade in Cameroon. Head et al. (2020) used logistic regression to examine 

zoonotic risk factors via serology and practices and beliefs related to Crimean-Congo 

Hemorrhagic Fever in Kazakhstan. However, the major limitations to these studies 

that use linear and logistic regression for statistical inference modeling is that they 

assume a linear relationship between the dependent variable and the independent 

variables (Lantz, 2019). In complex real-life situations relating to infectious 

diseases including causes, effects, and transmission, the relationship between the 

dependent variable and independent variables might be non-linear and not an 

oversimplified linear or logistic regression model. Another limitation for linear and 

logistic regression is that the independent variables (features in machine learning) 

must be known ahead of time and tested and then retested to ensure the model 

works. Additionally, statistical inference models usually use conservative analysis 

strategies, but methods in machine learning are more flexible (Yoo et al., 2012).  

Lastly, while statistical inference models build hypothesis and then use collected 
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data to test the hypothesis, machine learning can explore hidden patterns from 

collected data without a hypothesis. 

Machine learning algorithms can replace both linear and logistic regression 

for both regression and classification problems for complex, real-life problems such 

as disease prediction and features do not need to be known ahead of time and then 

retested to ensure the best fitting model. For example, RF has been used 

successfully in disease prediction when it comes to identifying important features. 

 Velusamy & Ramasamy, (2021) used the Random Forest (RF) algorithm 

successfully to select important features for their combined K-Nearest Neighbor, 

RF, Support Vector Machine (SVM) algorithm classifiers to predict coronary heart 

disease using the Z-Alizadeh Sani medical dataset.  They found that a Boruta based 

RF algorithm combined with a SVM feature extraction was the best combination 

that had the best predictive results. Zhao et al. (2020) were also able to successfully 

incorporate RF as a dengue forecasting tool in their Colombia research. Yadav & 

Pal (2020) also use RF to identify the most important features that predict heart 

disease. They found their RF to be 99% accurate. Alam et al. (2019) found that RF 

was highly accurate predicting different diseases from 10 different disease datasets 

(breast cancer, diabetes, bupa, hepatitis, heart-statlog [heart disease], SpectF [heart 

disease], SaHeart [heart disease], PlanningRelax [EEG tests for stress], Parkinsons, 

and hepatocellular carcinoma).  

In their study predicting cancer, Uddin et al. (2019), found that RF, Naïve 

Bayes (NB), Decision Tree (DT), and Artificial Neural Network (ANN) were highly 
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accurate machine learning classifiers using sensitivity, specificity, and ROC/AUC 

rates. Alshereff et al. (2019) found that RF, DT, and ANN were highly accurate in 

predicting blood diseases. Fatima & Pasha (2017) similarly found that DT and ANN 

were able to highly predict dengue disease.  

Although, these studies show how these machine learning models can be 

accurate, some machine models can overfit (good performance on training data, but 

poor generalization to test and other data) or underfit (poor performance on training 

data and poor performance on generalizing to test and other data) the data. In these 

instances, hyper tuning of parameters is necessary to ensure the model is accurate 

(Lantz, 2019). 

The objective of this study is to compare machine learning classifiers and 

then see which one works best to predict zoonotic diseases from the KAP survey and 

serological data. Because of its high prediction rates, we used RF feature extraction 

to determine the most important features in the KAP survey. These features were 

used in the RF, NB, DT, and ANN classifiers to compare their predictive results 

regarding the KAP survey and the blood virus antibody tests since these classifiers 

have been shown to be predictive in other health fields. 

Some specific advantages to RF include: a. it reduces overfitting that usually 

occurs in DT and improve accuracy, b. it works well with both continuous and 

categorical variables, c. takes into account non-linear effects, d. normalizing data is 

unnecessary because of its rule-based approach, and e. it can identify important 

features (Lantz, 2019). The major disadvantage of RF is that it requires lots of 
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computational power to create numerous trees before providing the specific output. 

Some advantages to using NB include: a. the algorithm works quickly and saves 

time and b. since is assumes all features are independent, it performs better than 

other models and requires less training data. Some disadvantages using NB are: a. 

the assumption of all features being independent does not happen frequently in real 

life and b. its estimations can be wrong sometimes (Lantz, 2019). Some advantages 

to using DT include: a. requires less effort for data preparation, b. normalization 

and scaling of the data are not required, c. its rule-based techniques are very easy to 

explain and interpret. Some disadvantages to using DT include: a. small change in 

the data can cause instability when creating trees and b. it takes time to train the 

model (Lantz, 2019). The advantages to using NN include: a. can be used for 

complex, non-linear problems, b. it can overfit, and c. a failure in some of its nodes 

does not prevent it from producing an output. Its disadvantages can include: a. its 

“black box” design can prevent interpretability of results and b. appropriate 

network structure is achieved by trial and error which is time consuming (Lantz, 

2019).   

Infectious disease modeling is essential for understanding and testing 

different public health strategies to prevent future epidemic outbreaks (Dattner & 

Huppert, 2018). Unlike KAP studies that use either linear or logistic regression for 

inference, or to determine the relationship between variables in their studies of 

infectious disease (Funk & King, 2020), this study uses machine learning prediction 

techniques to predict positive and negative cases and to determine which features 
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are the most important that might cause positive cases. There are recent examples 

where machine learning methods to predict infectious diseases were successful. For 

example, Han et al. (2015) used machine learning techniques to identify reservoir 

status with high accuracy and predicted new hyperreservoir (harboring 2 or more 

zoonotic pathogens). Colubri et al. (2016) created a machine learning model to 

predict clinical outcomes in patients seropositive with Ebolavirus during the 2013-

2016 West African epidemic. 

2. Material and Methods 

The KAP dataset initially included 1656 instances (participants) and 375 features of 

combined survey and serology data. Questions that were mostly left blank were 

deleted from the dataset which included many participants that did not answer 

most questions. This left 896 instances and 105 features (Table 2.1). Seropositivity 

cutoffs were developed using 3-fold change above the arithmetic mean of the mock-

adjusted scaled MFI data (shown as the solid straight line in the figure below) as 

well as fitted to a log-normal model (shown by dashed lines below) (Colubri et al., 

2016) (Figure 2.1). Viruses that exceeded the highest threshold, the 3-fold change 

above the arithmetic mean was considered seropositive (MENV, BOMBV, EBOV, 

BDBV, TAFV, SUDV, RAVV, LLOV, MLAV, MOJV, HEV, CEDV, and GHV).  
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Table 2.1 Feature Counts Used for Random Forests Classifier and Feature  
Extraction 

 

Panel A : Individual Characteristics 
 

Panel B : Household  Characteristics 
Demographic Characteristics Counts 

  Village Household size  Count 
Kampankhou:     115 

 
0-15 286 

Baydamram: 107 
 

16-30 230 
PrekTadol: 82 

 
31-45         147 

Chrokhley: 80 
 

46-60 134 
Preksbov: 72 

 
61-up 54 

Pou Andet: 67 
   Other: 373 
 

Panel C:  Wildlife Pets Ownership 
Gender Pets Ownership Count 

Female 581 
 

Total number of livestock owned 705 
Male 315 

 
Total number of dogs owned 195 

Age Total number of chickens owned 156 
18-20 88 

 
Total number of pigs owned 22 

20-39 260 
 

Total number of cattle owned 108 
40-59 457 

 
Total number of ducks owned 42 

>60 91 
 

Total number of cats owned 148 
Marital Status 

  Divorced 76 
 

Panel D: Individuals Wildlife Details 
Married 680 

 
1. Wildlife Contact and Type Count 

Never Married 140 
 

Has had wildlife contact 832 
Ethinicity Type of wildlife contact: Insects 896 

Cambodian 891 
 

2. How much are you willing to spend on 
wildlife dish? Count 

Other 5 
 

A little more expensive than normal dish 184 

Religion It should be same as normal dish 708 
Buddhism 892 

 
No more than twice as much 4 

Christian 1 
 

3. Where do you eat wildlife?  Count 
Islamic 3 

 
Cook them at home 896 

Education Level 4. How cooked do you eat wildlife? Count 
Primary 465 

 
Depends on menu               5 

Secondary 237 
 

Dry               1 
Bachelor 4 

 
Fresh/rare               1 

>Bachelor 1 
 

Half cooked/Under cooked                3 
Occupation Thoroughly cooked               886 

Agriculture 669 
 

5. What do you do with disposed wildlife parts? Counts 
Business 43 

 
Give it to pets cooked/uncooked 257 

Government 15 
 

Bury/burn it thoroughly 155 
Private Sector 3 

 
Put it in bag separate from other trash  44 

Other 44 
 

Together with other trash as usual 433 
Unemployed 122 

 
Other  7 

Monthly Income (Cambodian Riels) 
  <500 895 

   501-1000    1 
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Table 2.1 Continued:  
6. Have you had wildlife training? Panel F. Knowledge about wildlife  
Yes 3 

 
Knowledge Counts 

No 893   True False 

  
 

1. Do you think wildlife is harmful to 
domestic/native animals? 

92 804 

7. Specific types of wildlife you have contact 
with at work 

2. Do you think wildlife is harmful to 
livestock?  

106 789 

Any wildlife accidents? 
3. Do you think wildlife trading is 

harmful to the environment? 

144 752 

Yes 59 
 

4. Do you think wildlife trading is 
harmful to species endangerment?  

138 758 

No 837 
 

5. Do you think consuming wildlife is 
safe? 

699 197  

8. Do you wear wildlife protection? 
6. Do you think keeping wildlife as pet 

is harmful is always safe?  
749 147 

Yes 9 
 

7. Do you think wildlife have no 

harmful diseases? 

661 235 

No 887 
 

8. Do you think you can get ill from 
wildlife contact?  

185 711 

9. Have friends and family become ill because of 
wildlife contact? 

9. Do you think all wildlife animals 

should be conserved? 

61 835 

Yes 18 
   No 742 
 

Panel G: Individuals Work Experience 
Prefer not to say 136 

 
How long at work?  Count 

10. Do you think wildlife can transmit diseases 
to humans? Less than a year 31 
Yes 644 

 
1 year 188 

No 68 
 

1-5 years 537 
Not Sure 184 

 
5-10 years 68 

Panel E. Attitudes towards wildlife More than 10 years 72 
Attitudes Counts 

   TA TNA Neutr.    
1. Concerning wildlife as 

medicine 
73 508 314 

   2. Concerning keeping 
wildlife as pets 

155 481 260 

   3. Concerning buying 
wildlife souvenirs 

42 658 196 

   4. Concerning trading 
wildlife 

25 706 165 

   5. Concerning catching 
wildlife 

37 648 211 

   6. Concerning releasing    
wildlife back into the 
wild 

723 68 105 

    

� TA : Totally Acceptable, TNA: Totally Not Acceptable, Neutr.: Neutral 
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Figure 2.1 MFI Cutoffs 

 

 

Analyses for this study was done in R, version 4.1.0 (R Core Team, 2020). 

MFI 3 times above the arithmetic mean cutoffs are designated by a solid horizontal 

line (Figure 2.1). A dashed line indicates the log-normal cutoff. The 3 times the 

mean arithmetic cutoff was the highest positivity threshold used for this study. 

Survey answers had a range of missing values between 0% to 95%. Missing values 

accounted for 9.81% of the data and these were all replaced with imputation. 

Missing imputation (MI) can reduce bias and improve efficiency for analysis of 
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Missing at Random (MAR) data at any proportion of missingness (Madley-Dowd et 

al., 2019). missForest was used as an imputation-based method on the Random 

Forests (Stekhoven & Bühlmann, 2012). It uses iterative imputation by training an 

RF in observed values followed by predicting the missing values and then 

proceeding iteratively. It works well with both continuous and categorical data, and 

it takes into account non-linear effects (Stekhoven & Bühlmann, 2012). missForest 

iterated for a total of 9 times and replaced the missing values.  

Data that show 0% to 4.7% positivity disease rates are difficult when creating 

training and testing for classifiers assume that the test data is from the same 

distribution as the training data (Khalilia et al., 2011). For this study, only diseases 

that had at least 4.7% positive cases or more were used to ensure the RF models 

had sufficient data to process (Table 2.2). 

 
Table 2.2  Specific Positive and Negative Counts of Zoonotic Diseases Used in Random 
Forests Analysis 
No. Virus/Isolate Host/Country/Year/Strain Abbreviation  Counts 
      Negative Positive 

1 Menangle virus/S. domesticus/AUS/2001 MENV 847 49 

2 
 

BOMBV 854 42 Bombali ebolavirus/M. 
condylurus/SLE/2016/Predict_SLAB000156 

3 
 

EBOV 853 43 Zaire ebolavirus/H.sapiens/COD/1976/ Yambuku-
Mayina  

     

4 Bundibugyo ebolavirus/H. sapiens/UGA/2007 BDBV 851 45 

5  SUDV 850 46 
Sudan ebolavirus/H. sapiens/UGA/2000/Gulu-808892 

6 
 

MOJV 851 45 Mojiang henipavirus/R. 
sladeni/CHN/2014/Tongguan1 

7  GHV 849 47 
Ghanaian bat henipavirus/E. helvum/GHA/2009/GH-
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M47a 

 
 The data was divided into a training set and validation set. This is done so 

that the model could be evaluated on samples that were not used to build or fine-

tune the model, so that they provide an unbiased sense of model effectiveness. For 

this study, 70% of the data set was used for training while 30% was used to test and 

validate the model.  

The synthetic minority over-sampling technique (SMOTE) (Chawla et al., 

2002) was used to balance positivity and negativity since positivity rates were low. 

The smote function in R was used to do the over-sampling. It is a data sampling 

procedure that uses both up-sampling and down-sampling, (Kuhn & Johnson, 2016). 

It creates “synthetic” examples instead of over-sampling with replacement (Chawla 

et al., 2002). The minority class is over-sampled by taking each minority class 

sample and introducing synthetic examples along the line segments joining any 

and/or all of the k minority class nearest neighbors. Neighbors from the k nearest 

neighbors are randomly chosen. This was done after the train/test splitting of the 

data. The perc.over function within smote was set to “100” to keep a 1 to 1 

proportion to balance the “negative” and “positive” classes. It uses over-sampling to 

create the number of extra cases needed from the minority class to balance both 

classes. 1000 trees were used because the linear combination of many independent 

learners reduces the variance of the overall ensemble relative to any individual 

learner in the ensemble.  
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The most important measures for classifying disease are accuracy, 

sensitivity, specificity, positive predictive values, negative predictive values, ROC, 

and AUC (Trevethan, 2017; Lantz, 2019). Accuracy specifically measures how often 

the model trained is correct, which is depicted by using the confusion matrix (Chen 

et al., 2020). Sensitivity measures the proportion of positive examples that were 

correctly classified (Lantz, 2019). Specificity measures the proportion of negative 

examples that were correctly classified. The positive predictive value is the 

proportion of positive examples that are truly positive. The negative predictive 

value is the proportion of negative examples that are truly negative. The ROC is 

commonly used to examine the tradeoff between the detection of true positives 

while avoiding the false positives. The AUC treats the ROC diagram as a two-

dimensional square and measures the total area under the ROC curve. AUC scores 

are interpreted by the following: Outstanding=0.9 to 1.0, Excellent/Good=0.8 to 0.9, 

Acceptable/Fair=0.7 to 0.8, Poor=0.6 to 0.7, and No Discrimination=0.5 to 0.6. Below 

is a table (Table 3) showing the above RF performance measures.  

The features (Figures 2.2) that were extracted from the RF models, were the 

permutation runs which permutes values of the outcome, which leaves correlation 

patterns between predictor variables untouched (Degenhardt et al., 2019). 

Permutation feature importance were used instead of mean decrease in gini index 

feature importances because these can be biased (Degenhardt et al., 2019).  

Before running the NB classifier, the data needs to be standardized so that 

the data are similar and so that the classifier can run properly (Géron, 2017). To 
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standardize all the values, the preprocessing function, scale, and center were used 

to ensure all values were similar. 

These functions are all part of the caret package created by Max Kuhn 

(2008). Scale divides the values by the standard deviation so that the dataset 

minimum is 0 and maximum is 1. Center was also used to subtract the mean from 

the values to scale the data to 0. 

 For the DT, scaling and centering were also done prior to the analysis using 

the caret package. The specific DT algorithm using the caret function was the C5.0 

algorithm. The C5.0 algorithm was used because it is the standard DT algorithm to 

use that works well across all types of data (Lantz, 2019). ANN was centered and 

scaled. The caret package in R was used to develop the ANN using the nnet function 

without any tuning. Nnet is a simple feed-forward ANN that uses a simple input 

layer, one hidden layer, and output layer. 

 All the algorithms above except RF were 10-fold cross validated. The out-of-

bag error in RF is similar to cross validation especially if the classes are balanced 

(Janitza & Hornung, 2018). 
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Figure 2.2 Random Forest Feature Importances For Each Disease

 

3. Results 

The RF model was able to accurately predict the proportion of true positives and 

true negatives divided by the total number of predictions via the accuracy score 

(Table 3.1). The lowest accuracy score is the RF model for MOJV (0.94). In positive 

disease classification, an important metric is sensitivity or the true positive rate. RF 
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sensitivity scores for MENVV (0.67), BOMBV (0.57), EBOV (0.77), BDBV (0.64), 

SUDV (0.71), and GHV (0.67) were above 57%, but the MOJV, however, was 0.00. 

 

Table 3.1  RF Classification Tree Statistics By Specific Disease 

Disease Accuracy         Sensitivity         Specificity PPV NPV AUC 

MENV    0.96 0.67 0.98 0.67 0.98 0.92   

BOMBV    0.96         0.57 0.98 0.62               0.98 0.88 

EBOV    0.98 0.77 0.99 0.83 0.99 0.93      

BDBV    0.97 0.64 0.99 0.82          0.98 0.95 

SUDV    0.98 0.71 1.00 0.91 0.98 0.81          

MOJV    0.94 0.00 1.00 NaN 0.94 0.75 

GHV    0.96 0.67 0.98 0.67         0.98 0.88 

 

The RF was able to correctly identify the proportion of negative cases that are truly 

negative via the negative predictive values (NPV). The RF model also had very high 

specificity scores (true negative rate). Additionally, according to the AUC scores, the 

RF models were able to distinguish between true positives (sensitivity) while 

avoiding false positives (specificity) except for MOJV which had a score of 0.75 

(Figure 3.1). 
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Figure 3.1 RF ROC graphs for each disease 

 

The NB algorithm had the highest performance for each specific metric 

across all 7 viruses compared to RF, DT, and NN (Table 3.2). Compared to RF, NB 

has better performance when it comes to specificity, PPV, NPV, and ROC/AUC 

rates (Figure 3.2).  

Table 3.2 Naïve Bayes Classification Statistics By Disease 

Disease Accuracy     Sensitivity Specificity PPV NPV AUC 

MENV 0.99 0.94        1.00 1.00        0.99 0.97 

BOMBV 0.99 0.86        1.00 1.00          0.99 0.93 

EBOV 1.00 1.00                    1.00 1.00 1.00 1.00 

BDBV 1.00 1.00        1.00 1.00          1.00 1.00 

SUDV 1.00 1.00        1.00 1.00 1.00         1.00 

MOJV 1.00 1.00        1.00 1.00 1.00 1.00 

GHV 1.00 1.00        1.00 1.00 1.00 1.00 
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 DT performed poorly and underfit the data which meant it was not able to 

capture all the data points and analyze it accordingly. Even though it works well in 

either small or large datasets, one of its weaknesses is that it is prone to 

underfitting (Lantz, 2019). For this study, it could not capture the data insights for 

MOJV (Table 3.3). Except for GHV, DT had poor performance regarding specificity 

and average results via the ROC/AUC scores for the rest of the diseases (Figure 

3.3). 

 

Table 3.3 Decision Tree Classification Statistics By Disease 

Disease Accuracy Sensitivity Specificity PPV NPV AUC 

MENV 0.95 0.28        1.00  0.83         0.95 0.64 

BOMBV 0.97 0.50        1.00  1.00  0.97 0.75 

EBOV 0.99 0.77        1.00  0.91 0.99 0.88 

BDBV 0.97 0.64        0.99  0.82   0.98           0.82 

SUDV 0.97 0.71        0.99  0.77 0.98           0.85 

MOJV 0.94 0.00        1.00  NaN       0.94 0.50 

GHV 0.97 0.50        1.00  1.00 0.97          0.75 

 

The ANN algorithm captured the data and noise and thus, overfit the models 

for each disease (Table 3.4).  Even though it only has one hidden layer, the ANN 

was still able to capture everything in the data by overfitting which it is prone to 

doing (Lantz, 2019). Thus, in the initial analysis, RF and NB classifiers had the best 
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performance measure (Table 3.5). The ROC for all diseases using ANN was 1.00 

(Figure 3.4). 

Table 3.4. ANN Classification Statistics By Virus 

Disease Accuracy Sensitivity Specificity PPV NPV AUC 

MENV 1.00 1.00        1.00     1.00 1.00 1.00 

BOMBV 1.00 1.00        1.00 1.00     1.00 1.00 

EBOV 1.00 1.00        1.00       1.00 1.00 1.00 

BDBV 1.00 1.00        1.00 1.00 1.00   1.00 

SUDV 1.00 1.00        1.00 1.00 1.00 1.00 

MOJV 1.00 1.00        1.00 1.00 1.00 1.00 

GHV 1.00 1.00        1.00 1.00 1.00       1.00 

 

Table 3.5 Initial Average Performance Comparison Between Random Forests, Naïve 
Bayes, Artificial Neural Network, and Decision Tree Classifiers 

Classifier    Accuracy Sensitivity  Specificity PPV NPV AUC 

RF 0.96 0.58        0.98  0.98            0.98           0.88 

NB 1.00 0.97        1.00  1.00  1.00 0.99           

DT 0.97 0.49        1.00  0.76  0.97 0.74            

ANN 1.00 1.00        1.00  1.00           1.00 1.00          

 

To prevent underfitting, the DT method was changed to the rpart2  method 

in the caret package was used instead of the C5.0 method used initially. rpart2 uses 

maximum tree depth to have more nodes and splits and thus, captures more 

information and thus, it is better than the C5.0 algorithm. The tunegrid function 

was also used after the rpart2 method was incorporated, but it did not change any 
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of the performance measures. The tunegrid function finds the best performance 

using different combinations of parameters. rpart2 considerably captured more 

information via the ROC/AUC (Table 3.6, Figure 3.2) especially regarding EBOV 

which had average performance with the C5.0 algorithm. Nevertheless, compared 

with RF and NB, the sensitivity rates are very low. 

 

Table 3.6 Decision Tree Updated Classification Statistics by Disease 

Disease Accuracy    Sensitivity    Specificity PPV NPV AUC 

MENV 0.95 0.33        0.99 0.75         0.95      0.66     

BOMBV 0.97 0.57        0.99 0.73         0.98      0.78    

EBOV 0.98 0.77        0.99 0.83         0.99      0.88 

BDBV 0.97 0.43        1.00 1.00     0.97         0.71     

SUDV 0.97 0.71        0.99 0.77 0.98         0.85     

MOJV 0.92 0.20        0.96 0.23         0.95      0.58     

GHV 0.96 0.44        1.00 1.00       0.96         0.72     

 

The nnet function was updated with the tunegrid function within the caret 

package to find the optimal parameters. Additionally, size and decay functions were 

added within the tunegrid to find the most optimal parameters. Size is the number 

of units in a hidden layer. For this update, it was set from 1 to 10 in increments of 

1. The decay parameter is the weight decay regularization method used to prevent 

overfitting and it was set from 0.1 to 0.5 in increments of 0.1. This prevented the 

overfitting for most diseases and most performance metrics. However, it was not 

able to capture the data for the sensitivity rates for all the diseases (Table 3.7). 
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Overall, the disease performance measures via specificity, PPV, and AUC do not 

compare to the RF and NB models which performed the best in this study (Table 

3.7; Figure 3.3). 

 

Figure 3.2 Decision Tree updated ROC graphs by specific disease 
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Table 3.7  Artificial Neural Network Updated Classification Statistics By Disease 

 

 

 

Figure 3.3 ANN updated ROC graphs by specific disease 

 

 

Disease Accuracy   Sensitivity    Specificity PPV NPV AUC 

MENV 0.96 0.56 0.98 0.71 0.97 0.79       

BOMBV 0.97 0.57 1.00 0.89 0.89 0.58        

EBOV 0.99 0.77 1.00 1.00 0.99 0.88 

BDBV 0.96 0.50 0.99 0.70 0.97 0.86 

SUDV 0.98 0.71 0.99 0.83 0.98 0.85 

MOJV 0.94 0.00 1.00 NaN 0.94 0.55    

GHV 0.97 0.50 1.00 1.00 0.97 0.75 
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Table 3.8  

Average Performance Comparison Between Random Forests, Naïve Bayes, and 
updated Decision Tree and Artificial Neural Network Classifiers 

Classifier Accuracy Sensitivity  Specificity   PPV  NPV   AUC 

RF 0.96 0.58    0.98     0.65 0.98        0.88        

NB 1.00 0.97    1.00 1.00        1.00  0.99 

DT 0.96 0.44    1.00 0.76 0.97  0.74    

ANN 0.97 0.52    0.99 0.73 0.97  0.75        

 

 

4. Discussion 

We tested four classifiers to predict infectious disease: RF, NB, DT, and ANN. 

Feature importances were extracted using the RF classifier. These feature 

importances were then used for the other classifiers. From an overall disease 

prevention perspective, the RF models above did well using PPV, AUC and ROC 

performance measures in identifying the positive cases for each of the diseases 

which is imperative when it comes to being able to identify the disease and then use 

this information to implement prevention and medical aid to specific areas and 

people where it is most needed (Table 3.8). It also does well in predicting the 

negative values which is important to ensure the negatives are not false negatives. 

RF works well because it is free from overfitting and outliers do not affect it (Byeon, 

2020). It also generates high accuracy by reducing generalization errors. 
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NB is the best choice for accuracy and performance (Table 3.8). NB model 

predictions are comparable to previous research showing how well NB works on 

various types of disease prediction including infectious disease prediction (Kamal 

Alsheref & Hassan Gomaa, 2019;  Uddin et al., 2019; Fatima & Pasha, 2017). NB 

works well because it treats each feature as independent and thus, any change in 

one feature will not affect the other in the NB model (Latha & Jeeva, 2019).      

Even though Uddin et al. (2019), Kamal Alsheref & Hassan Gomaa (2019), 

and Fatima & Pasha (2017) found that Decision Tree (DT) and Artificial Neural 

Network (ANN) algorithms were highly accurate machine learning classifiers for 

disease classification, these classifiers did not do well according to accuracy, 

sensitivity, specificity, positive predictive value, negative predictive value, 

ROC/AUC performance scores. DT could not capture the data (underfitting) during 

the first initial modeling and after hyper tuning. ANN captured all the data 

including noise (overfitting) in the initial model, but underfit after hyper tuning. 

Both DT and ANN are not recommended as classifiers for this dataset. 

Previous KAP survey studies used linear and logistic regression which have 

limitations including assuming there is a linear relationship between independent 

variables and the dependent variable in a real-life infectious disease scenario which 

can be more complex. Another limitation to linear and logistic regression is that the 

independent variables must be known ahead of time and then fitted to specific 

models. In our study, RF was used to identify specific features (independent 

variables in linear and logistic regression) that were able to predict specific zoonotic 
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diseases in the case of Cambodia. Our models did not have to be retrained to 

identify best-fitting models. However, we did have to hypertune our models to get 

the best performance from each machine learning classifier algorithm. Additionally, 

not all models performed well. Of the four different machine learning classifier 

algorithms we used, RF and NB had the best performance scores. 

When it comes to infectious disease surveillance, RF feature extraction is 

important because it chooses the most important features that can be used in 

specific classifiers to predict infectious diseases. We showed that RF and NB had 

higher overall accuracies than DT and ANN. However, NB is the best choice 

because in this study for this data, it is the most accurate regarding measures for 

public health diseases which are important including accuracy, sensitivity, 

specificity, Positive Predictive Value, Negative Predictive Value, AUC, and ROC. 

Compared to previous research using machine learning classifiers to infectious 

disease prediction, our results were mixed since only RF and NB performed well in 

our study which is reflected in this previous research. DT and ANN did not perform 

well even though the previous literature says these perform well in a variety of 

disease prediction studies. This could be mainly due to our study being specific to 

Cambodia and the complexities of identifying the limited data that can predict 

zoonotic disease in this case. 
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