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BACKGROUND: The use of traditional models to predict heart failure (HF) has 
limitations in preventing HF hospitalizations. Artificial intelligence (AI) and machine 
learning (ML) in cardiovascular medicine only have limited data published regarding HF 
populations, with none assessing the favorability of decongestive therapy aquapheresis 
(AQ). AI and ML can be leveraged to design non-traditional models to identify those 
who are at high risk of HF readmissions.  

OBJECTIVES: This study aimed to develop a model for pretreatment identification of 
risk for 90-day HF events among HF patients who have undergone AQ.  

METHODS: Using data from the AVOID-HF (Aquapheresis versus Intravenous 
Diuretics and Hospitalization for Heart Failure) trial, we designed a ML-based predictive 
model that can be used before initiating AQ to anticipate who will respond well to AQ 
and who will be at high risk of future HF events. 

RESULTS: Using ML we identified the top ten predictors for 90-day HF events. 
Interestingly, the variable for ‘intimate relationships with loved ones’ strongly predicted 
response to therapy. This ML-model was more successful in predicting the outcome in 
HF patients who were treated with AQ. In the original AVOID-HF trial, the overall 90-
day HF event rate in the AQ arm was 32%. Our proposed predictive model was accurate 
in anticipating 90-day HF events with better statistical accuracy (area under curve 0.88, 
sensitivity 80%, specificity 75%, negative predictive value 90%, and positive predictive 
value 57%).   

CONCLUSIONS: ML can help identify HF patients who will respond to AQ therapy. 
Our model can identify super-respondents to AQ therapy and predict 90-day HF events 
better than currently existing traditional models.  

CONDENSED ABSTRACT:  

Utilizing data from the AVOID-HF trial, we designed a ML-predictive model that can be 
used before initiating AQ to anticipate who will respond well to AQ and who will be at 
high risk of future HF events. Using ML, we identified the top 10 predictors for 90-day 
HF events. Our model can identify super-respondents to ultrafiltration therapy and predict 
90-day HF events better than currently existing traditional models. 

Keywords: AI; Artificial Intelligence; Aquapheresis; Heart failure; HF; Hospitalization; 
Machine learning; ML; Predicting heart failure; Readmission; Ultrafiltration,  

ABBREVIATIONS AND ACRONYMS:  

ADHF = acute decompensated heart failure 

AI = artificial intelligence 

AQ = Aquapheresis  

HF = heart failure  
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IV = intravenous 

LD = loop diuretic  

ML = machine learning  

UF = ultrafiltration 

 

 

1. Introduction 

Heart failure (HF) is a very challenging and complex clinical syndrome due in part to the 
heterogeneity of patient phenotype. HF prevalence continues to rise along with population aging. 
Approximately 6.2 million American adults had HF from 2013 to 2016 compared to 5.7 million 
patients between 2009 and 20121. More than eight million patients are estimated to live with HF 
by 20302. HF phenotypes have complex heterogeneity due to their different clinical 
characteristics, responses to treatment, and outcomes. These factors often contribute to frequent 
hospitalization with documented high readmission rates. HF results in a significant burden on 
communities and healthcare systems. 

Fluid accumulation initially shows no manifestations before the intravascular volume is 
expanded and congestion manifests. Congestion in HF patients is a leading cause of emergency 
department (ED) visits and accounts for most HF hospitalizations3. Nearly half of HF patients 
are discharged with unresolved congestion setting them up for recurrent rehospitalizations4. 
Guidelines recommend optimizing volume status in HF patients with fluid retention to improve 
their symptoms and achieve euvolemic status5. Loop diuretics (LD) work by blocking the 
Na/K/2Cl co-transporter in the ascending loop of Henle and creating an osmotic gradient 
essential for water reabsorption resulting in natriuresis. Low urine sodium (Na) concentration or 
reduced response to diuretics, known as restricted diuretic response or diuretic resistance (DR), 
can cause renal tubular injury. Diuretics can activate the unwanted neurohormonal sympathetic 
system including the renin-angiotensin-aldosterone system (RAAS) which can explain DR6. 
Distal tubular Na reabsorption is another cause of DR. In order to overcome DR, current 
guidelines recommend escalating LD dose, changing oral to intravenous (IV) diuretics, or 
combining different diuretics classes (thiazide or thiazide-like diuretic)7. In a propensity-adjusted 
cohort study among hospitalized patients with acute decompensated heart failure (ADHF), the 
addition of a thiazide-like diuretic (metolazone) independently increased the risk of 
hyponatremia, hypokalemia, worsening kidney function, and mortality rate. On the other hand, 
the use of high doses of LD was not associated with reduced survival after propensity 
adjustment. However, there are limited randomized controlled trials comparing those strategies8.  

Ultrafiltration (UF) is an alternative, effective, and safe method of removing Na and water in HF 
patients. The RAPID-CHF (the Relief for Acutely Fluid-Overloaded Patients With 
Decompensated Congestive Heart Failure) trial assessed the safety and efficacy of UF in patients 
admitted with ADHF. It showed that early UF in ADHF patients was safe and well-tolerated9. 
The EUPHORIA (early ultrafiltration therapy in patients with decompensated heart failure and 
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observed resistance to intervention with diuretic agents) trial showed that in patients with ADHF 
and DR, UF before IV diuretics was safe and effective in shortening the length of stay and 
decreasing the readmission rate10. The UNLOAD (Ultrafiltration versus Intravenous Diuretics 
for Patients Hospitalized for Acute Decompensated Congestive Heart Failure) trial compared UF 
to IV diuretics for patients hospitalized with ADHF. It showed that UF was more effective in 
weight and fluid loss and reducing 90-day readmission rate compared to IV diuretics. With the 
safety and positive primary and secondary outcome results, UF appeared to be an effective and 
alternative therapy for ADHF patients11. The ULTRADISCO (ULTRAfiltration vs. DIureticS in 
deCOmpensated HF) trial evaluated the hemodynamic and clinical effects of UF versus IV 
diuretics in ADHF patients. It showed that ADHF patients treated with UF had a better clinical 
improvement and a significant reduction in plasma aldosterone level and N-terminal (NT)-pro 
hormone BNP (NT-proBNP). Systemic vascular resistance index was significantly reduced 36 
hours after treatment with UF compared to IV diuretics. This study was able to show that UF 
appears to overcome the pathophysiologic issues seen due to unwanted RAAS and 
neurohormonal activation associated with diuretics use12.  

The CARRESS-HF (Cardiorenal Rescue Study in Acute Decompensated Heart Failure) trial 
assessed the safety and efficacy of UF in ADHF patients complicated by worsened renal function 
and persistent congestion. This randomized trial compared UF to stepped pharmacologic therapy 
assessing the primary outcome of serum creatinine level and body weight 96 hours after 
randomization. It showed that stepped pharmacologic therapy was superior to UF strategy for 
renal function preservation (−0.04±0.53 mg per deciliter versus +0.23±0.70 mg per deciliter; 
P=0.003) with no difference in weight loss between the two groups. A higher incidence of 
serious adverse events was seen in the UF group (72% versus 57%; P=0.03) 13. This important 
trial with negative results raised many questions and concerns about UF safety and effectiveness. 
The CARRESS-HF trial had many limitations, including the methodology and protocol. For 
instance, more than one-third of the UF group received diuretics instead of UF or received 
diuretics after stopping UF prior to intention to treat analysis, which questioned the accurate 
assessment of adverse events and renal function in both groups. Another limitation was that the 
UF rate was fixed (200 mL/hour) for all patients in the UF group, whereas stepped 
pharmacologic therapy was titrated based on urine output (goal to achieve 3-5 L of urine/day). 
Also, 12% of patients in the pharmacologic therapy group received inotropic agents that were 
prohibited in the UF arm. At the time of assessment and comparison (96 hours after 
randomization), only one-third of the UF group were still included in the study protocol 
compared to 80% of the pharmacologic therapy group14. The CUORO (continuous ultrafiltration 
for congestive heart failure) trial, a small, randomized, single-center study, compared UF 
(adjustable UF rate) to standard medical therapy in ADHF patients with a primary endpoint of 
HF hospitalization rate at one year. A lower rate of HF hospitalization in one year was seen in 
the UF group (hazard ratio 0.14, 95% confidence interval 0.04-0.48; P = 0.002)15. With the 
positive result of the CUORO trial along with the UNLOAD trial results, it appeared that UF has 
a prolonged and protective effect. Results from the CARRESS-HF and CUORO trials 
encouraged researchers to design some larger, randomized, and multicenter trials.  

The AVOID-HF (Aquapheresis versus Intravenous Diuretics and Hospitalization for Heart 
Failure) trial, a randomized, large, multicenter study, was designed to assess whether adjustable 
UF can prolong the time to first HF event within 90 days of hospital discharge, compared to 
adjustable LD therapy. The fluid removal strategy in both arms was adjustable based on vital 
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signs and kidney function. Among patients who were hospitalized for ADHF, a total of 110 
patients were randomized to adjustable UF and 114 patients were randomized to adjustable LD. 
UF was performed using the Aquadex FlexFlow System (Baxter International, Deerfield, 
Illinois). Results showed that the adjustable UF arm had more days to first HF events (62 days 
versus 34 days for the adjustable LD arm; P = 0.106) and fewer HF events (25% vs. 35%; hazard 
ratio of 0.663; 95% confidence interval: 0.402 to 1.092); HF events were defined as either 
unscheduled outpatient or ED visits for ADHF treatment with IV LD or UF, or HF 
rehospitalization 16. The 90-day mortality rate was similar, however, the adjustable UF arm had 
more adverse effects of special interest (P = 0.018) and serious adverse events related to the 
study product (P = 0.026). In addition, the UF arm had a greater net fluid loss17. The encouraging 
results of the AVOID-HF and UNLOAD trials showed that early UF is effective and safe with 
prolonged effects when used before developing kidney dysfunction18. A per-protocol analysis on 
the CARRESS-HF trial showed that UF patients, who actually received UF per study protocol, 
had significantly more weight and fluid loss; this was accompanied by increased serum 
creatinine and neurohormonal activation in the UF group. These elevations in biomarkers 
correlated with superior decongestion and renal function recovery at 60 days 19.  

 

 

2. Methods 

The AVOID-HF trial, a randomized, large, multicenter study, was designed to assess whether 
adjustable UF can prolong the time to the first HF event within 90 days of hospital discharge, 
compared to adjustable LD therapy. UF was performed using the Aquadex FlexFlow System 
(Baxter International, Deerfield, Illinois).  

2.1. Objective and Outcome: The purpose of the study was to develop a model for pretreatment 
identification of risk for 90-day HF event among HF patients who have undergone AQ 

2.2. Study Population: Patients with missing 90-day follow-up, including those who died within 
90 days of treatment, were excluded.  

2.3. Cross-validation Setup: To avoid overfitting, we implemented a two-level cross-validation 
setup. To do that, we first split the analytical cohort into training and hold-out sets at 80:20 
proportion. We then carried out a leave-one-out cross-validation on the 80% training data. The 
final cross-validated model was further implemented on the 20% untouched hold-out data.  

2.4. Design of the machine-learning algorithm for predicting 90-day events: We utilized the 
Light Gradient Boosting Machine (LightGBM) algorithm to predict the risk for 90-day HF 
events. LightGBM algorithm is a decision-tree-based algorithm with several hyperparameters 
that need to be tuned to have a generalizable and robust model20. We have utilized the Bayesian 
Optimization approach for hyperparameters tuning during leave-one-out cross-validation on 
training data. For comparison, we repeated our analysis using other ML methods, including 
extreme gradient boosting machines, support vector machines, classification and regression trees, 
and random forest.  
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2.5. Variable Selection and Direction Analysis: We implemented a previously developed 
Feature Importance and Direction Analysis (FIDA)21 to identify the most important predictors of 
90-day readmission and identify the direction of the interaction between input and output. In 
FIDA, the importance of a predictor is assessed by artificially increasing its value by one 
standard deviation (or swapping with a reference category for nominal variables or increasing 
one unit for ordinal variables) and assessing the change in predicted risk compared. FIDA is 
applied on a final predictive model for each predictor separately. We used FIDA to identify the 
most important predictors to build more compact models and better interpret our ML results.  

 

3. Results  

After excluding patients missing 90-day follow-up, including those who died within 90 days of 
treatment, 81 patients in the AQ group were used for model development (n=81). The data was 
split into two sets: 80% for model building (n=64; 21 cases and 43 controls) and 20% for internal 
validation (n=17; 5 cases and 12 controls). Data from the IV LD arm was used for sensitivity 
analysis of the model. LightGBM yielded superior performance, therefore, we used LightGBM 
ML algorithm in our analysis.  

We divided the dataset into two subsets in a stratified manner: 80% for cross-validation (n=64 
including 21 with and 43 without 90-day event), and 20% for holdout test set (n=17, including 5 
with and 12 without 90-day event). Since there were 21 patients with a 90-day event in the 80% 
training set, we implemented a leave-one-out cross-validation (equivalent to 21-fold cross-
validation) on the training data to avoid overfitting. At each run, 20 folds of data were used to 
build a prediction model and 1-fold of data was used as a validation set (Figure 1).  

 

 
Figure 1 Leave-one-out cross validation for 21 instances 

This process resulted in 21 different predictive models. We then packaged these 21 models into 
one final ensemble model to be tested on the 20% hold-out test data. In this work, we have used 
the raw data with missingness to be imputed by using the default imputation algorithm of 
LightGBM, for both the cross-validation set and the holdout set. The Bayesian optimization 
algorithm found that utilizing the top 17 variables is sufficient to predict the risk for 90-day event 
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for participants treated with Aquapheresis. We then implemented LightGBM’s default variable 
importance analysis. In Table 1, we have listed the top 17 variables in order of importance. 

 
Rank Variable Name Variable  
1 ACT_10_kccq_1494 Intimate relationships with loved ones  

• Severely limited: 0  
• Limited quite a bit: 1  
• Moderately limited: 2  
• Slightly limited: 3  
• Not limited at all: 4  

2 VALV_DIS_med_1494 Valvular heart disease 
3 ARRYTHST_med_1494 History of arrhythmia 
4 MED_NONC_med_1494 Poor adherence to medical therapy 
5 DIAB_med_1494 History of diabetes mellitus  
6 REF_DIUR_med_1494 Suboptimal diuretic therapy response  
7 COPD_med_1494 Chronic obstructive lung disease  
8 DIURRCV_pat_1494 IV LD use during ADHF hospitalization  
9 CVA_med_1494 History of cerebrovascular disease  
10 BUMEX_DIURNAM_pat_1494 IV bumetanide use 
11 ICD_med_1494 Presence of implantable cardiac defibrillator  
12 AORTCHST_med_1494 Aortic valve disease  
13 LASIX_DIURNAM_pat_1494 IV furosemide use  
14 AFIBFLUT_med_1494 History of atrial fibrillation and/or atrial flutter  
15 BRPACMKR_med_1494 Presence of cardiac resynchronization therapy device  
16 CONCO_fol_1494 Medications change since enrollment  
17 HFFACTUK_med_1494 Unknown contributing factor to worsen heart failure 

Table 1 Top 17 variables in their order of importance. ADHF: acute decompensated heart failure; IV: intravenous; LD: loop 
diuretic. 

 

Compact Models: Unlike classic parametric regression models, additional input variables do not 
necessarily improve the performance. Relying on many input variables reduces the practicality of 
predictive models. Therefore, we further re-built models using the top 17 variables aiming to 
obtain a predictive ensemble model that relies on a smaller number of variables without 
compromising its prediction accuracy. To achieve that, we started building a new ensemble 
model using the top five variables from Table 1. Then, at every step, we introduced one more 
variable into the ensemble model based on their importance and repeated our analysis (Figure 
2). After adding the 10th variable, the hold-out accuracy reached its maximum, and more 
additional variables did not improve the hold-out accuracy. The same cut-off was valid for the 
cross-validation set where additional variables after the 10th variable reduced accuracy. 
Therefore, our final ensemble model is built using the top 10 input variables listed in table 2.  
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Figure 2 The change in the performance of the LightGBM ensemble models as new variables are introduced based on their 
order of importance from Table 1. Y-axis is the model performance in terms of AUC and x-axis is for input variables. ADHF: 
acute decompensated heart failure; AUC: area under curve; IV: intravenous; LD: loop diuretic.  

 

Rank Variable  
1 Intimate relationships with loved ones 
2 Valvular heart disease 
3 History of arrhythmia 
4 Poor adherence to medical therapy 
5 History of diabetes mellitus  
6 Suboptimal diuretic therapy response  
7 Chronic obstructive lung disease  
8 IV LD use during ADHF hospitalization  
9 History of cerebrovascular disease  
10 IV bumetanide use  

Table 2: The top ten variables that were used in the final ensemble model. ADHF: acute decompensated heart failure; IV: 
intravenous; LD: loop diuretic. 

The accuracy metrics of the final ensemble model utilizing the ten variables show area under 
curve (AUC) of 0.88, sensitivity (SN) of 86%, and specificity (SP) of 77% in the cross-validation 
set. Table 3 summarizes the accuracy metrics for the hold-out and cross-validation sets. To get 
binary prediction for both sets, a cut-off value of 0.328 was set in order to balance the SN and SP 
in the cross-validation set; the same cut-off value was applied to the holdout set without any 
calibration. The AUC obtained on cross-validation and hold-out data are comparable which is a 
positive sign for generalizability. The negative predictive value (NPV) and positive predictive 
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value (PPV) of the hold-out set were 90% and 57%, respectively (Table 4). The proposed 
ensemble model assigned 59% of the patients into the low-risk (or super-responders) category. 
Among these super-responders, 90% of them did not experience any 90-day event. On the other 
hand, the proposed ensemble model assigned 41% of the patients into the high-risk category. 
Among these patients, 57% experienced a 90-day event. 
 
Accuracy Statistics Holdout Set (20%) Cross Validation Set (80%) 
AUC   0.88 [0.66 - 1.00] 0.88 [0.8 - 0.94] 
SN 0.80 [0.54 - 1.00] 0.86 [0.75 - 0.97] 
SP 0.75 [0.47 - 1.00] 0.77 [0.64 - 0.9] 

Table 3 Accuracy Metrics of LightGBM ensemble model. AUC: area under curve; SN: sensitivity; SP: specificity.  

 
90-day event Actual 90-day event   

Yes  No  
Predicted 90-
day Event 

Yes 4 3 PPV 57%  
No 1 9 NPV 90%  

 SN 80%  SP 75%  

Table 4 Confusion Matrix of Holdout Set. NPV: negative predictive value; PPV: positive predictive value; SN: sensitivity; SP: 
specificity. 

Using the final ensemble model that utilizes the top ten variables, we generated the feature 
importance analysis (Figure 3) and the direction of variables in terms of their contribution to the 
risk (Figure 4). For example, for those who reported "severely limited" intimate relationships, 
their average predicted risk of 90-day HF event(s) was increased by 0.18 with a standard error of 
0.02. Table 5 shows the baseline characteristics of the top ten variables used in the final 
ensemble model and their distribution over the predicted low and high risk for a 90-day HF 
event.  

 
Figure 3 The relative contribution of the variables to the model. ADHF: acute decompensated heart failure; IV: intravenous; 
LD: loop diuretic. 
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Figure 4: Direction of variables’ contribution to the 90-day HF event risk. Of note, the blue dot and gray line show the mean 
and standard error of the change in the 90-day HF event risk, respectively. For example, the 90-day readmission risk is 
approximately 0.18 absolute risk higher compared to patients with the same profile except with no limitation. ADHF: acute 
decompensated heart failure; IV: intravenous; LD: loop diuretic. 

 

 

Variable  
Controls and 

Cases 
(n=81) 

Controls 
(n=55) 

Cases 
(n=26) 

Died 
(n=13) 

Predicted 
Low Risk 

(n=46) 

Predicted 
High Risk 

(n=35) 

Intimate relationships with loved 
ones  

0. Severely Limited 
1. Limited quite a bit 
2. Moderately Limited 
3. Slightly Limited 
4. Did not limit at all 

 
30 (37%) 
14 (12%) 
6 (7%) 
5 (6%) 
8 (10%) 

 
 
25 (45%) 
9 (16%) 
4 (7%) 
2 (4%) 
3 (5%) 

 
 
5 (19%) 
5 (19%) 
2 (8%) 
3 (12%) 
5 (19%) 

 
 
7 (54%) 
1 (8%) 
1 (8%) 
0 (0%) 
1 (8%) 

 
 
23 (50%) 
8 (17%) 
3 (7%) 
1 (2%) 
1 (2%) 

 
 
7 (20%) 
6 (17%) 
3 (9%) 
4 (11%) 
7 (20%) 

Valvular heart disease 
   No 
   Yes 

 
36 (44%) 
31 (38%) 

 
26 (47%) 
18 (33%) 

 
10 (38%) 
13 (50%) 

 
7 (54%) 
6 (46%) 

 
28 (61%) 
10 (22%) 

 
8 (23%) 
21 (60%) 

History of arrhythmia 
   No 
   Yes 

 
19 (23%) 
62 (77%) 

 
10 (18%) 
45 (82%) 

 
9 (35%) 
17 (65%) 

 
2 (15%) 
11 (85%) 

 
9 (20%) 
37 (80%) 

 
10 (29%) 
25 (71%) 

Poor adherence to medical 
therapy 
   No 
   Yes 

 
 
63 (84%) 
18 (16%) 

 
 
50 (91%) 
5 (9%) 

 
 
18 (69%) 
8 (31%) 

 
 
12 (92%) 
1 (8%) 

 
 
41 (89%) 
5 (11%) 

 
 
27 (77%) 
8 (23%) 

History of diabetes mellitus   
   No 
   Yes 

 
30 (37%) 
51 (63%) 

 
23 (42%) 
32 (58%) 

 
7 (27%) 
19 (73%) 

 
6 (46%) 
7 (54%) 

 
19 (41%) 
27 (59%) 

 
11 (32%) 
24 (68%) 

Suboptimal diuretic therapy 
response   
   No 
   Yes 

 
 
60 (74%) 
21 (26%) 

 
 
38 (69%) 
17 (31%) 

 
 
22 (85%) 
4 (15%) 

 
 
6 (46%) 
7 (54%) 

 
 
32 (70%) 
14 (30%) 

 
 
28 (80%) 
7 (20%) 

Chronic obstructive lung disease  
   No 
   Yes 

 
51 (63%) 
30 (37%) 

 
34 (62%) 
21 (38%) 

 
17 (65%) 
9 (35%) 

 
6 (46%) 
7 (54%) 

 
29 (63%) 
17 (37%) 

 
22 (63%) 
13 (37%) 
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IV LD use during ADHF 
hospitalization   
   No 
   Yes 

 
 
30 (37%) 
51 (63%) 

 
 
24 (44%) 
31 (56%) 

 
 
6 (23%) 
20 (77%) 

 
 
8 (62%) 
5 (38%) 

 
 
21 (46%) 
25 (54%) 

 
 
9 (26%) 
26 (74%) 

History of cerebrovascular disease   
   No 
   Yes 

 
68 (84%) 
13 (16%) 

 
49 (89%) 
6 (11%) 

 
19 (73%) 
7 (27%) 

 
10 (77%) 
3 (23%) 

 
43 (93%) 
3 (6%) 

 
25 (71%) 
10 (29%) 

IV bumetanide use   
No    
Yes 

 
71 (88%) 
10 (12%) 

 
51 (93) 
4 (7%) 

 
20 (77%) 
6 (23%) 

 
12 (93%) 
1 (7%) 

 
44 (96%) 
2 (4%) 

 
27 (78%) 
8 (22%) 

 

Table 5 Characteristics of the variables of the final ensemble model. ADHF: acute decompensated heart failure; IV: 
intravenous; LD: Loop diuretic. 

Sensitivity Analysis: We further implemented the proposed final ensemble model on 13 patients 
who died before the completion of a 90-day follow-up. Among these 13 patients, 7 did not have 
a 90-day event by our definition; 3 of those 7 were correctly classified by our model into no 
event. The other 6 of 13 did have 90-day HF events, and the proposed model predicted 2 of them 
as high risk. Finally, the proposed ensemble model predicted 46% of these 13 patients as high 
risk for HF events.  

Table 6 summarizes the performance of our model when it was implemented on the IV LD arm 
(n=84). By comparing the model’s performance results in the Aquaphoresis (table 4) to the IV 
LD treatment group (table 6), it is evident that the proposed predictive model is designed to 
identify best responders to UF treatment rather than IV LD treatment. This could be attributed to 
different baseline characteristics that make them more responsive to UF than IV LD treatment.  
90-day event Actual 90-day event   

Yes  No  
Predicted 90-
day Event 

Yes 18 15 PPV 55%  
No 22 29 NPV 43%  

 SN 45%  SP 66%  

Table 6 Confusion Matrix of LightGBM model for patients who received IV LD. IV: Intravenous; LD: Loop diuretic; NPV: 
negative predictive value; PPV: positive predictive value; SN: sensitivity; SP: specificity 

 

4. Discussion 

Despite the advancement in diagnosis and management of heart failure, the 5-year mortality rate 
of HF adult patients is about 42%22. Reports have shown the total costs of HF were about $30 
billion in 2012 and will be around $70 billion by 2030 (estimated increase cost rate of 127%)23. 
HF patients tend to require frequent hospitalization with high readmission rates compared to 
other diseases. Approximately 25% and 50% of HF patients are readmitted within 30 days and 6 
months of discharge, respectively; 25% of these readmissions can be prevented24. Studies have 
shown that reducing HF readmission rates can reduce the cost of HF care hence the healthcare 
system burden and improve patient long-term survival and quality of life25.  
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HF clinical trials are costly, time-consuming and unguaranteed to result in positive results. Many 
factors can contribute to high trial failure rates, including patient selection, study design, and 
inability to monitor and follow-up with patients effectively during trials26. AI, with its different 
applications, can help to define appropriate patient phenotypes to avoid negative trials caused by 
factors other than the treatment(s) and support a study design of a lower sample size (refer to 
chart 1). In addition, AI will enable researchers to extract useful information from existing data 
and obtain very organized data input to design, conduct, and analyze more successful clinical 
trials. For instance, AI can avoid poor study design by finding similar studies addressing similar 
issues by performing a much more comprehensive literature review. Using AI and analyzing 
previous trials to determine the appropriate study size is another way to design a positive, 
successful trial27.  

Many trials, including the RAPID-CHF, CARRESS-HF, and AVOID-HF trials, were designed to 
assess the role, safety, and efficacy of UF in HF. Those expensive and time-consuming trials 
were still inconclusive and lacked generalizability.  

Using AI and ML, our study utilized existing data collected for the AVOID-HF trial to create a 
predicting model that can be used before initiating UF therapy to anticipate who will respond 
well to UF and who will be at high risk of future HF events. Our ML-designed model was more 
successful in predicting the outcome in patients with ADHF treated with Aquaphoresis. In the 
original AVOID-HF trial, the overall 90-day HF event rate in the UF arm was 32%, whereas our 
proposed predictive model was accurate in anticipating a 90-day HF event with much better 
statistical accuracy (AUC 0.88, SN 80%, SP 75%, NPV 90% and PPV 57%). In other words, if 
our model categorizes a patient as a super-respondent, the chance of a 90-day HF event is only 
10%.  

Besides its accuracy, our ML-model was able to examine the different variables and determine 
their significance. That led to identifying the top ten contributing factors that enhance the 
model’s applicability. For example, despite the daily use of the New York Heart Association 
(NYHA) functional classification of HF patients, the NYHA functional class was not a strong 
predictor of a 90-day HF event when compared to an intimate relationship with loved ones as 
was identified by our ML-model. This emphasizes on the advantage of AI and ML by "thinking 
outside the box" and finding unrecognized significant clinical factors. Our ML-designed 
predictive model can also be helpful in designing the next clinical trial for UF therapy in HF to 
avoid another neutral or negative trial caused by poor study design.  
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Chart 1. Roles of AI in HF trials. AI: Artificial intelligence; HF: Heart failure.  

 

5. Limitations 

Our ML-designed model is based on data from a single study. Our predictive model can benefit 
from an independent dataset for external validation, making it more generalizable. Despite its 
small sample size, we implemented a very comprehensive internal validation strategy by 
developing a leave-one-out cross-validation model. That led to good statistical outcomes (AUC, 
SN, SP, NPV, and PPV) which is by itself a predictor of successful external validation and 
generalizability. 

 

6. Conclusions 

Using existing data from the AVOID-HF trial, ML can better identify HF patients who will be 
responsive to Aquaphoresis therapy. This ML-predictive model was able to identify super-
respondents to UF therapy and predict 90-day HF events better than the existing classic models. 
In addition, external validation of our model using an independent dataset will make it more 
generalizable to existing HF patients being considered for aquapheresis. 

 

PERSPECTIVES  

COMPTENCY IN PATIENT CARE AND PROCEDURAL SKILLS: Optimal use of UF in 
HF patients constantly evolves through clinical practice and trial learnings. AI and ML-based 
selection of an optimal patient for the application of UF can potentially lead to lower 
readmission rates. 

Roles of AI in HF 
Trials

Study Design Sites Selection Recruiting 
Techniques 

Patients 
monitoring and 

Follow-up

Data 
Collection and 

Analysis
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TRANSLATIONAL OUTLOOK: Due to the broad level of clinical experience in the 
utilization of UF in HF, the outcomes of such applications can lead to suboptimal clinical results, 
and this AI-based solution may help overcome these limitations. 
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