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ABSTRACT 11 

Genetics plays an important role in psychiatric disorders. A clinically relevant question is whether we 12 

can predict psychiatric traits from genetics, which holds promise for early detection and tailored 13 

intervention. Imputed gene expression, also known as genetically-regulated expression (GRE), reflects the 14 

tissue-specific regulatory effects of multiple single nucleotide polymorphisms (SNPs) on genes. In this 15 

work, we explored the utility of GRE for trait association studies and how the GRE-based polygenic risk 16 

score (gPRS) compared with SNP-based PRS (sPRS) in predicting psychiatric traits. A total of 13 17 

schizophrenia-related gray matter networks identified in another study served as the target brain 18 

phenotypes for assessing genetic associations and prediction accuracies in 34,149 individuals from the 19 

UK Biobank cohort. GRE was computed leveraging MetaXcan and GTEx tools for 56,348 genes across 20 

13 available brain tissues. We then estimated the effects of individual SNPs and genes separately on each 21 

tested brain phenotype in the training set. The effect sizes were then used to compute gPRS and sPRS in 22 

the testing set, whose correlations with the brain phenotypes were used to assess the prediction accuracy. 23 

The results showed that, with the testing sample size set to 1,138, for training sample sizes from 1,138 up 24 

to 33,011, overall both gPRS and sPRS successfully predicted the brain phenotypes with significant 25 

correlations observed in the testing set, and higher accuracies noted for larger training sets. In addition, 26 

gPRS outperformed sPRS by showing significantly higher prediction accuracies across 13 brain 27 

phenotypes, with greater improvement noted for training sample sizes below ~15,000. These findings 28 

support that GRE may serve as the primary genetic variable in brain phenotype association and prediction 29 

studies. Future imaging genetic studies may consider GRE as an option depending on the available 30 

sample size.  31 

Key words: SNP, imputed gene expression, transcriptome, prediction, gray matter 32 
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INTRODUCTION 33 

Genetics is known to play an important role in psychiatric disorders1-3. Genetic influence is reflected 34 

in increased family risk and has been further quantified through family studies 4-6. A recent study 35 

leveraging the Swedish sibling cohort conducted a comprehensive investigation on eight psychiatric traits 36 

and the reported heritability varied from 0.3 for major depressive disorder to 0.8 for attention-37 

deficit/hyperactivity disorder, with an estimate of 0.6 for schizophrenia7. The significant progress in 38 

large-scale genome-wide association studies (GWASs) in the past decade provides more direct evidence 39 

for genetic effects on psychiatric disorders. Starting from the Psychiatric Genomic Consortium (PGC) 40 

GWAS of schizophrenia (SZ) as a milestone in 2014, GWASs started to yield reliable and generalizable 41 

risk single nucleotide polymorphisms (SNPs) for complex psychiatric traits of high polygenicity8-14 with 42 

sample sizes exceeding 100K. These GWASs have not only revealed high-risk genomic loci, but also 43 

grounded new approaches of heritability estimation leveraging the genomic profiles15. The GWAS-based 44 

heritability estimates are usually lower than those from family studies but show significant correlations7.   45 

At this point, a more clinically relevant question is whether we can predict a specific psychiatric trait 46 

from genetics, which holds promise for early detection and tailored intervention. Given the high 47 

polygenicity, the risk SNPs identified by GWASs in general show modest effect sizes and lack predictive 48 

power at the univariate level. This has motivated the polygenic risk score (PRS) approach that is to 49 

aggregate the effects of multiple SNPs with each SNP weighted by the effect size estimated from reliable 50 

GWASs. As a multivariate measure, PRS has shown improved power, e.g., roughly explaining 11% of the 51 

variance in liability for schizophrenia and 4% for bipolar disorder 9,11,16. However, computing PRS 52 

requires a reliable GWAS with a decent sample size as a prerequisite, which is not always readily 53 

available. For instance, many behavioral and cognitive measures are more difficult to harmonize across 54 

cohorts17,18, making data aggregation more challenging. And GWASs of brain phenotypes are also 55 

lagging in terms of sample size19-22. 56 
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In parallel, there is another line of effort to integrate functional annotations with GWASs to improve 57 

statistical power and interpretability. One typical example is imputed gene expression, also known as 58 

genetically regulated expression (GREs)23. GREs are grounded by the observation that a subset of 59 

genomic SNPs regulate gene expression, so-called expression quantitative trait loci (eQTLs). Thus, 60 

leveraging public resources such as the Genotype-Tissue Expression (GTEx) project24, models can be 61 

constructed to characterize the relationships between the expression level of a specific gene and its tissue-62 

specific eQTLs. This allows GREs to be imputed for any individuals provided that their genotypes are 63 

available23,25. And the gene-eQTL relationship can be combined with SNP-based GWAS summary 64 

statistics to estimate the effects of imputable genes on the traits that have been investigated in the 65 

GWASs, known as transcriptome-wide association studies (TWAS)26. Like PRS, TWAS also needs 66 

GWAS as a prerequisite, which is a limiting factor.  67 

An intriguing question is whether it’s feasible to conduct trait association studies using GREs as the 68 

primary genetic variable and how the GRE-based risk score (denoted as gPRS in the following text) 69 

compares with SNP-based PRS (denoted as sPRS) in predictive utility. For each imputable gene, the GRE 70 

combines the effects of multiple eQTLs, so theoretically we expect them to carry larger effect sizes than 71 

SNPs and boost statistical power in association tests. Indeed this is the motivation for proposing GRE, 72 

and finds support from the TWAS results26. With that said, one recent study computed gene expression-73 

based risk scores using GREs weighted by TWAS effect sizes, which however did not outperform sPRS 74 

in predictive power at a sample size level of 50K27. There are two points here that deserve further 75 

investigation. First, rather than directly assessing the effects of genes, TWAS builds up gene-trait 76 

associations based on SNP-trait associations of available GWASs by integrating eQTL information. It 77 

remains unclear if we can circumvent GWAS to directly use GREs for trait association analyses and still 78 

obtain a gain in statistical power. Second, a more comprehensive investigation is needed to compare 79 

gPRS with sPRS in terms of predictive power for different levels of sample sizes. A possible scenario is 80 

that the gain of using GREs may be more substantial for smaller sample sizes, where SNPs associations 81 
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are more vulnerable to the power issue. And when the sample size becomes sufficiently large, sPRS is 82 

expected to outperform gPRS as the latter only leverages a portion of the genome (i.e., eQTLs). 83 

Considering that a sample size of 50K is not always accessible, it is important to examine how the 84 

performance varies with sample sizes, to inform future experimental designs.  85 

The current work aims to assess the applicability of GREs in directly assessing gene-brain phenotype 86 

associations and the performance of the resulting gPRS in predictive brain phenotypes derived 87 

noninvasively from magnetic resonance imaging (MRI), particularly how it compares with sPRS across a 88 

range of sample sizes. We are particularly interested in brain phenotypes, as compared to GWASs of 89 

psychiatric disorders, understanding genetic contributors to brain abnormalities better informs the 90 

pathology. However, even with data aggregation, it is still difficult to reach a large sample size in GWASs 91 

of brain phenotypes, largely due to the availability of both imaging and genomic data. This has motivated 92 

the exploration of GREs for improved power with limited samples. In addition, GREs promise, to a 93 

certain level, tissue-specificity of genetic correlates underlying brain phenotypes, which is a tempting 94 

scenario given the difficulty in obtaining brain tissues. Specifically in this study, we conducted training 95 

and testing using the UK Biobank (UKB) data and compared the predictive power of gPRS and sPRS on 96 

SZ-related gray matter phenotypes derived from structural magnetic resonance imaging (sMRI) data.  97 

MATERIALS AND METHODS 98 

UK Biobank. The current work leveraged the population-based UKB cohort which recruited more 99 

than 500K individuals across the United Kingdom. The UKB study was approved by the North West 100 

Haydock Research Ethics Committee, and the data used in our work were obtained under data application 101 

number 34175. Specifically, we used the imputed SNP data and T1-weighted MRI data of 34,149 102 

European ancestry individuals with both modalities available after quality control (QC), including 16,063 103 

males and 18,086 females, aged between 45-81 with a median of 64 when brain MRI was collected.   104 
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Genetic data. The imputed SNP data released by UKB consisted of 487,320 individuals and ~96 105 

million variants (v3_s487320). Details of genotyping and imputation can be found in the paper that 106 

describes the UKB genomic data28. In brief, DNA was extracted from blood samples and genotyping was 107 

carried out by Affymetrix Research Services Laboratory. Most of the individuals (94%) reported their 108 

ethnic background as ‘white’, which was a broad-level group. SHAPEIT3 was used for phasing29. 109 

Imputation was conducted using IMPUTE428 with the Haplotype Reference Consortium reference panel30 110 

and the UK10K Consortium reference panel31.  111 

In this study, we first identified the participants that passed the UKB quality control (sex mismatch, 112 

missing rate, and heterozygosity) and also had sMRI data available. We then excluded SNPs with minor 113 

allele frequencies < 0.01, as recommended for subsequent GWAS and PRS analysis32. We then conducted 114 

relatedness estimation (identify-by-descent) using PLINK33. For each group of individuals that were 115 

second-degree relatives or closer, only one individual was retained for subsequent analysis. Finally we 116 

identified individuals of European ancestry (in a more strict sense) to be those close (< 3SD) to the center 117 

of the ‘white’ cluster as defined by the first four principal components.  118 

Structural MRI data. The UKB imaging enhancement plan starting in 2014 highlights the aim of re-119 

inviting 100K participants for multi-modal imaging34. The data we used contain T1 scans of ~37K 120 

individuals. UKB used identical scanner models, coils, software, and protocols across centers to ensure 121 

data harmonization as much as possible. The T1 scans used the magnetization-prepared rapid acquisition 122 

with gradient echo sequence, resolution = 1.0 mm × 1.0 mm × 1.0 mm, matrix = 256 × 256 × 208, TI = 123 

880 ms, TR = 2000 ms, parallel imaging acceleration factor = 2. 124 

The whole brain T1-weighted data were preprocessed using the standard statistical parametric 125 

mapping 12 voxel-based morphometry pipeline as described in our previous work35,36. With the unified 126 

model integrating image registration, bias correction, and tissue classification, the resulting gray matter 127 

volume (GMV) images were estimated by the modulated method and then resliced to 1.5 mm × 1.5 mm × 128 
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1.5 mm. The resliced GMV images were further smoothed by a 6 mm full width at half-maximum 129 

Gaussian kernel. We calculated the gray matter mask based on the average GMV > 0.2, which included 130 

416,407 gray matter voxels for further analyses. We excluded 55 outlier participants whose GMV profiles 131 

(masked) showed correlations < 0.8 with the average GMV profile across all the participants.  132 

 Imputation of gene expression.  MetaXcan was used to impute gene expression from genotypes25 133 

leveraging the GTEx V8 release24 for eQTL information. Given the goal to evaluate the predictive power 134 

of gPRS for brain phenotypes, we chose to focus on the GREs of brain tissues. The imputed SNPs that 135 

passed the aforementioned quality control (QC) were used as input. As a result, a total of 56,348 genes 136 

were successfully imputed across 13 available brain tissues. Figure 1a shows a breakdown of the number 137 

of imputed genes for individual brain tissues.   138 

Gray matter phenotypes. This work investigated a total of 13 SZ-related brain networks for 139 

predictability by genetics. These brain networks were derived by applying independent component 140 

analysis (ICA)37,38 to GMV data from other studies (COBRE, FBIRN, and BSNIP36,39), called source-141 

based morphometry40. ICA decomposes the GMV data into a linear combination of maximally spatial-142 

independent components. Each component or brain network essentially identifies a pattern of voxels with 143 

covarying GMV patterns, and the component’s associated loadings reflect how this brain network is 144 

weighted or expressed in different subjects. For these 13 brain networks, their loadings have been found 145 

to show robust SZ relevance across cohorts of different age ranges, including significant group 146 

differences between controls and individuals with SZ in adults, significant associations with Structured 147 

Clinical Interview for DSM-5 (SCID) SZ scale in young adults, as well as significant associations with 148 

prodromal psychosis scale in adolescents (unpublished data). Figure 1b shows the spatial maps of these 149 

13 SZ-related GMV networks, where the red and blue colormaps indicate that the original voxel-level 150 

GMVs were positively or negatively correlated with the component loadings extracted by ICA, or the 151 

brain phenotypes tested in the current work. For all these highlighted brain regions, cases with SZ showed 152 

lower GMV compared to controls.   153 
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 154 

Figure 1: (a) A summary of imputed genes for each of the 13 brain tissues; (b) Spatial maps of the 13 schizophrenia-155 
related brain networks.  156 

We conducted spatially-constrained ICA, an sMRI version of our fully automated NeuroMark 157 

pipeline41, on the UKB GMV data with the 13 SZ-related brain networks serving as references. This 158 

pipeline allowed obtaining brain networks for the UKB individuals that corresponded to the reference 159 

networks while allowing variations specific to the UKB data. Similarly, this pipeline yielded associated 160 

loadings of components that reflected the weights of brain networks on subjects, which were used as gray 161 

matter phenotypes to be predicted by GREs.  162 

SNP-based polygenic risk score. First we made sure that the QC was calibrated with those 163 

recommended for GWAS and PRS analysis32,42. We then chose to prune the SNP data before running 164 

GWAS, rather than conducting GWAS on unpruned data followed by clumping + thresholding, mainly to 165 

reduce computation burden32,42. The QCˊd SNPs went through a heavy pruning (r2 < 0.1, 500 kb window) 166 

resulting in 208,752 autosomal SNPs. GWAS was conducted on the training data using PLINK to assess 167 

the additive effects of individual SNPs on one brain phenotype (continuous variable) at a time. Age, sex, 168 
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MRI scanning site, as well as the top 5 principal components of the genomic SNP data were included as 169 

covariates. Then in the testing data sPRS represented the combined effects of SNPs that passed the 170 

specified p-value threshold. In this work, we tested five p-value thresholds including 0.0001, 0.05, 0.1, 171 

0.5, and 1.   172 

Gene-based polygenic risk score (gPRS). The GREs of imputed 56,348 genes across 13 brain 173 

tissues were assessed for associations with each brain phenotype using a regression model in the training 174 

data, controlling for age, sex, MRI scanning site, and the top 5 principal components for population 175 

structure. The previous work suggested that in general, the full model (p-value threshold = 1) multi-tissue 176 

gene risk scores showed stronger predictive power27. Consequently, in this work gPRS represented the 177 

combined effect of all the GREs from 13 brain tissues.  178 

It is not well established whether pruning is needed for gene-based risk scores, given that each gene 179 

has its own biological function and impact on the traits. With that said, to address the concern of 180 

including highly correlated genes might inflate the associations between the resulting gPRS and gray 181 

matter phenotypes, we also examined how gPRS with pruning compared with sPRS in prediction. 182 

Specifically, we conducted a 500K-window pruning with r2 < 0.16 on all the 56,348 imputed genes across 183 

13 brain tissues. After pruning, a total of 16,527 tissue-specific gene markers were retained for gPRS 184 

analysis, denoted as gPRS_pruned in the following text.   185 

Training and testing. The UKB data were partitioned into 30 folds to examine the impact of training 186 

sample size on the predictive power of sPRS and gPRS. For each random partition, one fold of 1,138 187 

individuals was used for testing, while the training sample size increased from one fold (N = 1138) up to 188 

29 folds (N = 33,011). For each training set, we estimated the effects of individual SNPs and genes on 189 

brain phenotypes as described above. The resulting summary statistics were then used to compute sPRS 190 

and gPRS in the hold-out testing set (i.e., predicted brain phenotypes). The correlations (R) between the 191 

predicted and observed brain phenotypes were employed as a metric of prediction accuracy. A total of 192 
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five random partitions were conducted to characterize how the overall predictive power for all the brain 193 

phenotypes varied with training sample size, and if there were any statistical differences in the predictive 194 

power between sPRS and gPRS. 195 

Heritability. We also examined how heritability might impact sPRS and gPRS performance. We 196 

conducted GWAS on each brain phenotype using the common SNPs of the QC’ed UKB data and the 197 

HapMap SNPs, as recommended by the LD Score (LDSC) regression tool 15. The full UKB data covering 198 

34,149 European ancestry individuals were included in the GWAS for heritability analysis. Additive 199 

effects were evaluated for individual SNPs, controlling for the same covariates as described above. 200 

Finally, heritability was estimated for each brain phenotype based on the summary statistics.  201 

RESULTS 202 

Figure 2a shows how prediction accuracies varied across the tested range of training sample sizes for 203 

both gPRS and sRPS, where five different p-value thresholds were explored for sPRS from 0.0001 up to 204 

1. Figure 2b shows the prediction accuracies of gPRS_pruned compared with gPRS and sPRS. Each data 205 

point and its confidence interval reflect the mean and standard error of the observed prediction accuracies 206 

across 13 brain phenotypes and 5 random partitions for a specific training sample size. It can be seen that, 207 

overall, sPRS prediction accuracies improved with higher p-value thresholds and more SNPs included. 208 

This performance improvement saturated around the p-value threshold of 0.5, given that the prediction 209 

accuracies didn’t differ significantly between the p-value threshold of 0.5 and 1. We then focused on 210 

sPRS with a p-value threshold of 1 for the primary comparison with gPRS.  211 

Both gPRS and sPRS showed improved prediction accuracies with increasing training sample sizes. 212 

Starting from a training sample size of ~1,100, the mean accuracy of gPRS increased from ~0.04 up to 213 

~0.14 at a training sample size of ~33K. In parallel, the mean prediction accuracy of sPRS increased from 214 

~0.024 to 0.11. Notably, the training sample size was capped at ~33K in the current study, and the 215 
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increasing trend of prediction accuracies hadn’t shown any obvious sign of saturation. With pruning, 216 

gPRS_pruned still outperformed sPRS, although showing lower accuracies compared to gPRS.   217 

 218 

Figure 2: (a): Changes in prediction accuracies with increasing training sample sizes. Each data point reflects the 219 
mean and standard error of the prediction accuracies observed from all 13 brain phenotypes across 5 random 220 
partitions at a specific training sample size. For the sPRS approach, the results of all the tested p-value thresholds 221 
from 0.0001 up to 1 are provided. (b): Prediction accuracies of gPRS_pruned compared with gPRS and sPRS.  222 

Figure 3 shows the side-by-side violin plots of gPRS and sPRS predictive accuracies for all the tested 223 

training sample sizes. For each sample size, we conducted a two-sample t-test based on the prediction 224 

accuracies of 13 gray matter phenotypes and 5 random partitions, to examine whether gPRS outperformed 225 

sPRS. Detailed statistics are also included, where a positive t-value indicates gPRS showing a higher 226 

mean prediction accuracy compared to sPRS. For almost all the tested sample sizes, gPRS showed 227 

significantly higher prediction accuracies than sPRS, with p-values ranging from 0.04 to the lowest 228 
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1.37E-06 which was observed at a training sample size of 6,828. The only exception was that no 229 

significant difference was noted for a training sample size of 2,276.  230 

 231 

Figure 3: Comparison of prediction accuracies between gPRS and sPRS across the whole tested range of training 232 
sample sizes. For each training sample size, the violin plots show the distributions of prediction accuracies of 13 233 
brain phenotypes across 5 random partitions of gPRS and sPRS respectively. The table below summarizes the t-234 
values and p-values of the two-sample t-tests.  235 

We also examined how heritability might impact the gPRS and sPRS prediction accuracies. Figure 4 236 

shows how prediction accuracies varied across brain networks showing different levels of heritability. 237 

Each data point indicates the mean prediction accuracy (along with the confidence interval) across all the 238 

training sample sizes for one specific brain phenotype, sorted by heritability. All the brain phenotypes 239 

were significantly heritable, with estimated h2 ranging from 0.28 to 0.35. Meanwhile, no significant 240 

association was observed between the estimated heritability and the sPRS/gPRS prediction performance. 241 

Despite discrepancies noted for 2 out of 13 brain phenotypes, the predictability was consistent between 242 

sPRS and gPRS for the remaining brain phenotypes, where a higher gPRS accuracy was accompanied by 243 
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a higher sPRS accuracy. And gPRS showed improved prediction accuracies for most of the brain 244 

phenotypes compared to sPRS, while comparable accuracies were noted for the rest.  245 

 246 

Figure 4: Scatter plots of prediction accuracies versus estimated heritability of the schizophrenia-related brain 247 
networks. Each data point reflects the mean and standard error of the prediction accuracies observed from all the 248 
training sample sizes across 5 random partitions for a specific brain phenotype.  249 

DISCUSSION 250 

We investigated the applicability of GREs for directly assessing gene-brain phenotypes associations 251 

and gPRS prediction. A total of 13 SZ-related gray matter networks were employed as brain phenotypes. 252 

We partitioned the UKB data into training and testing sets to compare the predictive power of gPRS and 253 

sPRS on these brain phenotypes, and how the predictive power varied across a wide range of training 254 

sample sizes.   255 

As expected, both sPRS and gPRS showed improved predictive power with increasing training 256 

sample sizes. Also, both curves showed sharper increases at smaller sample sizes in which increasing the 257 

training samples by 1,000 yielded more gain in prediction accuracy compared to a sample size increase 258 

from 20,000 to 21,000. With that said, the prediction accuracy curve did not quite saturate at the largest 259 

tested sample size of 33K. It remains a question what the most cost-effective sample size should be for 260 

this type of risk score study of brain phenotypes, which also depends on the trait heritability, polygenicity, 261 

risk prevalence, etc.   262 
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The gPRS computed based on GREs reliably predicted gray matter phenotypes, even at small training 263 

sample sizes. With only 1,138 training samples, the gPRS prediction accuracies observed across 13 gray 264 

matter networks and 5 random partitions were significantly greater than 0. It should be emphasized that 265 

the computation of gPRS didn’t leverage any large-scale GWAS. The results support that GREs can be 266 

used as primary genetic variables for directly assessing gene-brain phenotype associations and can yield 267 

generalizable results with a reasonable sample size.  268 

It’s noted that gPRS, either without or with pruning, outperformed sPRS in predictive power for 269 

almost the whole tested range of training sample sizes. The main comparison as shown in Figures 2 and 3 270 

was based on the prediction accuracies across all the 13 networks and 5 random partitions, which was 271 

expected to better characterize the overall predictive power and how it related to the training sample size. 272 

Furthermore, Figure 4 shows the gPRS and sPRS prediction accuracies of individual gray matter 273 

networks, where the improvement in gPRS prediction was relatively evenly distributed across all the 13 274 

networks, rather than being majorly driven by one brain network. These findings lend support that gPRS 275 

presents improved prediction accuracies on brain phenotypes in a general sense, which does not appear to 276 

be specific to certain brain regions. More significant improvement in prediction was noted for a sample 277 

size range of ~3000-15000, where using gPRS improved the mean prediction accuracy by 0.019-0.029. At 278 

larger sample sizes, the sPRS performance was more comparable to gPRS, although gPRS remained to 279 

show significantly higher accuracies up to 33K. This observation echoes the speculation that imputed 280 

genes, as a multivariate factor of SNPs, alleviate the issue of modest effect sizes and the gain of using 281 

GREs is more substantial for smaller sample sizes. Meanwhile, larger sample sizes above 33K need to be 282 

tested to locate the range where sPRS outperforms gPRS by leveraging the whole genome rather than just 283 

eQTLs. Collectively, these findings promote GREs over SNPs for brain phenotype association and 284 

prediction analysis with a sample size below 30K.   285 

One speculation is that the improved prediction noted in gPRS might be related to tissue-specificity. 286 

Only imputed genes of brain tissues were used to compute gPRS, which was expected to align better with 287 
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the target traits of brain phenotypes. While GREs reflect multivariate regulatory effects of SNPs, using 288 

only imputed genes of brain tissues is equivalent to applying a screening on SNPs, such that only SNPs 289 

known to regulate gene expression levels in those brain tissues were included for assessment. Excluding 290 

SNPs that are less likely to directly impact the brain may help reduce the background noise in gPRS, 291 

which is expected to benefit more when the sample size is low. This is also consistent with the notion that 292 

independent filtering help boost detection power for high-throughput experiments43. 293 

Both sPRS and gPRS reflect the genetic effects on the traits. As a result, the resulting prediction 294 

accuracies are expected to be capped by heritability. In the current work, all the tested brain phenotypes 295 

showed significant heritabilities, justifying their predictability by genetics. Meanwhile, no significant 296 

association was noted between heritability and prediction accuracies, which might be due to the observed 297 

heritabilities varied in a relatively narrow range of 0.28-0.35, where the impact on prediction might not be 298 

reliably captured across 13 gray matter traits. Besides, the observed prediction accuracies were well 299 

below the theoretical upper limit as indicated by heritability, suggesting that the linear model of weighted 300 

sum might not capture all the genetic effects on the traits, and more sophisticated models are needed to 301 

further boost the predictive power.  302 

The current work should be interpreted in light of the following limitations. First, we did not test all 303 

the PRS approaches available for SNPs, some of which such as PRS with adaptive shrinkage had been 304 

reported to show improved association and prediction power compared to PRS with a simple pruning. 305 

Given that not many as sophisticated approaches were available for genes, we chose to compare gPRS 306 

with sPRS yielded by a comparable simple model. It remains to be elucidated whether gPRS performance 307 

could also benefit from more advanced learning processes as sPRS did. Second, we did not optimize the 308 

p-value threshold of sPRS for individual training and testing sets using nested cross-validation. 309 

Meanwhile, we did test five p-value thresholds from 0.0001 to 1, and the results consistently indicated 310 

that a higher p-value threshold with more SNPs included for sPRS overall yielded improved prediction 311 

accuracies on the 13 gray matter phenotypes across all the tested training sample sizes. A more detailed 312 
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breakdown of how prediction accuracies changed with p-value thresholds for individual brain phenotypes 313 

and random partitions (Figure S1) further confirmed the consistency in performance improvement. These 314 

observations suggest that although not finely tuned for optimal prediction in each test, the reported main 315 

results of sPRS with a p-value threshold of 1 are not expected to be dramatically poorer than the optimal 316 

accuracy. And this should not impact the comparison between sPRS and gPRS, given the latter was not 317 

test-optimized either. Third, the training sample size was capped at ~33K, where we hadn’t seen a turning 318 

point where sPRS started to outperform gPRS. This needs to be explored further to better inform future 319 

experiment designs. Fourth, the current work only assessed gPRS and sPRS performances on 13 SZ-320 

related gray matter networks. We still need to answer whether the observations generalize to other 321 

imaging modalities, such as functional and diffusion MRI measures, and other behavioral and cognitive 322 

measures, as well as clinical assessments. Fifth, while PRS is a linear model, it deserves further 323 

investigation whether GREs also promise improved power in nonlinear models such as deep neural 324 

networks.  325 

In summary, we provide evidence that GREs hold promise for serving as the primary genetic variable 326 

in brain phenotype association and prediction studies, which are likely more powered than SNPs, 327 

particularly when the sample size is relatively small (< 15K). Future imaging genetic studies may 328 

consider GREs as an option depending on the available sample size.  329 
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Supplemental Figure 433 

 434 
Figure S1: Prediction accuracies observed across all the training sample sizes for individual brain phenotypes and individual 435 
random partitions. Each subplot shows the performance of one random partition, where each data point represents a specific brain 436 
phenotype and shows the mean and standard error of the prediction accuracies across 29 tested training sample sizes.  437 
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