Abstract
Dynamic distribution shifts caused by evolving diseases and demographic changes require domain-incremental adaptation of clinical deep learning models. However, this process of adaptation is often accompanied by catastrophic forgetting, and even the most sophisticated methods are not good enough for clinical applications. This paper studies incremental learning from the perspective of mode connections, that is, the low-loss paths connecting the minimisers of neural architectures (modes or trained weights) in the parameter space. The paper argues for learning the low-loss paths originating from an existing mode and exploring the learned paths to find an acceptable mode for the new domain. The learned paths, and hence the new domain mode, are a function of the existing mode. As a result, unlike traditional incremental learning, the proposed approach is able to exploit information from a deployed model without changing its weights. Pre-COVID and COVID-19 data collected in Oxford University hospitals are used as a case study to demonstrate the need for domain-incremental learning and the advantages of the proposed approach.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study used publicly available data.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
{anshul.thakur{at}eng.ox.ac.uk}
Data Availability
All data is publicly available