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Abstract 

Clinical molecular genetic testing and molecular imaging dramatically increase the quantity 

of clinical data. Combined with the extensive application of electronic health records, 

medical data ecosystem is forming, which summons big-data-based medicine model. We 

tried to use big data analytics to search for similar patients in a cancer cohort and to 

promote personalized patient management. In order to overcome the weaknesses of most 

data processing algorithms that rely on expert labelling and annotation, we uniformly 

adopted one-hot encoding for all types of clinical data, calculating Euclidean distance to 

measure patient similarity, and subgrouping via unsupervised learning model. Overall 

survival was investigated to assess the clinical validity and clinical relevance of the model. 

Thereafter, we built a high-dimensional network cPSN (clinical patient similarity network). 

When performing overall survival analysis, we found Cluster_2 had the longest survival 

rates while Cluster_5 had the worst prognosis among all subgroups. Because patients in 

the same subgroup share some clinical characteristics, clinical feature analysis found that 

Cluster_2 harbored more lower distal GCs than upper proximal GCs, shedding light on the 

debates. Overall, we constructed a cancer-specific cPSN with excellent interpretability and 

clinical significance, which would recapitulate patient similarity in the real-world. The 

constructed cPSN model is scalable, generalizable, and performs well for various data 

types. The constructed cPSN could be used to accurately "locate" interested patients, 

classify the patient into a disease subtype, support medical decision making, and predict 

clinical outcomes. 
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Introduction 

Worldwide, there are approximately 19.3 million new cancer cases diagnosed every year[1]. 

Big data in cancer is being accumulated and reciprocally provides the opportunity to 

understand cancer more. While artificial intelligence (AI) is widely used in biomedical 

science[2], medical data analysis models based on other diseases or algorithms adaptive 

for other conditions are ineffective in the field of tumor, which hinders practical benefits of 

tumor clinical analytics. This is due to the granularity of clinical records is different in various 

disease[3]. Tumor histopathological data, molecular and genetic data represent pivotal 
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features with high information density and clinical value[4, 5]. However, these two types of 

data are generally not involved in other diseases. Histopathological information is mainly 

clinical description, including imaging results, tumor site, tumor stage, differentiation, 

cellular composition, pathological type and final diagnosis. Molecular data comprises 

marker expression, genetic mutation, genomic features, and molecular classification. 

Through pathological examination and molecular detection, in combined with other clinical 

data, tumor and tumor microenvironment characteristics can be comprehensively 

described, and the exact diagnosis can be made, which underpin clinical decision making. 

Moreover, precision medicine claims making personalized therapy for every patient, fueled 

by clinical genetic testing because of advances in cancer molecular genetics and genomics 

[6]. 

Even now, cancer remains awkward and poses a great threat to human health. Inter-patient 

heterogeneity represents a great obstacle to cancer therapy. Conceivably, as cases of 

cancer are an enormous group, there are always some patients who are similar and 

historical similar patients may shed light on treatments for future patients. However, how 

to define and evaluate patient similarity remain controversial[7, 8]. Patient similarity 

calculation, which assesses the similarity between patients by mathematically calculating 

data on the multimodal heterogeneity metrics of patients, seems to be a solution. In general, 

the first step in patient similarity calculation is determining a multimodal data processing 

and integration strategy; The second step is to define a similarity metrics to calculate the 

distance or similarity score among patients in a systematic and consistent manner; The 

third step is to establish a patient similarity network (PSN), and carry out cluster analysis 

and clinical feature analysis in the PSN system; Finally, for a new patient to be evaluated, 

embed to PSN and define a group of patients most similar to the patient of interest in PSN 

based on the patient's similarity score[9]. 

There were some explorations about patient similarity calculations in human diseases[7, 

10]. They generally used patient demographic information, diagnosis, treatment, 

prescription drugs, laboratory test data, and physiological monitoring data extracted from 

electronic medical records (EMRs). At present some patient similarity calculations only use 

numerical variable for parameters to calculate Euclidean distance. This strategy presumes 

all variables are continuous, which is not perfectly suitable for categorical variables[11, 12]. 

Some use International Classification of Diseases (ICD) hierarchical coding to calculate 

the distance between the parent node and each child node for disease diagnoses, and 

then evaluate the similarity[13, 14]; Some orchestrate the medical record information into 

a medical knowledge graph, convert medical entity relation into vector space, which can 

calculate the Euclidean distance, Mahalanobis distance or Cosine similarity[15, 16]. The 

method of encoding/embedding conversion has obvious defects as that need to be 

converted into other systems such as ICD coding and knowledge graph, which are indirect 

calculation and bring various additional influencing factors and eventually affect the 

accuracy of the results. 

Artificial Intelligence and machine learning have demonstrated usefulness in clinical data 

analysis[17, 18]. Diseases features are represented as vectors or matrices, and then 

artificial neural networks are used for similarity learning and patient clustering. The model 

obtained by deep learning algorithm is usually high specialized[19]. Most patient similarity 
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models based on supervised or semi-supervised algorithms are dependent on pre-labelled 

training data and need extract parameters and corresponding exact weights. Although it 

performs well on the experimental dataset, the generalization ability is weak. Even for the 

same disease, the algorithmic model is difficult to transfer when their data metrics is 

different. This is drawback of supervised method[20]. Additionally, for defining and 

measuring patient similarity, data labelling is laborious and susceptible to subjective factors. 

In the era of biomedical big data[21], knowledge and decision are obtained based on 

population data but not on clinician's experience, so the labelling is disgusted. Temporarily 

these two shortcomings lead to little clinical application value of deep learning represented 

by supervised neural networks in patient similarity assessment, self-organizing map is a 

promising neural network besides. 

In view of the above considerations, we employed one-hot encoding and unsupervised 

clustering to manipulate heterogeneous clinical data to assess the similarity of tumor 

patients. The constructed PSN was validated by survival endpoints to make sure clinical 

validity. Our cPSN would create paths from clinical data to insight, from information to 

decision. With an emphasis on clinical utility and usability, clinical investigators can use 

cPSN to find insights and conduct clinical research. Clinicians can use cPSN to inform 

patient stratification, to recommend treatments, to deliver personalized patient care, and 

then to improve population health management[22, 23]. 

 

Methods 

Data collection and preprocessing 

One thousand patients of surgical gastric cancers (GCs) with multiple types of clinical data 

were collected from the department of gastrointestinal surgery, Shanghai Changhai 

Hospital. Clinical information was extracted from EMRs, medical examination reports, and 

then data was preprocessed to ensure consistency in formatting. Clinical descriptions were 

summarized into keywords, such as classifying surgical procedures into laparotomy or 

laparoscopy. For histopathological data，our dataset contained mesenteric vein/portal vein 

involvement, qualitative description of surgical margin status, tumor stage, tumor 

differentiation and so on (Table 1). For molecular genetic data, the dataset contained gene 

mutation derived from clinical genetic testing, gene expression and immunohistochemical 

data. Emphatically each gene mutation and each tumor marker/gene expression level can 

be considered as an independent variable. Missing data are padded with NA. 

Encoding 

In the encoding process, categorical variables were directly coded, numerical variables 

and clinical qualitative descriptions were converted into categorical variables, and each 

categorical state of each variable was recorded as a one-hot feature. Supposed that there 

are M observation indeces (variables) in a set of samples, denoted as 𝑋1, 𝑋2, … , 𝑋𝑀，, 

and each observation index 𝑋𝑖  has 𝑁𝑖  different classification states, denoted as 

𝑁1, 𝑁2, . . . , 𝑁𝑀，altogether obtained ∑ 𝑁𝑖
𝑀
𝑖=1  one-hot features. Continuous values were 

transformed into discrete values by equivalent partitioning. Preferably, for numerical 

variables, the values in a set of samples were divided into 4 parts according to the quartile 

method so that 4 categorical variables were formed. For clinical qualitative descriptions, N 

states formed N categorical variables. 
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The missing value was regarded as an independent one-hot coding type in the observation 

index of clinical data, and there is no need to fill in null values. 

One-hot encoding method was engaged to integrate multimodal medical data. 

Subsequently, the heterogeneous data of patients were transformed into a feature 

embedding matrix. 

Through distance calculation (Euclidean distance in this study), the feature embedding 

matrix was orchestrated to a PSN. Preferably, the t-distributed stochastic neighbor 

embedding (t-SNE) method can be used to visualize the high-dimensional network, in the 

way of two-dimensional or three-dimensional display.  

Subgrouping  

K-Means clustering, an unsupervised learning algorithm, is conducted for patients' 

similarity analysis to divide all patients into K clusters. K is a positive integer greater than 

or equal to 2. If K=2, there will be two nonoverlapping clusters. The elbow method or gap 

statistic method is used to evaluate the effect of clustering for each selected number of K 

clusters. Data encoding and clustering analyses were conducted using scikit-learn 

packages in python3.10. 

Survival analysis 

The Kaplan-Meier method was used for clinical endpoint correlation analysis. The log-rank 

test was used to assess the statistical differences between overall survival (OS) of different 

groups of patients after clustering. PSNs with or without clinical implications were obtained 

based on the statistical significance of p-values. If the p-value less than 0.05 we would 

consider the constructed PSN is correlated with clinical meaningful endpoint, namely cPSN. 

Survival analysis was conducted in R4.0.3 using the survival and survminer packages. 

 

Table 1. Data summary of baseline characteristics of GCs patients 

Parameter name Count 
Parameter 

type 

Parameter 

name 
Count 

Parameter 

type 

Median age (range) 64(24-93) Continuous Nerve_inva

sion 

 Binary 

Median BMI (range) 23.1(14.2-

54.1) 

Continuous Yes 433  

Median 

lymphocyte_count 

(range) 

1.41(0.12-

3.81) 

Continuous No 567  

Median 

leukocyte_count (range) 

6.4(2.66-

27.58) 

Continuous Tumor_thro

mbus 

 Binary 

Median AFP (range) 2.46(0.74-

136.41) 

Continuous Yes 353  

Median CA724 (range) 2.2(0.37-

300) 

Continuous No 647  

Median CA125 (range) 10.7(2.7-

391.4) 

Continuous Cancerous_

node 

 Binary 

Median CA153 (range) 7(2.7-20.2) Continuous Yes 138  

Median CEA 2.3(0.5- Continuous No 862  
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1500) 

Median 

Ki67_expression 

0.6(0.01-0.9) Continuous Positive_ma

rgin 

 Binary 

Median 

Topo_expression 

0.4(0.01-0.9) Continuous Yes 138  

Median max_diameter 3(0.8-18) Continuous No 862  

operater_codeEMR  Categorical Surgical_co

mplications 

 Binary 

Laparotomy 585  Yes 31  

Laparoscope 283  No 969  

Laparoscopic_explorat

ory_surgery 

120  Omental_in

volvement 

 Binary 

NA 12  Yes 7  

Complications  Binary No 295  

Yes 288  NA 698  

No 712  TRG  Categorical 

Tumor_location  Categorical 1 grade 1  

Lower 408  2 grade 4  

Middle 222  3 grade 5  

Upper 360  NA 990  

Residual 10  MLH1_IHC  Categorical 

pT  Categorical (-) 20  

Tis/T1 309  (+) 363  

T2 112  NA 617  

T3 394  MSH2_IHC  Categorical 

T4a 172  (-) 13  

T4b 13  (+) 357  

pN  Categorical Little (+) 12  

N0 447  NA 618  

N1 162  MSH6_IHC  Categorical 

N2 157  (-) 6  

N3a 149  (+) 320  

N3b 85  Little (+) 48  

M  Categorical NA 626  

M0 299  PMS2_IHC  Categorical 

M1 6  (-) 19  

Mx 134  (+) 363  

NA 561  NA 618  

AJCC_Stage  Categorical dMMR  Binary 

Stage 0/stage I 338  Yes 38  

Stage II 278  No 332  

Stage III 378  NA 630  

Stage IV 6  EGFR-IHC  Categorical 

Sample_type  Categorical (-) 586  
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Proximal 68  (+) 406  

Total 409  (±) 8  

Distal 508  ERBB2-IHC  Categorical 

Residual 15  (-) 663  

Differentiation  Categorical (+) 337  

High 26  p53-IHC  Categorical 

Middle 367  (-) 183  

Poorly 365  (+) 185  

Middle_poorly 233  NA 632  

High_middle 9     

Lauren  Categorical    

Intestinal type 128     

Diffuse type 124     

Mixed 76     

NA 672     

    

Results 

We collected 1,000 surgical gastric cancers with multiple types of clinical data (Figure 1). 

In this study, the heterogeneous medical data we dealt with included demographic data, 

histopathological data, molecular and genetic data, laboratory tests and the surgical 

paradigm narrative. The types of data contained numerical variables, binary variables, 

categorical variables and clinical qualitative descriptions (Table 1). 

 

Figure 1. The framework architecture used to construct cancer-specific patient similarity network. 

 

Categorical data representation has advantages in capturing data from clinical records[24]. 

Numerical data is continuous value that is accurate, but it doesn’t necessarily have to be 

presented this way. Given continuous value within a certain range could be considered 

similar clinical significance, and to improve the generalization ability of the model, we 

transformed continuous values into discrete values by equivalent partitioning. In this case, 
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categorical variables were directly coded in the encoding process, numerical variables and 

clinical qualitative descriptions were first converted into categorical variables. In order to 

integrate multimodal medical data, we encoded feature parameters of each patient by 

engaging one-hot encoding method. A total of 143 one-hot encoding values were identified 

from 37 variables, as a result of each categorical state of each variable is recorded as a 

one-hot feature. Subsequently the heterogeneous data of patients were transformed into 

a feature embedding matrix. 

 

Figure 2. 3D t-SNE show patient distribution in the constructed cPSN. Colors show different subgroups 

identified in patient similarity analysis. Values in axes represent relative distance in the dimension. 

 

Through feature coding, patients embedding and distance calculation, all patients were 

orchestrated to form a PSN, which is a M-dimensional network where M is the sum of 

observation parameters. PSN reflected the similarity distance between patients (Figure 2). 

Each pot in the high-dimensional PSN represents a patient. We then conducted cluster 

analysis. The 1,000 surgical gastric cancers were divided into 2 to 11 clusters via K-means 

algorithm. Learning from elbow method, 5 clusters represent appropriate partition with the 

best clustering performance. Each cluster represents a similar group, sharing some clinical 

characteristics (Figure 3), which is the immanent foundation for treatment 

recommendations for a given patient who is clustered into a specific group. 
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Figure 3. Clinical characteristics of each cluster. The colors show frequency of each categorical state of 

the variable. All of 37 variables are show in different clusters, respectively. ※ indicate specific features 

of cluster_2 compared to other clusters. 

 

We performed the correlation analysis of clinically meaningful endpoint to evaluate the 

clinical validity of the clustering. Overall survival, which served as the gold standard of 

oncological clinical endpoint[25], was investigated to assess the validity and clinical 

relevance of the constructed PSN. When the patients in our cohort were divided into five 

clusters, the OS differences between clusters were statistically significant (log-rank test, p 

<2e-16, Figure 4A). Our strategy achieved excellent performance that was superior to the 

traditional classifications, such as patient age, cancer differentiation, or tumor stage (Figure 

4B,4C,4D).  
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Figure 4. Kaplan–Meier survival analysis for OS by (A) subgroups, (B) patient age, (C) cancer 

differentiation, and (D) tumor stage. The five subgroups represent the patients are classified 5 clusters 

based on patient similarity calculation. Patient age is quartile classification. p-value shows statistical 

significance by log-rank analysis. 

 

Cluster_2 had the longest survival rates. Most patients in the cluster_2 are negative nerve 

invasion, negative tumor thrombus, negative cancerous node, or/and no regional nodal 

involvement. The patients’ pathological stage is mainly stage I and stage II, although 

scattered across all stages. All of these clinical indicators support better prognosis. 

Interestingly, we found that lower distal GCs are more than upper proximal GCs, shedding 

light on the debates[26, 27] (Figure 3). Cluster_5 had the worst prognosis among all 

subgroups. The patients’ pathological stage is mainly stage III, and upper tumor location is 

in the majority. Cluster_1 contain 71.6% of patients of Mx that means distant metastasis 

cannot be determined. TP53 mutation is dominantly in Cluster_3 and Cluster_4, in 

accordance with their dMMR characteristic (Figure 3). 

 

Discussion 

The present research provides a similarity calculation method for tumor patients based on 

one-hot encoding unsupervised clustering. According to their clinical features, a cohort of 

tumor patients were embedded in a high-dimensional space, then patients are clustered 

into several groups that share a lot in common. Do these different groups of patients are 

clinically different? While death is the primary event of interest in cancer patients, based 

on the OS of cancer patients, the correlation analysis of the clinical endpoint was carried 

out on clustered patients. The log-rank test assessed statistical significance to examine 

whether the distribution of OS was distinguishable, which ensures the clinical significance 

and clinical practical value of the established PSN. For example, the cancer stage is 

conventionally used to stratify patients[28]. However, patients with different stages were 

often clustered into the same subset in our model. Furthermore, patients in the same 
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subset are similar in survival prognosis, probably as well as other clinical characteristics 

and respond to treatment. 

Clinical data resources include electronic medical records, imaging examinations, 

laboratory tests, genetic and cellular analyses. How to integrate patients’ data that are 

highly heterogeneous is vital in the patient similarity analysis. We adopted the “early 

integration strategy” that constructs a unified model for all types of data, in contrast to the 

“late integration strategy” calculates distances for each data type that requires searching 

for corresponding appropriate model[29]. Note that “early integration strategy” ignore the 

correlation between parameters. The Mahalanobis distance calculation that weights the 

multivariate parameter using the covariance matrix may compensate for the shortcoming. 

Data encoding emerged following integration. We used one-hot encoding strategy as it is 

concise and robust in clinical data management. It can efficiently code any clinical data, 

and the data processing ability is outperforming. As the parameters with clinical meaning 

and data accessibility are limited, dimensionality should never be in mind. Although 

undesirable, missing data frequently occurs in real-world healthcare scenarios due to the 

values of the variables are not measured or unavailable for a patient. The usual practice is 

filling in with estimating values that underrepresent the real state and therefore is not 

suitable for further analysis. The present study regarded the missing value as an 

independent one-hot coding type without filling in null values, which may reduce value bias 

and avoid the classification error caused by filling methods.  

Beside multimodal medical data integration and encoding, data labelling lacks standards 

in the field of tumor patient similarity. Doctor's annotating only make judgement based on 

a fraction of information, usually by rule of thumb. These labelling processes are subjective 

or otherwise uncertain. However, AI algorithms and machine learning usually start with a 

mount of labelling data. This is a great gap between manual labelling given and accurate 

labelling demand that is a critical step for training the algorithm. Unsupervised clustering, 

independent of any labelling data, efficiently classifies patients into subgroups. Then the 

machine learning can be used to uncover clinical characteristics or data features 

underlying the subgroups. Essentially, the constructed cPSN should authentically restore 

the similarity of patients in real-world, linking to prognostic assessment, personal treatment 

and health management. 

While consensus on which machine learning algorithm performs better on specific data 

types in the context of precision medicine is still lacking[30], the present study performs K-

Means unsupervised clustering and evaluates K by statistical algorithm to obtain the 

optimal K, and the whole process is unsupervised without human intervention. The present 

study uniformly adopts one-hot encoding for multi-modal, highly heterogeneous clinical 

data and is flexibly compatible with clinical data evolvement and changes in observation 

status caused by different medical institutions, doctors, and medical development stages. 

The data processing method provides an extensibility mechanism for adding more 

parameters. In future, when synthetic data is expected to replace real data in medical big 

data analytics[31], machine learning algorithms can be used to mine data, which is a 

subsequent mission of patient similarity analysis. 

Altogether, we developed an easy-to-perform, clinically interpretable, generalizable and 

universal method to conduct cancer patient similarity analysis. For a target patient to be 
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evaluated, a group of patients most similar to the target index patient was obtained in cPSN 

using the K-nearest neighbor algorithm based on distance calculation, and the range and 

fineness of the similar patients to the index patient were selected by adjusting the K value. 

This is the way in where population-based clinical information, searching similar patient 

cases for proposing treatment and management strategies, which would promote the 

development of big-data-based precision medicine. 

This study may have several limitations so that the results must be interpreted with caution. 

Although one-hot encoding is a robust method that could dispose of missing values, too 

many null values in the dataset affect the accuracy of the results. It is better to apply as 

complete records as possible in future studies. Besides, the data we used were baseline 

data that depicted the patients’ features before surgery, without considering treatment 

information. That may make sense because the causal connection exists between baseline 

data and treatment programs. Our model ignored the correlations among the parameters 

of selected features. We keep in mind that parameter redundancy and non-weight matrices 

are unconformity of the cPSN. These require solutions, especially under the framework of 

unsupervised learning.  

Conclusions 

Through integrating heterogeneous clinical data (e.g. histopathological data, molecular 

and genetic data, laboratory data, imaging data), we constructed a clinical patient similarity 

network (cPSN). The constructed cPSN model is scalable, generalizable, and performs 

well for various data types. Moreover, our cPSN is associated with clinical implications, 

which would give researchers insights towards clinical issues, and could help clinicians 

make treatment decision, guide clinical management and predict clinical outcome. 
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