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Abstract  
Background: Amyotrophic lateral sclerosis (ALS) is a fatal heterogeneous neurodegenerative disease 

that typically leads to death from respiratory failure within two to five years. Despite the 

identification of several genetic risk factors, the biological processes involved in ALS pathogenesis 

remain poorly understood. The motor cortex is an ideal region to study dysregulated pathological 

processes in ALS as it is affected from the earliest stages of the disease. In this study, we investigated 

motor-cortex gene expression of cases and controls to gain new insight into the molecular footprint 

of ALS. 

 

Methods: We performed a large case-control differential expression analysis of two independent 

post-mortem motor cortex bulk RNA-sequencing (RNAseq) datasets from the King’s College London 

BrainBank (N = 171) and TargetALS (N = 132). Differentially expressed genes from both datasets 

were subjected to gene and pathway enrichment analysis. Genes common to both datasets were 

also reviewed for their involvement with known mechanisms of ALS pathogenesis to identify 

potential candidate genes. Finally, we performed a correlation analysis of genes implicated in 

pathways enriched in both datasets with clinical outcomes such as the age of onset and survival. 

 

Results: Differential expression analysis identified 2,290 and 402 differentially expressed genes in 

KCL BrainBank and TargetALS cases, respectively. Enrichment analysis revealed significant synapse-

related processes in the KCL BrainBank dataset, while the TargetALS dataset carried an immune 

system-related signature. There were 44 differentially expressed genes which were common to both 

datasets, which represented previously recognised mechanisms of ALS pathogenesis, such as lipid 

metabolism, mitochondrial energy homeostasis and neurovascular unit dysfunction. Differentially 

expressed genes in both datasets were significantly enriched for the neuropeptide signalling 

pathway. By looking at the relationship between the expression of neuropeptides and their 

receptors with clinical measures, we found that in both datasets NPBWR1, TAC3 and SSTR1 

correlated with age of onset, and GNRH1, TACR1 with survival. We provide access to gene-level 

expression results to the broader research community through a publicly available web application 

(https://alsgeexplorer.er.kcl.ac.uk). 

 

Conclusion: This study identified motor-cortex specific pathways altered in ALS patients, potential 

molecular targets for therapeutic disease intervention and a set of neuropeptides and receptors for 

investigation as potential biomarkers. 

 
 

Background 
 

Amyotrophic lateral sclerosis (ALS) is a devastating, heterogeneous neurodegenerative disease that 

leads to death from neuromuscular respiratory failure within two to five years. Despite the 

heritability of ALS being largely unknown, the discovery of several genetic risk factors has driven the 

identification of multiple biological processes involved in the disease aetiology
1,2

. However, the 

pathogenic mechanisms of ALS remain poorly understood. 

 

The motor cortex is affected from the earliest stages of the disease and is one of the brain regions 

majorly affected by ALS pathology. Consequently, its disease expression signatures have been 

investigated to gain insight into the disease aetiology. Recent studies have reported differential 

expression of genes related to transcription, neurotransmission, protein synthesis and oxidative 

stress processes3, with extensive RNA expression alterations of neuroinflammatory and synaptic-

related pathways identified at both gene and isoform levels
4
. Nevertheless, studies of this critical 

region at the whole-transcriptome level usually involve relatively small sample sizes and do not 

replicate their results in independent datasets. 
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To study functional changes occurring in the motor cortex of ALS patients, we have utilised two large 

independent RNAseq datasets of ALS patients and controls from the King's College London (KCL) 

BrainBank (171 subjects) and TargetALS (234 samples from 132 subjects). By analysing the two 

datasets, our goal was to obtain profiles of altered gene expression that would identify the 

underlying molecular footprint of ALS and use this information to propose novel hypotheses about 

disease mechanisms, potential drug targets and biomarkers. 

 

 
 
Methods 
 

Datasets 

The KCL BrainBank RNAseq dataset5,6 consists of post-mortem RNAseq samples from KCL and the 

Medical Research Council (MRC) London Neurodegenerative Diseases Brain Bank. Frozen human 

post-mortem tissue was taken from the primary motor cortex. The RNAseq protocol is outlined in 

the Supplementary Methods.  112 sporadic ALS cases and 59 controls were included in this analysis. 

 

The TargetALS RNAseq dataset comes from TargetALS Human Postmortem Tissue Core and the New 

York Genome Centre (NYGC). We obtained the TargetALS dataset from https://www.targetals.org/. 

A list of the sample IDs of 243 samples (from 132 subjects, 112 ALS cases and 20 controls) used in 

this study is available in Supplementary Table 1.  Frozen human post-mortem tissue was taken from 

the motor cortex (medial, lateral, and unspecified). Samples from different motor cortex regions for 

the same subjects were included, where available (see Supplementary Methods: TargetALS Sample 

Selection for more information on the inclusion of multiple samples per subject). Library preparation 

and sequencing of RNA are described in detail here https://www.targetals.org/wp-

content/uploads/2020/11/README-1.zip.  

Bioinformatics, data processing and expression analysis 

Both datasets were processed using the same pipeline, which is documented and distributed here: 

https://github.com/rkabiljo/RNASeq_Genes_ERVs. The pipeline  involves interleaving the paired 

reads using reformat.sh from BBtools7 and trimming adapters and low-quality reads using bbduk.sh7, 

before aligning to the Hg38 reference genome using STAR
8
.Transcripts are then quantified  using 

HTSeq9. The Supplementary Methods provides more details about each one of these steps and the 

parameters used.  DESeq210 was used for normalisation and differential expression analysis. The 

scripts are available at https://github.com/rkabiljo/DifferentialExpression_Genes. To test whether 

the number of differentially expressed genes identified in our analysis was due to chance, we 

performed 1,000 random permutations of case/control labels and performed differential expression 

analysis on each permutation. For each permutation, we counted the number of genes with false 

discovery rate (FDR) adjusted p-value lower than our selected cut-off of 0.05. The random 

permutation scripts are available here https://github.com/rkabiljo/ShufflingLabelsForDE. Functional 

enrichment was performed using MetaCore
TM

 (available at https://portal.genego.com) for Gene 

Ontology (GO) processes, Pathway Maps, Process Networks and Disease by Biomarker enrichments, 

whilst gProfiler2
11

 was used for Reactome
12

 enrichment. We used BRETIGEA
13

 to derive cell 

proportions for the following cell types; astrocytes, endothelial cells, microglia, neurons, 

oligodendrocytes, and oligodendrocyte progenitor cells (OPCs). 
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To share the results with the wider community, we developed a web application using the R “shiny” 

framework (version 1.7.1) to allow quick visualisation of specific gene expression in ALS cases and 

controls, available at https://alsgeexplorer.er.kcl.ac.uk.  

 
Results 

Sample Characteristics 

The summary characteristics of the two datasets are shown in Table 1. The KCL BrainBank dataset 

had significant differences between cases and controls in terms of age, RNA integrity number (RIN) 

and post-mortem delay (PMD). The TargetALS dataset showed no significant differences in age, sex, 

and RIN between cases and controls, but did display a significant difference in PMD (p-value = 

0.0086). We have accounted for these differences through our choice of covariates included in the 

differential expression analyses (see Supplementary Methods). Principal component analysis (PCA) 

plots of samples based on expression data using the 500 most variable genes are in Supplementary 

Figures 1A (KCL BrainBank) and 1B (TargetALS). 

 

 
 KCL BrainBank  

ALS Cases Controls  p-value* 

Total 112 59  

Age (mean ± SD) 68.81±12.71 76.19±14.58 1.76e-06 

Sex     

Female (%) 47 (41.96%) 33 (55.93%) 0.11 

Male (%) 65 (58.04%) 26 (44.07%) 
 

RIN Number (mean ± SD) 6.44±1.26 5.33±1.58 8.38e-06 

PMD (mean ± SD) 26.05±12.08 37.56±19.34 7.61e-05 

 Target ALS  

ALS Cases Controls p-value* 

Total 112 20  

Age (mean ±SD) 63.95±10.57 62.6±11.86 0.64 

Sex    

Female 48(42.86%) 11(55%) 0.45 

Male 64 (57.14%) 9 (45%) 
 

Sample Characteristics    

Total 198 36  

RIN Number (mean ± SD) 6.20±1.48 5.91±1.25 0.2 

PMD (mean ± SD) 10.49±6.92 21.16±22.84 0.0086 

 

Table 1. KCL BrainBank and TargetALS sample characteristics. Age: Age at death. PMD: Post-mortem delay. 

RIN: RNA integrity number. *p-value of Chi-square test for categorical variables (Sex) and T-test for continuous 

variables (Age, RIN Number, PMD) 
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Differential expression analysis identifies genes linked to ALS pathogenesis 
shared in both datasets  
 

KCL BrainBank 
A total of 2,290 genes were differentially expressed with an adjusted p-value of <0.05, in the KCL 

BrainBank dataset. Of these, 1,507 of the genes were upregulated and 783 were downregulated in 

cases (Figure 1A, 1B). None of the 1000 random permutations produced more differentially 

expressed genes than the actual differential expression analysis, thus confirming the significance of 

these results. In the vast majority of the permutations, there were no differentially expressed genes 

(with adjusted p-value <0.05), with the number of significant genes across permutations averaging 

4.5.   

 

 
 

Figure 1.  A) KCL BrainBank and C) TargetALS MA plots representing the distribution of log2 fold change (logFC) 

across all expression levels; B) KCL BrainBank and D) TargetALS Volcano plots. Plot D has been cropped to 

exclude one point with extremely high log2 fold change. Genes coloured red pass both the p-value and logFC 

thresholds. Grey genes are not significant, green genes only pass the logFC threshold, and blue genes only pass 

the logFC threshold. E) Numbers of differentially expressed genes in the two datasets. 
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TargetALS 
A total of 402 genes were differentially expressed, with an adjusted p-value of <0.05, in the 

TargetALS dataset. Of these, 250 of these genes were downregulated and 152 were upregulated in 

cases (Figure 1C, 1D). When performing random permutations, 9 (0.9%) produced as many or more 

differentially expressed genes as the actual differential expression analysis. In most of the 

permutations, there were no differentially expressed genes (with adjusted p-value <0.05), with an 

average of 28 significantly expressed genes across permutations.  

 

Shared Differentially Expressed Genes 
 

We found 44 genes significant in both datasets with an adjusted p-value of <0.05. All of these genes 

had a concordant direction of regulation in both datasets; 29 genes were downregulated and 15 

were upregulated (Figure 1E). To estimate the significance of this intersection between differentially 

expressed genes in the two datasets, we performed a hypergeometric test, using 41,709 as the 

number of background genes.  The p-value obtained was < 1.2e-05. Genes that were significant in 

both datasets are listed in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2023. ; https://doi.org/10.1101/2023.05.05.23289551doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.05.23289551
http://creativecommons.org/licenses/by/4.0/


7 
 

 

Table 2. Genes significantly differentially expressed in both datasets. Red: Upregulated; Blue: Downregulated’ 

LogFC: Log2 of Fold Change 

 

 

 

Ensembl ID  Gene 

symbol  

Entrez ID KCL BrainBank 

 

TargetALS Biological Theme  

P-value Adjusted P-

value 

LogFC P-value Adjusted 

P-value 

LogFC   

ENSG00000121858  TNFSF10  8743 0.000343 0.0132 -0.71 0.00000166 0.00134 -0.77 UPS/Autophagy D
o
w
n
re
g
u
la
te
d
 in
 A
L
S
 

ENSG00000164309  CMYA5  202333 0.000183 0.00579 -0.28 0.000189 0.0266 -0.29 UPS/Autophagy 

ENSG00000074410  CA12  771 0.000203 0.0109 -0.58 5.99e-15 5.22e-11 -1.3 NVU Dysfunction 

ENSG00000101439  CST3  1471 0.00537 0.0423 -0.27 0.000421 0.0387 -0.41 NVU Dysfunction 

ENSG00000271447  MMP28  79148 0.00309 0.0302 -0.33 0.00000938 0.00329 -0.58 Neuroinflammation 

ENSG00000110492  MDK  4192 0.000549 

 

0.02 -0.43 2.1e-18 

 

6.25e-14 

 

-1.26 Neuroinflammation, 

Neurogenesis 

ENSG00000188803  SHISA6  388336 0.00000256 

 

0.000843 

 

-0.48 4.71e-10 

 

0.0000016

1 

 

-0.76 Neuronal Signalling 

(AMPA/NMDA) 

ENSG00000196502  SULT1A1  6817 0.000576 0.011 -0.25 0.00017 0.023 -0.36 Metabolism, Neuronal 

Signalling (AMPA/NMDA) 

ENSG00000110090  CPT1A  1374 0.0041 0.0339 -0.23 0.00000422 0.00213 -0.35 Metabolism (Fatty Acid) 

ENSG00000204396  VWA7  80737 0.00241 0.0284 -0.24 0.000239 0.0284 -0.47 Extracellular Matrix 

ENSG00000156076  WIF1  11197 0.00152 0.0215 -0.55 0.00000376 0.00214 -0.92 WNT/β-Catenin Signalling 

ENSG00000160602  NEK8  284086 0.00143 0.309 -0.35 0.0000187 0.00539 -0.56 DNA Damage Response 

ENSG00000091656  ZFHX4  79776 0.0000654 0.00325 -0.22 0.0000615 0.0125 -0.28 Transcriptional Regulation 

ENSG00000184678  H2BC21  8349 0.00096595 0.01604757 -0.24 3.19E-05 0.0081686

3 

-0.3 Nucleosome 

ENSG00000237686  SCIRT  10192970

5 

2.62E-05 0.00417087 -0.65 1.14E-05 0.0046560

1 

-0.66 NVU Dysfunction 

ENSG00000261888  Lnc-

METRNL-1 

NA 0.000747 0.0269 -0.64 0.0000014 0.00194 -0.81 Metabolism (Glucose) 

ENSG00000271646  IRF2-DT 11713460

1 

9.38E-05 0.0063982 -0.45 0.00057226 0.0454843

6 

-0.38 Neuroinflammation 

ENSG00000134042  MRO  83876 0.00558 0.0408 -0.31 0.00000451 0.00244 -0.47 - 

ENSG00000184232  OAF  220323 0.000889 0.0152 -0.32 0.000396 0.0378 -0.42 Molecular Chaperone 

ENSG00000267904 Lnc-

MED26-2  

NA 0.000702 0.0199 -0.27 0.000438 0..307 -0.21 Transcriptional Regulation 

ENSG00000135597 REPS1 85021 0.00112 0.0164 -0.13 0.000442 0.0411 -0.15 Neuronal Signalling 

(Vesicular Transport and 

Endocytosis) 

ENSG00000162415 ZSWIM5 57643 0.00128 0.0182 -0.13 0.000221 0.0275 -0.15 Metal Ion Binding 

ENSG00000070366 SMG6 23293 0.00292 0.0299 -0.11 0.000155 0.0217 -0.15 Telomere Maintenance, 

Nonsense-Mediated Decay 

ENSG00000145476 CYP4V2 285440 0.00304 0.0302 -0.2 0.000392 0.0358 -0.23 Metabolism (Fatty Acid) 

ENSG00000167703 SLC43A2 124935 0.0043 0.0374 -0.18 0.00000453 0.00244 -0.43 Amino Acid Transport 

ENSG00000160216 AGPAT3 56894 0.00439 0.0379 -0.1 0.000253 0.0282 -0.17 Metabolism (Lipid) 

ENSG00000215154  LOC652276 652276 0.000685 0.0187 -0.26 0.00108 0.0482 -0.28 - 

ENSG00000166603  MC4R  4160 0.000741 0.0218 0.63 0.00000815 0.00244 0.75 Neuropeptide Signalling, 

Metabolism 

U
p
r
e
g
u
la
t
e
d
 in
 A
L
S
 

ENSG00000105643  ARRDC2  27106 0.0000945 

 

0.00407 

 

0.32 0.00000843 

 

0.00314 

 

0.46 Metabolism, Neuronal 

Signalling  

ENSG00000161896  IP6K3  117283 0.0000995 0.00409 0.64 0.000407 0.0378 0.66 Metabolism 

ENSG00000183196  CHST6  4166 0.0000124 0.0015 0.41 4.2e-7 0.000491 0.62 Metabolism 

ENSG00000176641  RNF152 220441 0.000421 0.00849 0.29 0.0000137 0.00466 0.33 UPS/Autophagy 

ENSG00000156804  FBXO32  114907 0.000816 0.0135 0.21 0.000103 0.0181 0.25 UPS/Autophagy 

ENSG00000240583  AQP1  358 0.00109 0.0163 0.63 0.000214 0.0266 0.86 NVU Dysfunction 

ENSG00000154188  ANGPT1  284 0.00233 0.0419 0.42 6.18e-7 0.000399 0.67 NVU Dysfunction 

ENSG00000134817  APLNR  187 0.00574 0.0439 0.56 0.00000284 

 

0.00195 0.9 NVU Dysfunction, Apelin 

Signalling 

ENSG00000168386  FILIP1L  11259 0.0000513 0.00325 0.2 0.000259 0.0315 0.25 WNT/β-Catenin Signalling  

ENSG00000286653  NA (novel 

transcript)  

NA 0.000304 

 

0.0344 0.57 0.000137 

 

0.0206 0.61 - 

ENSG00000052795 FNIP2 57600 0.00165 0.0197 0.14 0.000108 0.0181 0.2 Metabolism, Autophagy, 

Apoptosis 

ENSG00000171451 DSEL 92126 0.0059 0.0447 0.16 0.000127 0.0208 0.3 -  

ENSG00000198740 ZNF652 22834 0.000859 0.0129 0.19 0.0000229 0.00605 0.34 Transcriptional Regulation 

ENSG00000138798  EGF  1950 0.000319 0.0123 0.4 0.0000388 0.0091 0.42 -  
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Enrichment Analyses 

To compensate for the different numbers of differentially expressed genes in the two datasets when 

using 0.05 as the corrected p-value threshold (2,290 genes in KCL BrainBank and 402 in TargetALS), 

we applied an additional threshold of logFC > 0.2 to the KCL BrainBank dataset. This yielded 

differential expression for 1,013 genes, which were uploaded to MetaCore for enrichment analysis 

along with the 402 differentially expressed genes in TargetALS. We performed analyses using 

MetaCore Pathway Maps, Process Networks, Disease Networks and GO processes. Supplementary 

Tables 2 and 3 list all enrichments with their p-value, false FDR adjusted p-value, and the genes from 

each dataset contributing to each enrichment. 

 

Process Networks: neuropeptide signalling is altered in ALS in both datasets 
Figures 2A and 2B display the most significant MetaCore Process Networks identified in the two 

datasets. Among the most significant processes in KCL BrainBank are several neurological-related 

processes (Transmission of nerve impulse, Neuropeptide signalling pathways and Development 

Neurogenesis Axonal guidance) and processes related to muscle contraction. The most significant 

process network in TargetALS is Signal Transduction Neuropeptide signalling pathways, which was 

the third most significant KCL BrainBank process network. In TargetALS, among the most enriched 

networks (albeit not significant) are several processes related to inflammation (interferon signalling 

and NK cell cytotoxicity). 
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Figure 2. Enrichment analysis results in the two datasets. The ten most significant enrichments are shown, 

sorted by adjusted p-value, or fewer if there are less than ten significant after multiple testing correction. A) 

KCL BrainBank MetaCore Process Networks; B) TargetALS MetaCore Process Networks; C) KCL BrainBank 

MetaCore Pathway Maps; D) TargetALS MetaCore Pathway Maps; E) KCL BrainBank Reactome; For clarity, in 

panel E, one of the two redundant enrichments was omitted (Respiratory electron transport, which is more 

generalised of the one included, Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and 

heat production by uncoupling proteins). F) TargetALS Reactome. Following pathway abbreviations/names 

have been introduced: PF: Protein Folding; NP: Neurophysiological process; ST: Signal transduction; CS: 

Cytoskeleton; MC: Muscle contraction; POMC, alpha-MSH, AGRP, food intake, energy exp in hypothalamus:  

POMC, alpha-MSH and AGRP in regulation of food intake and energy expenditure in obesity in hypothalamus; 

Regulation of mp, excitability of cortical pyramidal neurons: Regulation of intrinsic membrane properties and 

excitability of cortical pyramidal neurons; Respiratory ET, ATP synthesis by CC, heat production: Respiratory 

electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins. 

 

Pathway Maps: KCL BrainBank is enriched for neurophysiological processes, oxidative stress and 

signal transduction, Target ALS is for POMC processing  
Figures 2C and 2D present the most significantly enriched pathway maps in the two datasets. 

Prominent themes in the KCL BrainBank enrichments were neurophysiological processes, oxidative 

stress and signal transduction. There were three significant TargetALS pathway maps; two related to 

pro-opiomelanocortin (POMC) processing and one to immune response. Interestingly, the most 

significant network in TargetALS, POMC processing (Figure 3), includes several agonists of MC4R 

which is significantly upregulated in both datasets. 

 
 

 

Figure 3. Protein folding and maturation POMC processing pathway map from MetaCore. Blue barometers 

represent downregulated genes from the TargetALS dataset. The descriptions of what the other symbols 

represent are available in Supplementary Figure 1. 
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KCL BrainBank is enriched for nervous system-specific processes while TargetALS 
is for immunological processes 
Enrichments for MetaCore Diseases by Biomarkers, GO Biological Processes and Reactome pathways 

are concordant in the two datasets. The KCL dataset showed clear nervous system related 

enrichments. These included disease enrichments (Heredodegenerative diseases, Huntington’s 

disease, Central Nervous System diseases among others), GO Processes relevant to nervous system 

development, and Reactome pathways related to the functioning of the nervous system, such as the 

transmission of chemical synapses. TargetALS was enriched for immune system related diseases and 

processes, including diseases connected with response to various viral infections, GO Processes 

related to immune defence, and Reactome pathways pertaining to interferon signalling (Figures 2E 

and 2F).  

 

Correlation of neuropeptides and receptors expression with ALS phenotypic 
attributes 

As neuropeptide signalling was the only altered biological network in both datasets, and 

neuropeptides have been implicated with the ALS clinical phenotype
14-16

, we decided to test the 

correlation between the expression of neuropeptides and their receptors with age at onset and 

disease duration of the ALS patients in both datasets. Several neuropeptides and receptors were 

found to be significantly correlated with age at onset and disease duration in at least one dataset 

(Table 3). NPBWR1 was found to be significantly correlated with age at onset in both KCL BrainBank 

and TargetALS after multiple testing correction, whilst TAC3 was nominally significantly correlated 

with age at onset in TargetALS and after multiple testing correction in KCL BrainBank. GNRH1 and 

TACR1 were nominally significantly correlated with survival and SSTR1 with age at onset in both 

datasets. Interestingly all neuropeptides and receptors that were significantly correlated with the 

age of onset of ALS in at least one dataset had a negative coefficient. Figure 4A shows NPBWR1 

expression against age of onset. Complete results can be found in Supplementary Tables 4, 5, 6 and 

7. 

Survival 
 KCL BrainBank TargetALS 

ID Name Coef  p-value p-value (adj) Coef  p-value p-value (adj) 
ENSG00000171596 NMUR1 0.0356 0.739 0.942 0.286 6.12E-05 0.00679 
ENSG00000168081 PNOC 0.0273 0.798 0.957 0.262 0.000248 0.0138 
ENSG00000126895 AVPR2 -0.365 0.000410 0.0408 0.00469 0.948 0.993 
ENSG00000147437 GNRH1 -0.209 0.0484 0.645 -0.210 0.0037 0.0962 
ENSG00000115353 TACR1 0.242 0.0216 0.644 0.166 0.0216 0.250 

Age of Onset 
 KCL BrainBank TargetALS 

ID Name Coef  p-value p-value (adj) Coef  p-value p-value (adj) 
ENSG00000170893 TRH -0.0112 0.917 0.947 -0.359 2.64E-07 2.93E-05 
ENSG00000288611 NPBWR1 -0.343 0.000931 0.0190 -0.254 0.000361 0.0201 
ENSG00000166863 TAC3 -0.302 0.00383 0.0434 -0.163 0.0230 0.3420 
ENSG00000139874 SSTR1 -0.263 0.0122 0.0776 -0.153 0.0327 0.363 
ENSG00000017427 IGF1 -0.385 0.000177 0.0181 -0.137 0.0574 0.411 
ENSG00000146469 VIP -0.345 0.000875 0.0190 -0.119 0.0987 0.548 
ENSG00000168081 PNOC -0.347 0.000808 0.0190 -0.105 0.145 0.658 
ENSG00000087494 PTHLH -0.366 0.000394 0.0190 -0.103 0.152 0.658 
ENSG00000157005 SST -0.328 0.00157 0.0241 -0.0710 0.325 0.743 
ENSG00000134443 GRP -0.327 0.00165 0.0241 0.0644 0.376 0.787 
ENSG00000152034 MCHR2 -0.307 0.00329 0.0420 -0.0600 0.407 0.821 

Table 3. Results of the correlation analysis between neuropeptides and receptors, and clinical features. Only 

results that are significant after FDR correction in at least one dataset, or nominally significant in both are 

displayed. Correlations that are at least nominally significant in both datasets are coloured in green, and those 

that are also significant after FDR correction in one dataset are also in bold. 
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Figure 4: A) Correlation analysis between NPBWR1 gene expression and age of onset in KCL 

BrainBank and TargetALS. B) Screenshot from ALS Gene Expression Explorer showing expression of 

MC4R, which was significantly upregulated in both datasets. 
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Cell Type Composition 

Cell type composition analysis is shown in Figure 5. There was a significantly smaller proportion of 

endothelial cells in cases compared to controls in both datasets (KCL BrainBank: F = 8.673, p-value = 

0.00369; TargetALS: F = 6.423, p-value = 0.0119). In the KCL dataset, cases also displayed higher 

neuronal cell (F = 25.256, p-value = 1.28 x 10
-6

) and lower oligodendrocyte levels (F = 13.633, p-value 

= 0.000301) whereas, in TargetALS, astrocytes were more prevalent amongst cases (F = 5.466, p-

value = 0.0203). The full results are available in Supplementary Table 8.  

 

 
       
Figure 5.  Case-control cell composition analysis in KCL BrainBank (left panel) and TargetALS (right panel), using 

singular decomposition values generated by the BRETIGEA program for six cell types: A) Astrocytes, B) 

Endothelial Cells, C) Microglia, D) Neurons, E) Oligodendrocytes, F) Oligodendrocyte Progenitor Cells. 

Significance was assessed using one-way ANOVA. ns = non-significant, ns = non-significant, * < 0.05, ** < 0.01, 

*** < 0.001. Results were corrected for age and sex. Significance was assessed using one-way ANOVA. Results 

were corrected for age and sex. Controls are in red and cases in green. 

 

 

ALS Gene Expression Explorer 
The ALS Gene Expression Explorer web application (https://alsgeexplorer.er.kcl.ac.uk) enables users 

to explore and compare the expression levels for specific genes in ALS cases and controls in the two 

datasets. Figure 4B displays an example gene (MC4R) which is differentially expressed in both 

datasets. 

 

Discussion 

 
By leveraging motor cortex expression data from two independent large datasets (a total of 224 ALS 

cases and 79 controls), we reported ALS gene expression profiles that indicate the involvement of 

various biological processes in the pathology of ALS. We also identified genes in the neuropeptide 

signalling pathway that showed potential as biomarkers of ALS onset and progression. Differential 

expression analysis identified 2,290 and 402 differentially expressed genes in KCL BrainBank and 

TargetALS cases, respectively. Synapse-related processes, such as GABAergic neurotransmission, 

calcium-mediated signalling and postsynaptic signalling were significantly enriched in KCL BrainBank, 
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whilst TargetALS carried an immune-system related signature, with strong enrichments for 

interferon signalling and NK cell neurotoxicity. This is most likely a product of the molecular 

heterogeneity of ALS, as these two profiles reflect previously hypothesised mechanisms of ALS 

pathogenesis and correspond to the predominant cell types identified in these datasets (neuronal 

cells in KCL BrainBank and astrocytes in TargetALS). Changes in the excitability patterns of GABAergic 

interneurons influence alterations in motor cortex circuitry, which has been proposed as a possible 

trigger for the spread of ALS pathology
17,18

. Previous work has also implicated NK cells, which secrete 

interferon-γ and are upregulated in the motor cortex and spinal cord of ALS patients19,20 as being 

modulators of motor neuron degeneration
21

, with interferon signalling pathways being upregulated 

in spinal cord astrocytes in a SOD1 ALS mouse model22.  

 

Despite the diversity in the KCL BrainBank and TargetALS gene expression profiles, the neuropeptide 

signalling pathway was enriched in both datasets, which suggests that this is a key feature of ALS 

pathogenesis. The KCL BrainBank and TargetALS datasets exhibited both unique and shared 

differential expression of several neuropeptide ligands and receptors. One gene, melanocortin 

receptor 4 (MC4R), was significantly upregulated in both datasets. The role of the melanocortin 

system in ALS has largely been overlooked, despite MC4R activation inducing hypermetabolism, 

increased energy expenditure and cachexia; three processes associated with increased lower motor 

neuron weakness and poor prognosis in ALS patients23-27. Furthermore, MC4R-mediated signalling in 

the motor cortex also enhances the activity of sympathetic preganglionic neurons in the spinal cord, 

which modulates skeletal muscle contraction28,29, and rare (MAF <0.01) disruptive and damaging 

missense variants in MC4R might increase the risk of ALS (Beta = 2.15 SE = 1.52, p-value = 0.037, 

http://databrowser.projectmine.com). Therefore, we suggest further investigation on MC4R as a 

potential candidate target gene for future biomarker and screening studies.  

 

Several MC4R agonists are involved in the trans-Golgi network protein folding and maturation 

pathway, which was the most significantly downregulated pathway in TargetALS. This pathway is 

controlled by the MC4R ligand pro-opiomelanocortin (POMC), which acts as a precursor peptide for 

the MC4R agonists30. Hence, aberrant protein degradation linked to both neuropeptide signalling 

dysregulation and endoplasmic reticulum associated stress could be a triggering event for ALS 

pathogenesis. We observed reduced expression of POMC in TargetALS (LogFC = -1.12, adjusted p-

value = 3.6E-05), which would undoubtedly affect the processing of several peptides reliant on 

POMC cleavage in this pathway (β-endorphin, �-MSH, β-MSH). Their expression is linked to anti-

inflammatory processes in neurodegenerative diseases. For instance, β-endorphin, which normally 

reduces the production of pro-inflammatory cytokines such as interferon-γ, IL-1β and IL-2
31  is found 

at lower levels in the cerebrospinal fluid of Alzheimer’s disease patients32. Similarly, both �-MSH and 

β-MSH are cytokine antagonists that protect against excitotoxic and apoptotic signalling effects in 

Parkinson’s and Alzheimer’s disease models33,34; actions that are also perturbed in ALS as evidenced 

by similarly enriched pathways in this study. Therefore, the effects that MC4R-POMC signalling has 

on inflammatory processes could also explain the significant enrichment of immune-related 

processes observed in the TargetALS dataset.  

 

To further investigate how neuropeptide signalling affects clinical phenotype, we performed a 

correlation analysis of neuropeptides and their receptors (102 neurotransmitters and attributes 

present in KCL BrainBank and 111 in TargetALS) with clinical attributes. Several neuropeptides and 

receptors significantly correlated with age of onset and survival in both datasets. NPBWR1 was 

significantly correlated with the age of onset after multiple testing correction in both datasets (KCL 

BrainBank r = -0.34, adjusted p-value = 0.019; TargetALS r = -0.25, adjusted p-value = 0.02). 

Interestingly, NPBWR1 is expressed by GABAergic interneurons and when activated, can dampen 

their inhibitory effects35. Therefore, increased NPBWR1 expression could have a greater impact on 

the aforementioned alterations in motor cortex circuitry, which would corroborate with the earlier 
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age of onset in patients with higher NPBWR1 levels. Likewise, expression of the somatostatin 

receptor SSTR1, which also resides on inhibitory GABAergic interneurons36, was nominally negatively 

correlated with age of onset in the KCL BrainBank. We also found a nominally significant correlation 

between TACR1 and GNRH1 levels and survival in both datasets. Both TACR1 and GNRH1 can 

stimulate the production and release of arachidonic acid
37,38

, a polyunsaturated fatty acid whose 

levels can distinguish ALS patients from mimics and controls and positively correlates with disease 

progression
39

, with higher levels also found in spinal cord motor neuron cultures
40

. Therefore, the 

role of the neuropeptide signalling system on lipid metabolism and cortical signalling in ALS is 

warranted to assess its full impact on clinical phenotype. 

 

When reviewing the 44 differentially expressed genes which were shared in both datasets, we found 

that many were involved in integral themes of ALS pathogenesis, such as carbohydrate/lipid 

metabolism, mitochondrial energy homeostasis (SULT1A1, IP6K3, CPT1A)
41-43

, and neurovascular unit 

dysfunction (AQP1, APLNR, CA12, AGPT1, CST3)44-48. Further investigations of these genes are 

needed to determine if they are the drivers of alterations in these pathways in ALS. 

 

Our study has some limitations which are primarily linked to the fact that we identified gene 

expression signatures in post-mortem tissue. Firstly, as the cells we derive expression for have 

survived the neurodegenerative processes of ALS, we cannot infer if the changes we are observing 

are causing or are a consequence of the ALS phenotype. We do not have information on the staging 

of ALS in these patients so cannot attribute the expression profiles to a certain point of ALS 

progression. Furthermore, there were 5.7 times more differentially expressed genes in KCL 

BrainBank than in TargetALS. Although this might be linked to the larger number of controls in the 

KCL datasets (~3 times more than in TargetALS), there could also be several external factors 

influencing these datasets, such as library preparation, RNA extraction, sample quality, and 

population variability in gene expression. 

 

In summary, we identified several key modulatory themes of ALS pathogenesis as well as identified  

genes in the neuropeptide signalling pathway that showed potential as diagnostic and prognostic 

biomarkers. There is a great need for accurate biomarkers in ALS, particularly for biomarkers that 

predict the age of onset. These could be explored to inform the study of the pre-symptomatic stages 

of ALS and support the development of pre-symptomatic diagnostic approaches
49

.  
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Data availability 
 

KCL BrainBank RNAseq data is available, on reasonable request, from the corresponding author. All 

raw RNAseq data from TargetALS samples can be requested by emailing cgnd_help@nygenome.org. 

Results for individual genes can be visually explored at https://alsgeexplorer.er.kcl.ac.uk/. All data 

analysis scripts used in this study are available at https://github.com/rkabiljo/RNASeq_Genes_ERVs 

and https://github.com/rkabiljo/DifferentialExpression_Genes .  
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