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Summary

Background

Understanding the genetic mechanisms underlying diseases in ancestrally diverse populations is a critical

step towards the realization of the global application of precision medicine. The African and African

admixed populations enable mapping of complex traits given their greater levels of genetic diversity,

extensive population substructure, and distinct linkage disequilibrium patterns.

Methods
Here we perform a comprehensive genome-wide assessment of Parkinson’s disease (PD) in 197,918

individuals (1,488 cases; 196,430 controls) of African and African admixed ancestry, characterizing

population-specific risk, differential haplotype structure and admixture, coding and structural genetic

variation and polygenic risk profiling.

Findings

We identified a novel common risk factor for PD and age at onset at the GBA1 locus (risk, rs3115534-G;

OR=1.58, 95% CI = 1.37 - 1.80, P=2.397E-14; age at onset, BETA =-2.004, SE =0.57, P = 0.0005), that was

found to be rare in non-African/African admixed populations. Downstream short- and long-read whole

genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal.

However, we identified that this signal mediates PD risk via expression quantitative trait locus (eQTL)

mechanisms. While previously identified GBA1 associated disease risk variants are coding mutations,

here we suggest a novel functional mechanism consistent with a trend in decreasing glucocerebrosidase

activity levels. Given the high population frequency of the underlying signal and the phenotypic

characteristics of the homozygous carriers, we hypothesize that this variant may not cause Gaucher

disease. Additionally, the prevalence of Gaucher’s disease in Africa is low.

Interpretation

The present study identifies a novel African-ancestry genetic risk factor in GBA1 as a major mechanistic

basis of PD in the African and African admixed populations. This striking result contrasts to previous work

in Northern European populations, both in terms of mechanism and attributable risk. This finding

highlights the importance of understanding population-specific genetic risk in complex diseases, a

particularly crucial point as the field moves toward precision medicine in PD clinical trials and while

recognizing the need for equitable inclusion of ancestrally diverse groups in such trials. Given the

distinctive genetics of these underrepresented populations, their inclusion represents a valuable step

towards insights into novel genetic determinants underlying PD etiology. This opens new avenues

towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk.
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Research in Context

Evidence Before this Study

Our current understanding of Parkinson’s disease (PD) is disproportionately based on studying

populations of European ancestry, leading to a significant gap in our knowledge about the genetics,

clinical characteristics, and pathophysiology in underrepresented populations. This is particularly notable

in individuals of African and African admixed ancestries. Over the last two decades, we have witnessed a

revolution in the research area of complex genetic diseases. In the PD field, large-scale genome-wide

association studies in the European, Asian, and Latin American populations have identified multiple risk

loci associated with disease. These include 78 loci and 90 independent signals associated with PD risk in

the European population, nine replicated loci and two novel population-specific signals in the Asian

population, and a total of 11 novel loci recently nominated through multi-ancestry GWAS efforts.

Nevertheless, the African and African admixed populations remain completely unexplored in the context

of PD genetics.

Added Value of this Study

To address the lack of diversity in our research field, this study aimed to conduct the first genome-wide

assessment of PD genetics in the African and African admixed populations. Here, we identified a genetic

risk factor linked to PD etiology, dissected African-specific differences in risk and age at onset,

characterized known genetic risk factors, and highlighted the utility of the African and African admixed

risk haplotype substructure for future fine-mapping efforts. We identified a novel disease mechanism via

expression changes consistent with decreased GBA1 activity levels. Future large scale single cell

expression studies should investigate the neuronal populations in which expression differences are most

prominent. This novel mechanism may hold promise for future efficient RNA-based therapeutic

strategies such as antisense oligonucleotides or short interfering RNAs aimed at preventing and

decreasing disease risk. We envisage that these data generated under the umbrella of the Global

Parkinson’s Genetics Program (GP2) will shed light on the molecular mechanisms involved in the disease

process and might pave the way for future clinical trials and therapeutic interventions. This work

represents a valuable resource in an underserved population, supporting pioneering research within GP2

and beyond. Deciphering causal and genetic risk factors in all these ancestries will help determine

whether interventions, potential targets for disease modifying treatment, and prevention strategies that

are being studied in the European populations are relevant to the African and African admixed

populations.

Implications of all the Available Evidence

We nominate a novel signal impacting GBA1 as the major genetic risk factor for PD in the African and

African admixed populations. The present study could inform future GBA1 clinical trials, improving

patient stratification. In this regard, genetic testing can help to design trials likely to provide meaningful
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and actionable answers. It is our hope that these findings may ultimately have clinical utility for this

underrepresented population.

Introduction

Parkinson’s disease (PD) is a complex, heterogeneous neurodegenerative disorder that manifests with

progressive motor and non-motor features, including resting tremor, bradykinesia, mood disorders,

olfactory dysfunction, and cognitive impairment. Globally, about 6.1 million people had PD in 20161, and

as a result of an aging world population and increased longevity, this figure is expected to rise to 17.5

million by 20402 as a result of an aging world population and increased longevity.

Genome-wide association studies (GWAS) have been instrumental for identifying common variants

associated with complex diseases like PD, unraveling the genetics and heritability of PD in European

populations3. The largest published GWAS meta-analysis of PD risk to date was performed on individuals

of European ancestry and identified 90 independent genome-wide significant risk signals that explain

16-22% of the heritable risk of PD4,5. However, very little is known about the genetics of PD in

non-European populations. The largest PD GWAS meta-analysis in the East Asian population recently

identified two population-specific signals,6 and the first PD GWAS in Latin Americans has suggested two

potential novel loci that warrant further study7. The first multi-ancestry PD GWAS meta-analysis has

nominated 11 novel loci, providing a foundation for future efforts aimed at fine-mapping novel genetic

regions linked to PD8. GWAS are powerful tools in the creation of better prediction models and

broadening our biological knowledge of specific diseases9.

Nearly one-third of the genetic heritability of PD can be explained by polygenic risk scores (PRSs)

according to the most recent genetic studies conducted in Europeans. However, the heritability

explained by PRSs is totally unknown in under-researched and underserved populations, as is the total

heritability10,11. There has been considerable ethnic variability in the distribution of monogenic causes

and genetic risk variants documented across populations. For instance, the relatively common LRRK2

p.G2019S mutation remains unreported in some sub-Saharan African populations, despite being most

commonly associated with familial and sporadic PD in Zambia and Northern Africa12–16.

African and African admixed populations offer unique opportunities for studying the genetics of both

monogenic and complex diseases because they contain the largest portion of the within-population

genetic variability in the world, shorter linkage disequilibrium (LD) blocks, and abundant alleles that are

private to these populations17,18,19. In addition to promoting scientific equity to address health disparities,

diverse representation provides a platform for replication studies to explore the strength and relevance

of findings reported from other populations. Additionally it has the potential to facilitate the

identification of novel or unique loci and investigate genotype-phenotype correlations that can further

expand our understanding of pathological and pathogenetic disease mechanisms in PD17,20.
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This study provides the first GWAS-based insights into the genetics of PD in the African and African

admixed populations (Figure 1). Here we performed a comprehensive genome-wide assessment of PD

risk and age at onset, characterizing population specific cumulative risk profiling, haplotype structure,

and genetic admixture. Leveraging this unique population genetic structure, our analyses identified a

novel association signal in GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase (GCase).

This led to the investigation of a novel disease mechanism of expression changes consistent with

decreased glucocerebrosidase activity levels relating to increased risk. Finally, we compare our findings

in the context of other global populations. We envisage that these data generated under the umbrella of

the Global Parkinson’s Genetics Program (GP2) will shed light on the molecular mechanisms involved in

the disease process and might pave the way for future RNA-based therapeutic strategies aimed at

reducing lifetime risk.

Methods

Study participants

The demographic and clinical characteristics of the cohorts under study are provided in Table 1. Three

sources of data were included in this study: Individual level data from the International Parkinson’s

Disease Genomics Consortium - Africa (IPDGCAN) and the Global Parkinson’s Disease Genetics Program

(GP2), and GWAS summary statistics from 23andMe, Inc.

For the IPDGCAN and the GP2 cohorts, the diagnosis of PD was based on fulfillment of the United

Kingdom PD Society Brain Bank criteria (excluding the requirement for not more than one affected

relative)21. The respective ethical committees for medical research approved involvement in genetic

studies, and participants gave informed written consent. All participants underwent a neurological

examination conducted by a study neurologist to document clinical and neurological status. Controls

were generally assessed to detect overall signs of neurological condition and samples presenting any

clinical signs of neurodegenerative diseases were excluded from the control series.

Summary statistics for individuals with or without PD were provided through a collaborative agreement

with 23andMe, Inc. Participants provided informed consent and volunteered to participate in the

research online, under a protocol approved by the external AAHRPP-accredited IRB, Ethical &

Independent (E&I) Review Services. As of 2022, E&I Review Services is part of Salus IRB

(https://www.versiticlinicaltrials.org/salusirb). PD diagnosis was self-reported in this instance. A previous

PD GWAS meta-analysis found a strong genetic correlation between 23andMe GWAS data using

self-reported cases and non-23andMe GWAS data with PD cases ascertained by clinicians (genetic

correlation from LDSC (rG) = 0.85, SE = 0.06)4. Age distributions of cohorts under study are illustrated in

Supplementary Figure 1.
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Genotype data generation, quality control, ancestry predictions, and imputation

The IPDGCAN and GP2 samples were genotyped using two different genotyping platforms (Table 1). The

NeuroBooster array (v.1.0, Illumina, San Diego, CA) contains a backbone of 1,914,935 variants densely

covering ancestry informative markers, markers for determination of identity by descent, and

X-chromosome SNPs for sex determination. In addition, it contains 96,517 customized variants. Samples

collected as part of the GP2 initiative were genotyped on this array. Samples collected as part of the

IPDGCAN initiative (Table 1) were genotyped using two different platforms; the Neurochip array,

containing a backbone of 306,670 variants and customized content comprising 179,467 variants22, and

the previously described NeuroBooster array.

Raw genotype data was passed through a custom ancestry prediction and pruning machine learning

method as a part of the GenoTools pipeline (https://github.com/GP2code/GenoTools), as described

elsewhere23. All samples underwent similar standardized quality control (QC) as follows: Samples were

excluded from the analysis if: call rate was <95%, genetically determined sex did not match that from

clinical data, or excess heterozygosity was detected (|F| statistics > 0.25).

Samples were subset by ancestry estimates (see Supplementary Materials for details). In brief, ancestry

was defined using reference panels from the 1000 Genomes Project24, Human Genome Diversity

Project25, and an Ashkenazi Jewish population dataset26. In total, 39,302 reference panel SNPs were

genotyped on the NeuroBooster array and 24,404 reference panel SNPs were also genotyped on the

NeuroChip array (see Supplementary Materials for details). Ancestry estimates were carried out using a

uniform protocol across all samples.

Next, we removed those samples that were IBD for > 12.5% of the genome (approximately related at a

first cousins level or closer). Once preliminary sample-level QC was completed, SNPs with

Hardy-Weinberg Equilibrium (HWE) P value <1E-4 in control samples were removed. Next, variants were

pruned for missingness by case-control status at P≤1E-4 to remove variants with non-random

missingness. Finally, variants were pruned for non-random missingness by haplotype at P≤1E-4.

For the GP2 data, variants were further filtered by minor allele frequency (MAF) < 0.005 and HWE P <

1E-5 prior to being submitted to the TOPMed Imputation server. The TOPMed reference panel version r2

contains information from 97,256 reference samples and more than 300 million genetic variants across

the 22 autosomes and the X chromosome. As of October 2022, the TOPMed panel consists of about

180,000 participants of which 29% are of African ancestry, 19% of Latin American ancestry, 8% of Asian

ancestry, and 40% of European ancestry. More information about the TOPMed Study27, Imputation

Server28, and Minimac Imputation29 can be found at https://imputation.biodatacatalyst.nhlbi.nih.gov.

The imputed files were then pruned applying a minor allele count (MAC) threshold of 10 and an

imputation Rsq of 0.3. For additional information regarding GP2 ancestry prediction as well as 23andMe

data generation and processing, please see the Supplementary Materials.
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Estimation of PD risk, age at onset and admixture

To estimate risk associated with PD, imputed dosages (meaning genotype probabilities for a variant to be

A/A, A/B, or B/B from 0 to 2 that account for some uncertainty) were analyzed using a logistic regression

model adjusted for sex, age, and the first ten PCs as covariates. Age at onset (AAO) was used for cases

and age at recruitment was used for controls. In instances where AAO was not available for cases, age at

recruitment was used instead (less than 6% of individuals). For individuals who had no age information

provided, average age was imputed (less than 5% and 2% of cases and controls, respectively). Summary

statistics were generated using PLINK 1.9 and 2.034, and filtered for inclusion after meeting a minimum

imputation quality of 0.30 and MAF > 5 %. A binomial generalized linear model (GLM) was employed to

assess the predictive ability of polygenic risk score (PRS) between cases and controls, taking into account

demographic variables such as age, sex, and the first ten PCs as covariates. To explore the influence of

genetic variation on the AAO of PD cases, a linear regression model adjusted for the same covariates was

performed. Additionally, we conducted linear regression analyses to explore how potential GWAS signals

would correlate with admixture levels. All the analyses were performed on Terra (https://terra.bio/).

GWAS was conducted on African and African admixed ancestries independently and then meta-analyzed.

We utilized fixed-effects meta-analyses as implemented in METAL35 to leverage summary statistics across

all sources. Pairwise LD values were calculated using 1000 genomes African population data through LD

link (https://ldlink.nci.nih.gov/?tab=home).

Haplotype and fine-mapping analyses

Haplotype size was compared using individual level data across African, African admixed, and European

PD cases. After standardizing the three datasets with the same genotyped SNPs passing identical QC

steps, we determined the size of the haplotype blocks using default parameters in PLINK 1.9. This

analysis estimates haplotype blocks by Haploview’s interpretation of the block definition. By default, only

pairs of variants within 200 kilobases (kb) of each other were considered. Two variants are considered by

this procedure to be in strong LD if the lower bound of the 90% D-prime confidence interval (CI) was

>0.70, and the upper bound of the CI was at least 0.98.

In an attempt to prioritize putative causal variants within the identified GBA1 risk haplotype, we

performed fine-mapping analyses across the LD block where the genome-wide signal was located by

using the “Approximate Bayes Factor fine mapping under a single causal variant assumption” method

provided by the R package coloc (https://CRAN.R-project.org/package=coloc). This analysis assesses the

posterior probability of each SNP being the causal variant within a locus. We derived posterior

probabilities (PP) for this region using the default prior probability of 1E-4 under the assumption of a

single causative variant per locus.
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Short-read Whole Genome Sequencing

To further dissect the novel identified GWAS signal, we performed whole-genome sequencing (WGS)

analyses in 206 individuals (141 cases and 65 controls) of which 39 individuals were GBA1 rs3115534-GG

carriers, 69 were rs3115534-GT and 98 were rs3115534-TT carriers. Short-read WGS DNA sequencing

was performed by Psomagen (detailed in Supplementary methods). We used the functional equivalence

pipeline36 implemented at the Broad Institute to produce alignments and small variant calls against the

GRCh38DH reference genome. For sample-level WGS quality control, we followed the quality metrics

defined by the Accelerating Medicines Partnership Parkinson's Disease initiative (AMP-PD;

https://amp-pd.org)37. To produce a set of joint-genotyped variants for all the samples that passed

quality control, we ran the Broad Institute's joint discovery pipeline and retained only the high-quality

variants flagged as “PASS” after variant quality score recalibration, with a call rate > 0.95, genotype

quality >20, read depth >5, and heterozygous allele balance between 0.25 and 0.75 as described

previously 38. Additionally, we called GBA1 variants using Gauchian v1.0.239 and genotyped known

neurological repeat expansions using STRipy v2.240. All the pipelines and scripts used are available via

GitHub (https://github.com/GP2code). Data passing quality control metrics were annotated using

ANNOVAR33. A comprehensive assessment of known and potential novel pathogenic variants driving the

GBA1 signal was performed. CRAM files were visualized using the Integrative Genomics Viewer (IGV) web

browser41.

The Gauchian algorithm39 was then applied to nominate potential structural variants driving the GBA1

signal. Briefly, this algorithm is a targeted variant caller for the GBA1 gene based on WGS BAM files.

Gauchian aims to solve the problems caused by the high sequence similarity with the pseudogene

paralog GBAP1. This algorithm has been reported to be able to detect variants in the exons 9-11

homology region, such as large deletions or duplications between GBA1 and GBAP1, and GBAP1-like

variants in GBA1, including p.A495P, p.L483P, p.D448H, c.1263del, RecNciI, RecTL and c.1263del+RecTL.

Long-read Whole Genome Sequencing

Oxford Nanopore Technologies (ONT) long-read whole-genome sequencing data was generated for five

GBA1 rs3115534-GG carriers, two heterozygotes and six GBA1 rs3115534-TT carriers. High molecular

weight DNA was extracted from either frozen blood samples or cell-lines. For the blood samples DNA

was extracted from 1ml per sample using the Kingfisher APEX instrument with the Nanobind CBB Big

DNA kit (HBK-CBB-001). For the frozen cell-pellets DNA was extracted manually with the Nanobind CBB

Big DNA kit (HBK-CBB-001) using the following protocol
42(https://dx.doi.org/10.17504/protocols.io.q26g74169gwz/v1).
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The DNA then went through a size selection step using the Circulomics Short Read Eliminator Kit

(SS-100-101-01) to remove fragments up to 25kb. Finally a library was prepared with the SQK-LSK 110

Ligation Sequencing Kit from ONT and each library was loaded onto a separate PromethION R9.4.1 flow

cell following ONT standard operating procedures and ran for a total of 72 hours on a PromethION

device.

Fast5 files containing raw signal data were obtained from sequencing performed using minKNOW

v22.10.7 (ONT). All fast5 files were used to conduct super accuracy basecalling on each sample with

Guppy v6.12. Fastq files that passed quality control filters in the super accuracy base calling step were

then mapped to the GRChg38 reference genome using winnowmap v2.0343. Structural variants were

called with Sniffles244 v2.0.3 using default parameters and the “–tandem-repeats'' option.

Glucocerebrosidase activity

Patient-derived lymphoblastoid cell lines (LCLs) were obtained from the Coriell repository

(https://www.coriell.org/). LCLs were maintained as directed in suspension with RPMI 1640

(ThermoFisher Scientific, 11875093) containing 2mM Glutamax (ThermoFisher Scientific, 35050061), and

15% FBS (ThermoFisher Scientific, A3160501) at 37°C in 5% CO2. Protein was extracted from LCLs using a

citrate-phosphate buffer (0.2 M Na2HPO4, 0.1 M citrate, protease inhibitor, pH 5.8, Millipore Sigma,

11836170001) that was activated with 0.25% Triton X-100. Cells were subjected to a

4-methylumbelliferone (4-MU, Sigma Aldrich, M1381) fluorometric glucocerebrosidase (GCase) activity

assay in quadruplicate as previously reported in the literature45 with adjusted incubation time of 2.5

hours. A total of 5E6 cells were used per sample with protein concentrations normalized to 0.7 mg/ml

via BCA Protein Assay (Thermo Fisher Scientific 23225).

Polygenic Risk Profiling

Polygenic risk score (PRS) analysis for PD was performed as follows. Briefly, a PRS was calculated

incorporating effect estimates from Nalls et al., 2019 summary estimates for the 90 SNPs previously

associated with PD risk in European populations4. Risk allele dosages were counted, then summed and a

genetic risk score was generated across all loci in both African and African admixed data. All SNPs were

weighted by their published betas, giving greater weight to alleles with higher risk estimates. PRSs were

standardized to have a mean of 0 and standard deviation (SD) of 1. Then, a logistic regression was

performed regressing disease status against PRSs. Risk profiling analysis was adjusted for age, sex, and

PCs 1-10. We repeated these steps using the African admixed effect estimates from the 23andMe

summary statistics for those same 90 SNPs identified by Nalls et al., 2019.
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Runs of Homozygosity

Based on an LD-pruned data set (using previously described parameters), runs of homozygosity (ROHs)

were defined using PLINK 1.9 to assess potential over-representation of sharing recessive regions in

cases versus controls. Here, we evaluated the largest individual-level dataset (GP2; African individuals;

Table 1), where samples genotyped on the NeuroBooster array included 711 African cases and 1,011

African controls. We explored ROHs containing at least 10 SNPs and a total length ≥1,000 kb, with a rate

of scanning windows of at least 0.05 (not containing >1 heterozygous call or 10 missing calls). In order to

explore overall homozygosity between cases and controls, three metrics were assessed, including the

number of homozygous segments spread across the genome, total kilobase distance spanned by those

segments, and average segment size on autosomes only.

Role of Funding Source

Data used in the preparation of this article were obtained from Global Parkinson’s Genetics Program

(GP2). GP2 is funded by the Aligning Science Across Parkinson’s (ASAP) initiative and implemented by

The Michael J. Fox Foundation for Parkinson’s Research (https://gp2.org). For a complete list of GP2

members see https://gp2.org. Additional funding was provided by The Michael J. Fox Foundation for

Parkinson’s Research through grant MJFF-009421/17483.

Results

GWAS reveals a novel genome-wide significant signal associated with PD risk and age

at onset

We first performed a GWAS of PD risk in the African population, predominantly consisting of individuals

of Nigerian descent which included a total of 997 PD cases and 1,294 controls. Of these individuals, 693

PD cases and 1,009 controls were genotyped on the NeuroBooster array, and 304 PD cases and 285

controls were screened on the NeuroChip array (λ=1.01; Supplementary Figure 4). A genome-wide

significant SNP at the GBA1 locus was associated with an increase in PD risk; rs3115534, a variant located

in intron 8 of GBA1 (34 nucleotides upstream of exon 9) was the top hit (Supplementary Table 1,

Supplementary Figure 4; rs3115534; OR=1.58; 95% CI = 1.35 - 1.84, P=3.44E-09). Contrary to what we

would expect when assessing common variation linked to PD risk (MAF > 5%), a high odds ratio was

identified for this signal. Our study indicated that each additional risk allele, G, conferred a 1.58 increase

in the odds of PD.

In parallel, we performed a GWAS in the African admixed population, leveraging the African-American

and Afro-Caribbean datasets available as a part of the GP2 initiative combined with 23andMe
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African-American summary statistics. The PD African admixed GWAS included a total of 467 PD cases and

195,120 controls (λ=1.01; Supplementary Figure 5). No genome-wide significant hits were nominated.

Next, we performed a GWAS meta-analysis of all of the African and African admixed datasets (Figure 2),

totaling 1,488 cases and 196,430 controls. This revealed that a total of 35 SNPs near the GBA gene were

significantly associated with PD risk with consistent directionality of effect, the two most distant SNPs

being 639,773 base pairs apart from each other. Conditional analyses on the top two SNPs suggested

that there is only one causal signal driven by rs3115534 as the leading SNP. Of note, rs3115534-G is

much more common in individuals of African or African admixed ancestry relative to other populations;

allele frequency = 0.16 according to gnomAD46 and allele frequency = 0.21 according to the African 1000

Genomes panel 24. The African and African admixed datasets used in this study yielded similar

frequencies (African dataset; cohort MAF = 0.25, affected MAF = 0.33, unaffected MAF = 0.19), (African

admixed datasets; cohort MAF = 0.14, affected MAF = 0.22, unaffected MAF = 0.13). Within our research

cohorts, we found that rs3115534-G was more frequent in Nigerian populations (Supplementary Table

3). Linear regression analyses showed that the GBA1 rs3115534 variant was positively associated with

the genome-wide percentage of African ancestry (BETA = -0.001, SE= 0.0005, P= 0.011).

We tested whether the effect of the risk allele was additive by calculating the frequency of homozygotes

for the risk allele and heterozygotes in cases versus controls. Notably, our analyses conducted on

individual level data from IPDGCAN and GP2 showed that rs3115534-GG was 3.39 times more frequent

in African cases (130/1015) than controls (49/1296) and 3.80 times more frequent in African admixed

cases (11/185) than controls (18/1149), while rs3115534-GT was 1.17 times more frequent in African

cases (398/1015) than controls (435/1296) and 1.38 times more frequent in African admixed cases

(61/185) than controls (274/1149). Zygosity analysis of 23andMe data showed that rs3115534-GG was

1.92 times more frequent in African admixed cases (10/288) than controls (3,537/193,985) while

rs3115534-GT was 1.27 times more frequent in African admixed cases (85/288) than controls

(44,967/193,985). We also analyzed rs3115534 under a dominant model (African ancestry - dominant

model: OR = 1.74; 95% CI = 1.40 - 2.15; P = 3.467E-07; African admixed ancestry - dominant model: OR =

1.96; 95% CI = 1.40 - 2.75; P =7.65E-5). Despite the large differences observed in frequencies, effect

estimates from the additive model are extremely similar to the dominant model with largely overlapping

confidence intervals. This suggests that this variant is additive, and not increasing the risk for PD

following a dominant inheritance pattern (African ancestry - additive model: OR =1.75; 95% CI = 1.47 -

2.07, P = 1.40E-10; African admixed ancestry - additive model: OR =1.95; 95% CI =1.47 - 2.60; P

=4.12E-6).

As a follow-up analysis, we assessed whether this GBA1 variant is associated with AAO. Linear regression

analyses in 711 African ancestry cases and 185 African admixed ancestry cases showed that GBA1

rs3115534-G is also an AAO disease modifier (African ancestry: BETA =-2.004, SE = 0.57, P = 0.0005;

African-admixed: BETA = -4.15, SE =0.58, P =0.015; Meta-analysis: BETA =-3.06, SE =0.40, P = 0.008)

resulting in onset of PD three years earlier per risk allele (Supplementary Figure 7). The African-admixed

estimates should be taken with caution due to small sample size and low number of GG carriers. No
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differences in age at PD onset were found between GBA1 rs3115534-GG and GBA1 rs3115534-GT

carriers (T-test; P = 0.25).

Genome-wide comparison of the GBA1 locus across populations suggests an African

founder effect

In an attempt to further dissect the novel signal identified in the GBA1 locus, we next compared effect

estimates and directionality of effect leveraging summary statistics from the largest PD GWAS

meta-analysis of PD in Europeans4, Latin American7, and East Asian populations6. The rs3115534-G allele

is extremely rare in Europeans (allele frequency = 0.0015), East Asians (allele frequency = 0.0005), South

Asians (allele frequency =0.0017), and Ashkenazi Jewish populations (allele frequency = 0.0009)

according to gnomAD.

When looking at GP2 European data, the rs3115534 variant was found to be poorly imputed in 13,186

samples (R2 = 0.16, MAF = 0.009). In fact, the GBA1 locus in African and African admixed populations

differs substantially from Europeans (Figure 3; Supplementary Figure 8), whose association with disease

risk is driven by two independent signals, including rs35749011 (GBA1-E326K) and rs76763715

(GBA1-N370S). These variants are very rare in individuals of African and African admixed ancestry (Figure

4B). Similarly, the GBA1 locus considerably differs from the East Asian population, for which the

rs3115534 variant was also not imputed in the largest East Asian GWAS meta-analysis6 (Figure 4C). These

differences are less noticeable when assessing the Amerindian and indigenous populations, which

harbor higher levels of African admixture (Figure 4D) (Loesch et al. GWAS7; rs3115534-G; OR = 1.13, 95%

CI =0.41-1.86, P= 0.72; Amerindian and indigenous 23andMe GWAS; rs3115534-G; OR = 1.56, 95% CI =

1.55-1.88, P= 0.01).

Furthermore, we assessed the rs3115534-G variant on individual level data from the GP2 initiative. The

variant was not imputed in individuals of European, Ashkenazi Jewish, South Asian, East Asian and

Central Asian ancestries, likely due to its low frequency. On the other hand, the rs3115534-G variant was

imputed in 230 cases and 182 controls of Amerindian and indigenous ancestry (MAF = 0.027; P = 0.43).

Notably, linear regression analyses versus genomic admixture revealed that rs3115534-G was positively

correlated with percentage of African ancestry (BETA = 0.064, SE = 0.024, P = 0.01), confirming an African

founder effect. At consensus genotyped variants, haplotype size at the GBA1 risk locus spanning the

rs3115534 variant substantially differed across populations when comparing African, African admixed

and European PD cases from the GP2 initiative (European haplotype length = 79.19, European N SNPs =

90; African haplotype length = 19.30, African N SNPs = 29; African admixed haplotype length = 15.15,

African admixed N SNPs = 22). Interestingly, the larger sub-African population haplotypes spanning the

rs3115534 variant were found in the Esan and the Yoruba in Ibadan (Nigerian) populations according to

1000 Genomes (Supplementary Figure 9), suggesting that this haplotype might have originated in these

populations, given that founder effects result in decreased genetic diversity and therefore larger

haplotype block sizes. Fine-mapping analyses showed the lead SNP had a PP of 71.4% (rs3115534;

Supplementary Table 4).
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Short- and long-read whole genome sequencing did not identify any coding or

structural variant explaining the novel signal at GBA1

In an effort to identify a functional coding variant undetectable through genotyping or imputation that

could explain the novel GWAS signal, we conducted WGS short-read analyses on a total of 206

individuals (141 cases and 65 controls) of which 39 individuals were GBA1 rs3115534-GG carriers, 69

were rs3115534-GT and 98 were rs3115534-TT carriers. A 96.6 % correlation was observed between

WGS-short read and imputed genotyped data for rs3115534, validating the high quality of our imputed

data. No differences in coding variation were observed between carriers and non-carriers of the GWAS

signal (Table 2). We next applied the Gauchian algorithm, a targeted variant caller for the GBA1 gene

based on WGS BAM files. Gauchian aims to solve the problems caused by the high sequence similarity

with the pseudogene paralog GBAP1 (see methods). The Gauchian algorithm did not identify any genetic

rearrangement that could explain this signal. Then, Oxford Nanopore Technologies (ONT) WGS long-read

sequencing data was generated for a total of five rs3115534-GG PD cases, two rs3115534-GT and six

rs3115534-TT controls. Long-read data was compared to short-read WGS for a known structural variant

carrier that was previously reported in African American populations in 2000 by Tayebi and colleagues

(Supplementary Figure 10)47. No structural variants explaining this signal were identified. Splice

prediction tools (www.phenosystems.com) predicted no significant impact on normal splicing.

Expression quantitative trait locus analysis provides novel mechanistic insights into

risk at the GBA1 locus

We leveraged existing whole blood expression quantitative trait locus (eQTL) summary statistics from

Mak et al., 2021 based on RNA sequencing from 2,733 samples of predominantly African American and

Indigenous American ancestries48. Of note, we identified a strong eQTL signal at rs3115534, located

8,821 bp from the canonical transcription start site (Figure 5; MAF = 0.15; P= 9.99E-25, BETA = 0.238, SE

= 0.022). The rs3115534-G risk allele was found to be associated with increased GBA1 expression levels.

We questioned whether this observation could be explained by the existence of multi-mapping reads

between GBA1 and its pseudogene, GBAP1, which are often discarded in standard processing and do not

contribute to gene-level quantification of expression in many publicly available datasets like GTEx

(https://gtexportal.org/). Gustavsson et al., reported that only 42% of all reads mapping to GBA1 did so

uniquely, with the remaining reads mapping primarily to GBAP149. This resulted in a significant

misestimation of the relative expression of GBA1 to GBAP1. The authors demonstrated the ability of

these transcripts to generate stable protein that lacked lysosomal GCase function, which would support

our hypothesis. Indeed, transcript diversity is a common and known biological phenomena that could

explain the fact that rs3115534-G may increase the expression of a non-functional transcript that in turn

would decrease the levels of the transcript responsible for optimal production of the protein isoform

with GCase activity. Our data suggests a decreasing trend in GCase activity estimates when comparing

rs3115534-GG homozygous risk allele (762.50 ± 273.50 U) versus rs3115534-GT heterozygous carriers
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(2743.76 ± 1960.83 U); (Welch Two Sample t-test - GG versus GT; t = -4.3138, df = 21.583, p-value =

0.00029) and rs3115534-TT homozygous non-risk allele carriers (1879.94 ± 1010.84 U) versus

rs3115534-GG homozygous risk allele carrier; (Welch Two Sample t-test - GG versus TT; t = -4.7564, df =

18.363, p-value = 0.00014). Furthermore, in PD cases alone, the trend in GCase activity between

rs3115534-GG homozygous risk allele carriers (762.50 ± 273.50 U), rs3115534-GT heterozygous carriers

(3749.47 ± 2620.82 U) and rs3115534-TT homozygous non-risk allele carriers (1976.20 ± 1415.99 U)

remained consistent with rs3115534-GG homozygous risk allele displaying the lowest activity; (Welch

Two Sample t-test: GG versus GT; t = -3.189, df = 7.3002, p-value = 0.01446; GG versus TT; t = -2.8158, df

= 13.003, p-value = 0.01458; GT versus TT; t = 1.7509, df = 9.7545, p-value = 0.1113). All samples were

screened for known GBA1 pathogenic mutations that could bias these estimates. A total of two carriers

(one heterozygous for GBA1 p.I320S and one heterozygous for GBA1 p.T75del) were removed from our

analyses. We assume the limitation that LCLs were only available for one homozygous risk allele. Further

research is needed to corroborate this hypothesis and understand the functional consequences of this

variant in disease etiology (Supplementary Figure 11).

Characterization of PD known risk loci and polygenic risk profiling suggests some

overlapping genetic etiology between European individuals and African and African

Admixed populations

The largest PD-GWAS and multi-ancestry GWAS meta-analyses to date identified a total of 104

independent significant PD risk variants 4,6,8. Out of the 104 variants, 91 variants passed QC, imputation

filters, and were present in the African and African admixed GWAS meta-analysis (Figure 6, Table 2). Out

of the 91 variants, 16 variants were nominally significant (p < 0.05; Supplementary Table 5) in the

African and African admixed meta-GWAS reported here. We accept the limitation that 23andMe data

used in this study was also similar to the data used in the Kim et al., 2022 multi-ancestry GWAS

meta-analysis and will have biased our estimates.

We calculated a PRS using effect estimates from Nalls et al., 2019 summary statistics for the 90 SNPs

previously associated with PD risk in European populations. Out of the 90 risk SNPs, a total of 86 passed

QC in the African admixed individual level data. European PRS predicted disease status between PD and

controls of African admixed ancestry (OR=1.43; 95% CI =1.26-1.61, P=4.37E-05; Figure 7A). We then

calculated PRS on African individual level data. Out of the 90 risk loci, a total of 79 variants passed QC in

the African dataset. African derived PRS predicted disease status between PD and healthy controls of

African ancestry (OR=1.27; 95% CI =1.16-1.38, P=1.05E-05; Figure 7B). A slightly larger magnitude of

effect was observed in the African admixed ancestry PRS model which may be explained by the larger

number of SNPs that passed QC or larger percentage of admixed European ancestry within this cohort.

The variant with the largest effect size in both models was chr4:89704960:G:A_A (rs356182), located at

the SNCA locus. After adjusting for rs356182, PRS differences between PD and controls were still

significant (PRSAfrican admixed P =2.21E-05 ; PRSAfrican P =0.014). As expected, the observed effect is

consistently lower as compared to Europeans (PRS ORtraining dataset =3.74, 95% CI =3.35 –4.18)4 suggesting
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that additional novel genetic loci might contribute to the heritability of PD on the African and African

admixed populations.

Furthermore, we calculated a PRS using effect estimates from the AAC 23andMe summary statistics (see

Methods) for the same 90 SNPs previously associated with PD risk. Out of the 90 risk SNPs, a total of 77

passed QC in the African and African admixed individual level datasets from GP2. PRS predicted disease

status between PD and healthy controls of African admixed ancestry (OR=1.26; 95% CI =1.15-1.37;

P=1.89E-05; Figure 7C). We then calculated PRS on African individual level data. PRS predicted disease

status between PD and healthy controls of African ancestry (OR=1.42; 95% CI =1.25-1.60; P=6.65E-05;

Figure 7D). When using AAC 23andMe summary statistics, the PRS effect size was slightly higher when

applied to African individual level data than when using Nalls et al., 2019 European summary statistics as

the reference dataset.

Enrichment of homozygosity patterns in African and African Admixed cases suggests

yet to be discovered recessive variants linked to Parkinson’s disease etiology

Although no enrichment of specific ROH was identified spanning the GBA1 locus, we identified longer

runs of homozygosity in cases compared to controls at a genome-wide level. The number of segments

was associated with PD risk at an OR of 1.08 per 1Mb increase in average number of ROH (OR = 1.08;

95% CI = 1.066- 1.11; P = 4.63E-16). The total size of these homozygosity regions were also found to be

significantly different between cases and controls, although with a small effect (BETA = 1.69E-05 per kb

increase; SE = 3.531E-06; P = 1.53E-06). This suggests that yet to be uncovered recessive variants might,

to some extent, contribute to PD etiology in these populations.

Discussion

There have been only a few published studies exploring PD genetics in the African and African admixed

populations, conducted with fewer than thirty samples in all instances50,51,52,53,54. In the present study, we

have gathered the largest collection of PD patients and controls from African and African admixed

ancestry populations to comprehensively assess the genetic architecture of PD on a genome-wide scale.

Here, we identified a novel African-specific GWAS signal on the GBA1 locus, significantly associated with

PD risk and AAO, to be the most important risk factor for PD in this African and African admixed

populations. In contrast, initial well powered GWAS in European populations nominated the SNCA and

MAPT loci as the most significant contributors to PD genetic risk in Europeans. Remarkably, almost a

four times larger sample size in cases was required to nominate GBA1 as one of the major PD risk factors

in the European ancestry population through GWAS,55 showing the power and benefit of using diverse

ancestry data.

We suggest a novel disease mechanism via expression changes consistent with a trend towards

decreased GCase activity levels. The GBA1 c.1225-34C>A (rs3115534) GWAS hit alters a non-conserved
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intronic nucleotide (GERP++ score = -2.04). Despite the large effect size driven by this signal, our study

did not identify an association with any previously reported or new GBA1 coding or structural aberration

that could explain this signal39,56,47,57. Splice prediction tools predicted no significant impact on normal

splicing, while rs3115534 has been reported to be an expression quantitative trait locus (eQTL) in several

tissues58,48. Additionally, a large-scale pQTL study in African Americans with chronic kidney disease

suggests that at the protein level the risk allele for PD in our GWAS (G) is associated with a reduction in

the level of GCase protein in blood, as defined by the SOMAscan assay. This finding supports the concept

that the risk allele leads to a partial loss of both GCase protein and GCase enzyme activity59.

Strikingly, by leveraging existing eQTL data predominantly of African American ancestry, we found the

rs3115534-G risk allele to be associated with increased GBA1 expression levels in whole blood, but

paradoxically linked with a trend towards decreased GCase activity, which may be due to challenges with

RNA-seq in this locus. This interesting finding, possibly explained by transcript diversity leading to the

expression of a protein with diminished lysosomal GCase activity, warrants further study. Previously,

GBA1 variants associated with PD risk have all been coding mutations, but here we identify a novel

functional mechanism involved in disease etiology. Our findings are limited by the absence of brain QTL

data in non-European populations, underscoring the importance of increasing representation from

ancestrally diverse populations to enable new discoveries and ensure their equitable translation. Future

large scale single cell expression studies should investigate in which brain cell types these expression

differences are most prominent. This novel mechanism opens new avenues towards efficient RNA-based

therapeutic strategies, such as antisense oligonucleotides or short interfering RNAs aimed at reducing

lifetime risk.

Interestingly, given the high population frequency of the identified signal and the phenotypic

characteristics of the homozygous Africans and African admixed carriers, our study does not support the

notion that this variant causes Gaucher disease. Furthermore, the rs3115534 variant has been found to

be extremely rare in non-African/African admixed populations. These findings suggest an African founder

effect, and reinforce that the genetic architecture of this locus and its influence in risk and onset is

different across populations. Interestingly, rs3115534 was also found to be associated with PD AAO in

our study. The largest GWAS meta-analysis investigating the role of genetic determinants on PD onset in

European populations60 nominated p.N409S as an AAO disease modifier. This variant, which is one of the

most common GBA1 risk factors in European and Ashkenazi Jewish populations, is 100 times less

frequent in individuals of African and African admixed ancestry. In support of this notion, we did not find

any of the common GBA1 pathogenic variants through WGS in this study.

PRSs predicted disease status between predominantly PD cases and healthy controls of African and

African admixed ancestry, with a slightly better prediction when using African admixed summary

statistics on African individual level data. Interestingly, SNCA-rs356182, the lead risk variant at this locus

in European and Amerindian and indigenous ancestry studies, was found to be the major genetic player

in both models 4,7. This finding is in concordance with a partial overlapping directionality of effect

observed between PD known risk alleles predisposing to disease in European and African populations.

While this is a start, additional data and understanding of the disease in other African sub-populations is
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needed to improve prediction models per ancestry. Our current study used effect estimates from 288

African admixed PD cases and 193,985 controls provided by 23andMe. As population-specific studies

become better powered for each of these sub-populations, we believe effect estimates and, in turn,

predictions will improve. Intriguingly, we revealed an overall excess of homozygosity in PD cases versus

controls, pointing out the possible existence of disease-causing recessive variants that might be

uncovered by future sequencing analysis in these populations.

Although we have made progress in assessing genetic risk factors for PD in an African-specific manner,

there are a number of limitations to our study. Unraveling additional susceptibility genetic risk and

phenotypic relationships would have been possible if a larger cohort had been analyzed. Additionally,

due to lack of well-powered and African-specific RNA sequencing datasets and the added complexity of

multi-mapping reads between GBA and GBAP1, we assume the limitation that this potential novel

functional mechanism merits further study. While this study marks major progress in assessing genetic

risk factors for PD, there remains a great deal to be done. Future studies should explore the effect of this

variant on cognitive impairment in PD.

Here, we produce crucial insights into targeted construction of African ancestral haplotypes and

potential novel pathogenic mechanisms underlying PD etiology. The utility of genetically characterizing

populations of African and African admixed ancestry is unquestionable61. This study demonstrates the

importance of haplotype substructure discoveries for future fine-mapping efforts, showing how

leveraging unique populations can benefit our understanding of complex diseases.

Overall, addressing the genetic complexity underlying these underrepresented populations, our study

represents a valuable resource for identifying and tracking GBA1 carriers that may prove relevant for

enrollment in target-specific PD clinical trials. GBA1 genetic testing in the African and African admixed

populations can help to design an optimized trial with the highest likelihood of providing meaningful

results and actionable answers. We envisage that these data generated under the Global Parkinson’s

Genetics Program initiative will be key to shed light on the molecular mechanisms involved in the disease

process and might pave the way for future clinical trials and therapeutic interventions.

This would be helpful to further improve our granularity in association testing and ability to fine-map

through integration of omics data while also evaluating population specific associations.

Data Sharing

All GP2 data is hosted in collaboration with the Accelerating Medicines Partnership in Parkinson’s

disease, and is available via application on the website (https://amp-pd.org/register-for-amp-pd). The

GWAS summary statistics from this study, excluding 23andMe, are available as of GP2’s release 5.

23andMe summary statistics are available via application on the website

(https://research.23andme.com/dataset-access/). Genotyping imputation, quality control, ancestry

prediction, and processing was performed using GenoTools v1.0, publicly available on GitHub
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(https://github.com/GP2code/GenoTools). All scripts for analyses are publicly available on GitHub

[https://github.com/GP2code/GP2-AFR-AAC-metaGWAS; 10.5281/zenodo.7888141].

Ethics Statement

All cohorts recruited to the GP2 initiative undergo a thorough review of the consent forms in the

Operations and Compliance working group, ensuring that each contributing study abided by the ethics

guidelines set out by their institutional review boards, and all participants gave informed consent for

inclusion in both their initial cohorts and subsequent studies within local law constraints. All GP2 data is

hosted in collaboration with the Accelerating Medicines Partnership in Parkinson’s disease, and is

available via application on the website (https://amp-pd.org/register-for-amp-pd).

Summary statistics for individuals with or without PD were provided through a collaborative agreement

with 23andMe, Inc. Participants provided informed consent and volunteered to participate in the

research online, under a protocol approved by the external AAHRPP-accredited IRB, Ethical &

Independent (E&I) Review Services. As of 2022, E&I Review Services is part of Salus IRB

(https://www.versiticlinicaltrials.org/salusirb). 23andMe summary statistics are available via application

on the website (https://research.23andme.com/dataset-access/).
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