- 1 Transcriptome-Wide Association Analysis Identifies Novel Candidate Susceptibility Genes for
- 2 Prostate-Specific Antigen Levels in Men Without Prostate Cancer
- 3 Author List:
- 4 Dorothy M. Chen¹*, Ruocheng Dong²*, Linda Kachuri^{2,3}, Thomas Hoffmann^{1,4}, Yu Jiang¹,
- 5 Sonja I. Berndt⁵, John P. Shelley⁶, Kerry R. Schaffer^{7,12}, Mitchell J. Machiela⁵, Neal D.
- 6 Freedman⁵, Wen-Yi Huang⁵, Shengchao A. Li⁵, Hans Lilja^{8,9}, Stephen K. Van Den Eeden¹⁰,
- 7 Stephen Chanock⁵, Christopher A. Haiman^{11,12}, David V. Conti^{11,12}, Robert J. Klein¹³, Jonathan
- 8 D. Mosley¹⁴, John S. Witte^{1,2,15} \ddagger , Rebecca E. Graff¹ \ddagger
- 9 Affiliations:
- 10 1) Department of Epidemiology and Biostatistics, University of California, San Francisco, San
- 11 Francisco, CA, 94158, USA
- 12 2) Department of Epidemiology and Population Health, Stanford University, Stanford, CA,
- 13 94305, USA
- 14 3) Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
- 15 4) Institute for Human Genetics, University of California San Francisco, San Francisco, CA,
- 16 94143, USA
- 17 5) Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD,
- 18 20814, USA
- 19 6) Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN,
- 20 37232, USA
- 21 7) Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN,
- 22 37232, USA

- 8) Departments of Pathology and Laboratory Medicine, Surgery, Medicine, Memorial Sloan
- 24 Kettering Cancer Center, New York, NY, 10065, USA
- 25 9) Department of Translational Medicine, Lund University, Malmö, 21428, Sweden
- 26 10) Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA
- 27 11) Center for Genetic Epidemiology, Department of Population and Preventive Health Sciences,
- 28 Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
- 29 12) Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern
- 30 California, Los Angeles, CA, 90033, USA
- 31 13) Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai,
- 32 New York, NY, 10029, USA
- 33 14) Departments of Internal Medicine and Biomedical Informatics, Vanderbilt University
- 34 Medical Center, Nashville, TN, 37232, USA
- 35 15) Departments of Biomedical Data Science and Genetics (by courtesy), Stanford University,
- 36 Stanford, CA, 94305, USA
- 37 * These authors contributed equally to this work
- 38 [†] These authors jointly supervised this work
- 39
- 40 * Correspondence: jswitte@stanford.edu and Rebecca.Graff@ucsf.edu

41 Abstract

42	Deciphering the genetic basis of prostate-specific antigen (PSA) levels may improve their utility
43	to screen for prostate cancer (PCa). We thus conducted a transcriptome-wide association study
44	(TWAS) of PSA levels using genome-wide summary statistics from 95,768 PCa-free men, the
45	MetaXcan framework, and gene prediction models trained in Genotype-Tissue Expression
46	(GTEx) project data. Tissue-specific analyses identified 41 statistically significant (p <
47	0.05/12,192 = 4.10e-6) associations in whole blood and 39 statistically significant (p <
48	0.05/13,844 = 3.61e-6) associations in prostate tissue, with 18 genes associated in both tissues.
49	Cross-tissue analyses that combined associations across 45 tissues identified 155 genes that were
50	statistically significantly (p < $0.05/22,249 = 2.25e-6$) associated with PSA levels. Based on
51	conditional analyses that assessed whether TWAS associations were attributable to a lead GWAS
52	variant, we found 20 novel genes (11 single-tissue, 9 cross-tissue) that were associated with PSA
53	levels in the TWAS. Of these novel genes, five showed evidence of colocalization
54	(colocalization probability > 0.5): <i>EXOSC9</i> , <i>CCNA2</i> , <i>HIST1H2BN</i> , <i>RP11-182L21.6</i> , and <i>RP11-</i>
55	327J17.2. Six of the 20 novel genes are not known to impact PCa risk. These findings yield new
56	hypotheses for genetic factors underlying PSA levels that should be further explored toward
57	improving our understanding of PSA biology.

58 Introduction

59	Prostate-specific antigen (PSA) is a serine protease of the human tissue kallikrein-related
60	(KLK) peptidase family. Serum levels are commonly used as a biomarker for detection,
61	monitoring, and risk stratification of prostate cancer (PCa). ^{1–3} The process by which a small
62	portion of the highly abundant PSA in the prostate is released into the blood and elevated in men
63	prostate cancer is incompletely understood, but disruption of the prostate gland architecture by
64	neoplastic transformation has been speculated as a possible mechanism. ^{1,3,4} PSA levels can
65	additionally be influenced by age, race, body mass index (BMI), infection, prostate volume,
66	benign prostate hyperplasia (BPH), and germline genetics. ^{5,6}
67	PSA screening has been used for over 25 years for the detection of PCa, which is the
68	second leading cause of cancer death among men in the United States. ^{1,7–10} However, low test
69	specificity and discrimination have complicated the use and interpretation of PSA as a screening
70	tool.9,11 Long-term outcomes data from large population-based randomized PSA screening trials
71	show that it significantly reduces death from prostate cancer but also results in considerable
72	overdiagnosis of low risk disease. ^{12,13} Screening might be improved were it to account for
73	variation in PSA levels that is attributable to germline genetics rather than PCa. Twin studies and
74	genome-wide association studies (GWAS) have estimated that 30-45% of serum PSA variation is
75	influenced by hereditary factors. ^{14,15} A recent GWAS meta-analysis from our group identified
76	128 independent variants associated with serum PSA levels, which explained approximately 9%
77	of genetic variation in PSA. ^{16,17}
78	Additional genetic variation in PSA levels may be determined by analyses of genes, as

opposed to individual variants. Such work could lead to the identification of regions or biological
pathways that affect PSA levels and provide clarity on mechanisms underlying constitutional

4

- 81 increases in PSA levels in the absence of carcinogenesis. Transcriptome-wide association studies
- 82 (TWAS) using expression quantitative trait loci (eQTL) allow for identifying genes whose cis-
- 83 regulated expression is associated with complex polygenic traits.^{18–21} We thus performed a
- 84 TWAS of PSA levels based on summary statistics from a GWAS meta-analysis of 95,768 men
- 85 without PCa to identify genes associated with PSA levels and prioritize them for functional
- 86 investigation.^{15,22}
- 87

88 Methods

89 Discovery Populations

90 A total of 95,768 PCa-free men from the following five study populations were included: 91 UK Biobank, Kaiser Permanente's Genetic Epidemiology Research on Adult Health and Aging, 92 Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial, Vanderbilt University 93 Medical Center's BioVU, and Malmö Diet and Cancer Study. The men included in these 94 analyses were restricted to PCa-free individuals (i.e., without a PCa diagnosis or history of 95 prostate resection, where information was available). Additionally, analyses were restricted to 96 men with PSA values between 0.01 ng/mL and 10 ng/mL. Additional details about the study 97 cohorts are described in detail in Kachuri et al. and Table S1. Median PSA levels were used for 98 individuals with multiple PSA measurements available, with the exception of PLCO, which used 99 PSA levels at the start of follow-up of the trial. 100 101 Quality Control and GWAS Meta-analysis 102 Genotyping, imputation, study-specific quality control of genetic data, and the GWAS meta-analysis have been previously described for Kachuri et al.¹⁷ Briefly, ancestry and study-103 104 specific GWAS analyses used linear regression of log(PSA) on genetic variants, age, and the first 105 10 genetic ancestry principal components. After results across studies were meta-analyzed within 106 ancestral groups, ancestry-specific summary statistics from individuals of European (n=85,824), 107 African (n=3,509), East Asian (n=3,337), and Hispanic/Latino (n=3,098) ancestry were meta-108 analyzed to generate multi-ancestry summary statistics. 109

110 MetaXcan Transcriptome-wide Gene-based Analysis

111 We undertook a TWAS using the MetaXcan approach, which directly estimates Z-scores 112 for associations between gene expression levels and PSA levels using meta-analyzed GWAS 113 summary statistics with tissue-specific prediction models. Multivariate adaptive shrinkage 114 (mashr) prediction models were trained on GTEx (version 8) eQTL data for whole blood and, 115 separately, prostate tissue. The covariances and weights for models trained on individual tissue types were from the PredictDB Data Repository (https://predictdb.org/).²³ We also undertook a 116 117 cross-tissue analysis across 45 GTEx tissues that excluded tissues found primarily or exclusively 118 in women to identify potential associations with genes that may have been missed in single-119 tissue analyses. Tissue types found primarily or exclusively in females (mammary breast, ovary, 120 uterus, vagina) were excluded from the multiple tissue analysis. A Bonferroni correction was 121 implemented based on the number of genes tested (whole blood: 0.05/12,192 = 4.10e-6; prostate: 122 0.05/13,844 = 3.61e-6; cross-tissue: 0.05/22,249 = 2.25e-6). 123 124 Conditional Analysis Ascertaining Independence of TWAS and Previous GWAS Findings 125 To identify the set of TWAS genes for PSA that were novel in comparison to previous 126 GWAS results, we first limited consideration to significant TWAS genes that do not contain 127 genome-wide significant (p < 5e-8) variants from the Kachuri et al GWAS (i.e., within exact gene boundaries).¹⁷ Second, for the remaining genes, we performed conditional analyses using 128 COJO²⁴ that simultaneously modeled eQTLs for a given TWAS-identified gene and GWAS 129 130 results. For individual tissue analyses, eQTLs used in the prediction models of TWAS-significant 131 genes were selected from the tissue-specific PredictDB TWAS eQTL weight files for each gene. 132 For the cross-tissue analyses, the maximum noncollinear eQTLs (variant inflation factor < 8 133 within a window size of 50kb) were extracted from all 45 GTEx tissues (i.e., to remove variants

134	in linkage disequilibrium) . COJO was performed using LD reference panels from 10,000
135	European ancestry UK Biobank participants (as 89.6% of our population was European
136	ancestry). ²⁴ GWAS summary statistics were then conditioned on the eQTLs for one gene at a
137	time. If the set of genome-wide significant variants was reduced after conditioning on eQTLs
138	used to predict gene expression, then the eQTLs and GWAS hits were assumed to be in LD and
139	thus not independent of one another. (Methods that assess the conditional fit of eQTLs on
140	GWAS hits are lacking.) However, if the set of genome-wide significant variants remained
141	unchanged after conditional analyses, then we considered the TWAS gene to be independent of
142	GWAS variants from Kachuri et al. ¹⁷
143	
144	Colocalization Analyses
145	To further investigate whether genes and variants exhibited shared genetic signals, we
146	used fastENLOC software (version 2) to undertake colocalization analyses of eQTLs for all
147	genes with prediction models across TWAS analyses and all variants investigated in the Kachuri
148	et al. GWAS. ^{17,25,26} For these analyses, LD blocks were based on 1000 Genome Project
149	European ancestry individuals. ²⁷ Z-scores were calculated by dividing the betas from GWAS
150	summary statistics by their standard errors and converting them to posterior inclusion
151	probabilities. ²⁵ Finally, the GWAS summary statistics were colocalized for 49 GTEx version 8
152	tissues using pre-computed GTEx multiple-tissue annotations. Signal-level results returned
153	regional-level colocalization probabilities (RCP) between eQTL and GWAS signals, which sum
154	up the variant-level colocalization probabilities of correlated variants within an LD block that
155	harbors a single GWAS association signal. Gene-results were based on gene-level regional
156	colocalization probabilities (GRCP), which represent the probability that a candidate gene

157	contains at least one colocalized variant. ²⁶ RCP and GRCP values > 0.5 indicate strong evidence
158	of shared genetic signals between eQTLs and GWAS variants. ²⁶

159

160 Pathway Enrichment Analysis

- 161 To explore the potential biological relevance of PSA-associated genes, we applied the
- 162 Enricht tool to all significant genes identified in the whole blood, prostate, and cross-tissue
- 163 analyses to assess enrichment against three gene set libraries: Kyoto Encyclopedia of Genes and
- 164 Genomes (KEGG) 2021 human; gene ontology (GO) biological process 2021; and GO molecular
- 165 function 2021. Enrichment was assessed by multiplying the p-value from a Fisher's exact test
- 166 with the z-score of the deviation from the expected rank.^{28,29} Pathways with a Benjamini-
- 167 Hochberg-corrected p-value < 0.05 were considered significantly enriched.

168 **Results**

169	Using MetaXcan and GWAS summary statistics based on 95,769 individuals (Table S1), TWAS
170	analyses were conducted for whole blood, prostate, and cross-tissue matrices. The sample was
171	primarily European (n=85,824), although individuals of African (n=3,509), East Asian
172	(n=3,337), and Hispanic/Latino $(n=3,098)$ ancestry were also included in analyses. The median
173	PSA value across all possible values across different cohorts was 2.35 ng/mL.
174	
175	Whole Blood TWAS
176	In the TWAS based on whole blood gene expression models, 41 out of 12,192 genes
177	were associated with PSA levels at the Bonferroni corrected threshold (Figure 1, Table S2).
178	Expression of 20 genes was positively associated with elevated PSA, and expression of 21 genes
179	was inversely associated. Two of the significant genes are located at 19q13.33, which contains
180	<i>KLK3</i> , the gene encoding serum PSA. ³⁰ While a prediction model for <i>KLK3</i> was not available in
181	whole blood, a member of the same gene family at 19q13.33, KLK2, was the gene most strongly
182	associated with PSA levels ($p = 1.28e-62$). Twenty-four of the 41 genes did not contain genome-
183	wide significant variants and had not been annotated in previous GWAS. Among them, 7 genes
184	were independent of previously published GWAS findings (Table 1). ¹⁷ Of these, increased
185	expression of 6 genes was associated with elevated PSA levels in PCa-free men: GPBP1L1
186	(1p34.1, p = 2.21e-7); <i>TMEM69</i> (1p34.1, p = 2.21e-7); <i>UQCRH</i> (1p33, p = 4.76e-7); <i>ACTRT3</i>
187	(3q26.2, p = 5.90e-7); <i>EXOSC9</i> (4q27, p = 1.80e-6); and <i>CCNA2</i> (4q27, p = 7.80e-7). Decreased
188	expression of <i>ITH4</i> was associated with increased PSA levels ($3p21.1$, $p = 3.65e-6$).
189	
190	Prostate Tissue TWAS

191 In TWAS based on prostate tissue gene expression models, 39 out of 13.884 genes were 192 statistically significantly associated with PSA levels (Figure 2, Table S3). Among them, 193 increased expression of 18 and decreased expression of 21 was associated with elevated PSA 194 levels. No prediction models were available for genes in the KLK family in prostate tissue. 195 Instead, MMP7 on 11q22 was most strongly associated with PSA levels (p= 2.78e-18). MMP7 196 was among 18 PSA-associated TWAS genes containing known genome-wide significant 197 variants. Of the remaining 21 significant genes, six were conditionally independent of previous 198 GWAS results after conditioning on the eQTL variants used in gene prediction models (Table 1). 199 Of these, increased expression of 3 genes was associated with elevated PSA levels: LRRC41 200 (1p33, p = 4.76e-7), HIST1H2BN (6p22.1, p = 8.86e-8), and HEXIM1 (17q21.31, p = 4.95e-7).201 Decreased expression of the remaining 3 genes was associated with increased PSA levels: ITIH4 202 (3p21.1, p = 2.69e-6), EXOSC9 (4q27 p = 1.18e-6), and OTOA (16p12.2, p = 1.44e-6). 203

204 Cross-Tissue TWAS

205 Using S-MultiXcan to integrate signals from 45 tissues excluding tissues primarily or 206 exclusively present in women, we identified 155 out of 22,249 genes whose predicted expression 207 was associated with elevated PSA levels in cross-tissue matrices (Figure 3). Among the 155 208 statistically significant genes, 8 are located on 19q13.33 and part of the expanded human KLK 209 gene family. We found 71 genes that do not contain genome-wide significant loci within their 210 gene boundaries. Conditional analyses determined that 13 genes from this set were independent 211 of known genome-wide significant variants: CDC42 (1p36.12, p = 6.24e-07), GPBP1L1 (1p34.1, 212 p = 2.08e-08), *SLBP* (4p16.3, p = 8.40e-08), *EXOSC9* (4q27, p = 8.60e-07), *CCNA2* (4q27, p = 213 1.02e-06, ANXA8L1 (10q11.22, p = 2.17e-07), RP11-182L21.6 (10q22.3, p = 1.54e-07), E2F7

(12q21.2, p = 8.54e-09), *C15orf62* (15q15.1, p = 2.01e-07), *RP11-327J17.2* (15q26.2, p = 5.82e07), *C16orf47* (16q22.3, p = 1.11e-07), *MYOCD* (17p12, p=1.20E-07), and *ABCD4* (17q21.31, p
= 2.17e-06) (Table 1).

217

218 Significant Genes Overlapping Across TWAS

219 Out of the 41 genes that were significantly associated with PSA levels in the whole blood 220 TWAS, 34 were also imputed in the prostate tissue TWAS. Thirty (30) out of 39 significantly 221 associated genes from the prostate tissue TWAS were also evaluated in whole blood analyses. Of 222 the 155 significantly associated genes detected in the cross-tissue analysis, 89 genes and 105 223 genes had transcriptome prediction models available for whole blood and prostate tissues, 224 respectively. 225 Across all TWAS in whole blood, prostate tissue, and cross-tissue models, we identified 226 13 genes whose predicted expression was associated with elevated PSA levels: RAB29 (1q32.1), 227 LDAH (2p24.1), ZFP36L2 (2p21), SIDT1 (3q13.2), TRIM59 (3q25.33), EXOSC9 (4q27), 228 HIBADH (7p15.2), TAX1BP1 (7p15.2), MEGF9 (9q33.2), ADD3 (10q25.1), APIP (11p13), 229 LINC01569 (16p13.3), and EIF2S2 (20q11.22) (Figure 4). Of these genes, only EXOSC9 was 230 conditionally independent after accounting for prior loci and demonstrated evidence of 231 colocalization (described below). Five (5) associations were not statistically significant in the 232 cross-tissue analysis, but had significant tissue-specific signals in whole blood and/or prostate. 233 Seventeen significant genes were shared by only the whole blood and cross-tissue TWAS, six of 234 which did not have prediction models in prostate tissue. Similarly, the prostate tissue and cross-235 tissue TWAS shared 14 significant genes; of these, seven genes did not have prediction models 236 in whole blood.

12

237

238 Colocalization Analysis

239	Colocalization identified 372 signals with $RCP > 0.5$ at the variant level (Table S6) and
240	307 genes with $GRCP > 0.5$ at the gene level (Table S7). The top 10 genes with the largest
241	GRCP were OTX1 (2p15), MAFF (22q13.1), FUT2 (19q13.33), EMSY (11q13.5), IFT80
242	(3q25.33), EXOSC9 (4q27), SMC4 (3q25.33), RCAN3 (1p36.11), PBXIP1 (1q21.3), and PMVK
243	(1q21.3). Of these genes, only EXOSC9 was determined to be independent of previously
244	discovered GWAS loci. ¹⁷
245	Among 155 significant genes from the cross-tissue TWAS, locus-level results identified
246	50 genes with strong evidence of colocalization (Table 2). Variant-level results identified 66
247	regions in 51 genes (Table S5). When comparing the overlap between transcriptome-wide
248	significant genes and results from colocalization analyses, we identified 5 novel genes (EXOSC9,
249	<i>CCNA2, HIST1H2BN, RP11-182L21.6</i> , and <i>RP11-327J17.2</i>) with GRCP/RCP > 0.5. Two of
250	these genes are long non-coding RNA while the remaining three are protein-coding genes.
251	
252	Pathway Enrichment Analysis
253	TWAS genes were significantly enriched in 23 pathways underlying molecular activities
254	and biological processes present in KEGG and GO gene set databases (Table 3, Figure 5).
255	Enrichment analyses in the whole blood gene set identified the renin-angiotensin-aldosterone
256	system in KEGG, which works to regulate arterial blood pressure. No pathways were
257	significantly enriched by prostate and cross-tissue gene sets in the KEGG catalog.
258	Enrichment analyses within the GO biological process and molecular function gene set
259	libraries identified 23 pathways that were significantly enriched in the cross-tissue gene set. No

- 260 pathways were significantly enriched in GO for whole blood nor prostate tissue TWAS sets. Of
- 261 note, the biological process underlying the regulation of cyclin-dependent protein
- serine/threonine kinase (CDK) activity in cell cycle progression is particularly relevant for the
- 263 function of CCNA2. We also observed enrichment in 13 pathways involving both single and
- 264 double stranded DNA binding mechanisms and regulation by transcription factors, including
- 265 RNA polymerase II (pol II), a core component of the DNA transcription machinery. Moreover,
- two pathways underlying extracellular matrix and cellular component disassembly were enriched
- 267 in the cross-tissue gene set. Analogous to the findings in KEGG for the whole blood TWAS,
- 268 biological pathways underlying the regulation of systemic arterial blood pressure were also
- 269 identified in the GO biological process catalog.

270 Discussion

This TWAS of 95,768 PCa-free men identified 173 genes whose predicted expression levels were significantly associated with PSA. Conditional analyses identified 20 novel candidate susceptibility genes for PSA, and colocalization analyses highlighted five of them: *EXOSC9* and *CCNA2* at 4q27, *HIST1H2BN* at 6p22.1, *RP11-182L21.6* at 10q22.3, and *RP11-327J17.2* at 15q26.2. Pathway enrichment analyses across three gene ontology catalogs implicated regulatory

276 pathways related to transcription, cell signaling, and disassembly of cellular and noncellular

277 components such as the extracellular matrix.

278 The five colocalized genes introduce new hypotheses and insights regarding the genetic 279 mechanisms regulating PSA production. Of particular interest are the signals at the 4q27 locus (EXOSC9 and CCNA2), a genomic region that was not detected in previous GWAS of PSA.^{16,17} 280 281 Researchers have previously investigated an autoimmune related block on the 4q27 locus and did not find an association with PCa risk. ^{32–35} EXOSC9, which encodes a core protein involved in 282 283 the RNA degradation machinery in humans, was identified across all three TWAS analyses. 284 Currently, there is no literature supporting an association between EXCOSC9 and PSA levels or 285 PCa risk. Genetically predicted expression of *EXOSC9* in whole blood was positively associated 286 with PSA levels, while the opposite direction of effect was observed for expression in prostate 287 tissue. There exists limited tissue-specific knowledge of the physiological and pathological function of *EXOSC9* in non-cancer cell lines.^{34,35} Literature documenting the relationship 288 289 between CCNA2 and PSA is also limited, though CCNA2 was previously tested as a candidate 290 autoantibody signature marker for distinguishing PCa from BPH in patients with elevated serum PSA:³⁶ it was not determined to be a top antibody signature of any specific PCa targets. Gene co-291 292 expression network analyses have linked *CCNA2* to biochemical recurrence and survival in men

15

with PCa.^{37,38} Further exploration of *CCNA2* expression in individuals without PCa may unveil
biological pathways that influence PSA levels.

295	Pathway enrichment results also highlighted a number of interesting pathways involving
296	Pol II, which plays a critical role in the regulated synthesis of both protein-coding and noncoding
297	messenger RNA in eukaryotic genomes. ^{39–41} In addition to its numerous roles in DNA
298	transcription, Pol II is known to associate with androgen receptor binding regions of the PSA
299	enhancer and promoter to initiate androgen-dependent transcription. ⁴² The two colocalized
300	IncRNA genes, RP11-182L21.6 and RP11-327J17.2, could feasibly regulate epigenetic
301	modification through histone or DNA acetylation or methylation. ⁴³ That histone deacetylase
302	binding was enriched in our pathway analyses suggests a possible mechanism through which
303	IncRNAs could affect constitutive PSA levels. Aberrant expression of various IncRNA products
304	has also been observed for various cancers, including PCa. ⁴⁴
305	Because PSA is used for both PCa detection and monitoring of PCa progression, it is
306	difficult to disentangle the mechanisms underlying our observed associations. PSA-related
307	screening bias may account for a portion of the observed relationship between gene expression
308	and PSA levels. Genes may also exert pleiotropic effects on PCa and PSA through overlapping
309	biological mechanisms. ^{1,9} Nevertheless, our restriction to PCa-free men for all analyses
310	minimizes the potential for reverse causation and bolsters confidence that the observed genetic
311	signals inform constitutive PSA levels. Fourteen of the 20 novel PSA-related genes identified
312	from conditional analyses, spanning 12 genomic regions not implicated by prior PSA GWAS,
313	have been associated with prostatic malignancies: CDC42 (1p36.12), GPBP1L1 and TMEM69 (
314	1p34.1), LRRC41 (1p33), ITIH4 (3p21.1), SLBP (4p16.3), CCNA2 (4q27), HIST1H2BN
315	(6p22.1), ANXA8L1 (10q11.2), E2F7 (12q21.2), C15orf62 (15q15.1), OTOA (16p12.2),

C16orf47 (16q22.3), and *HEXIM1*(17q21.31).⁴⁵⁻⁵⁵ Colocalized gene *HIST1H2BN*, which
encodes a component of a core nucleosome histone, has been linked to PCa cell growth and
epithelial-mesenchymal transition through upregulated NF-kB/Rel expression.⁴⁵ Activation of
the NF-kB pathway can induce activation of the PSA promoter-enhancer, even in the absence of
androgens, and NF-kB can directly bind to the PSA enhancer in prostate cancer cell lines.⁵⁶ To
our knowledge, no experiments have been conducted to investigate the relationship between NFkB and PSA in PCa-free populations.

323 Conditional analyses further identified 6 genes that have not been implicated in PCa 324 susceptibility in gene function, experimental, or human population research: UOCRH (1p33), 325 ACTRT3 (3q26.2), EXOSC9 (4q27), RP11-182L21.6 (10q22.3), RP11-327J17.2 (15q26.2), and 326 ACBD4 (17q21.31). ACTRT3 is of particular interest, as it is critical in regulating sperm nucleus cytomorphology upstream of the processing of spermatid into mature motile sperm.⁵⁷ Increased 327 328 expression of ACTRT3, which forms a testis-specific profilin III-ACTRT3 complex that facilitates 329 male germ cell head cytomorphology and maintains sperm motility in animal models, was associated with elevated PSA levels in the TWAS based on whole blood.^{57,58} Though there is no 330 331 documented link between ACTRT3 and PSA levels or PCa risk, the pronounced role of ACTRT3 332 in mediating conformational changes in sperm nuclei suggests possible shared biological pathways between PSA and the production and processing of male germ cells.^{5,57} Loci that map 333 to the multigenic region that contains ACTRT3 have been linked to melanoma, colorectal cancer. 334 and lung cancer susceptibility.^{59–61} The functional role of ACTRT3 is poorly characterized and 335 336 warrants further analysis.

Our study had several limitations. First, nearly 90% of men in the study population were
of primarily European ancestry, and 85% of the tissue samples used to train the TWAS models

17

were derived from European populations.⁶² Therefore, our TWAS may have missed ancestry-339 340 specific signals, and our findings may not be generalizable to broader ancestral populations. To 341 better characterize the genetic mechanisms underlying circulating PSA levels, it will be 342 imperative for future analyses to expand to multi-ethnic populations; diversity in genetic studies 343 of PSA levels is critical for equitably improving PSA screening.⁶³ Second, our study assessed 344 only cis-eQTLs, so any trans-eQTL effects are not incorporated. Third, colocalization analyses have a high type 2 error rate and may be underpowered to detect shared association signals.²⁶ 345 346 Fourth, although we restricted our analyses to men who had not been diagnosed with PCa, we 347 cannot rule out the possibility of latent, undiagnosed disease or disease diagnosed at a later 348 timepoint. However, the prevalence of undiagnosed PCa in our population was likely to be low 349 on account of low prevalence at the time of the first PSA measurement or increased monitoring and surveillance in longitudinal cohorts.^{7,9} Finally, many of the novel genes that we identified 350 351 were clustered at multi-gene loci, in part due to co-regulation by a shared set of eQTLs. Sentinel 352 genes at these loci should be interpreted with caution, as there may be correlated predicted expression.⁶⁴ 353

354 Our study also had several key strengths. The use of GWAS summary statistics from a 355 cohort of 95,768 men provided us with high statistical power to quantify PSA-associated genes. 356 In addition to conducting tissue-specific association analyses in tissues that are biologically 357 meaningful for PSA, we integrated association signals across 45 GTEx tissues to improve power 358 for genes with similar regulatory mechanisms across tissues. This method allowed us to capture 359 PSA-related genes with expression patterns that were significant for specific tissues, as well as 360 genes with expression that was similar across multiple tissues. Our study also used COJO 361 analysis to find novel genes conditionally independent from known GWAS variants.

18

362	In summary, our TWAS identified gene expression profiles associated with PSA levels in
363	men without PCa. These findings provide several novel hypotheses for genes that affect
364	constitutive PSA. Further exploration of these results, including functional analyses of these
365	genes in in-vivo settings, will augment our understanding of the genetic etiology of PSA
366	variation. Transcriptomic analyses might also be vertically integrated with downstream -omic
367	approaches to uncover complete mechanisms through which genetics influence circulating PSA
368	levels. In addition, TWAS findings may be used to develop polygenic transcriptome risk scores ⁶⁵
369	for PSA levels, which could be leveraged for improving PSA as a tool for PCa screening.

Declaration of Interests:

- 371 JSW is a non-employee, cofounder of Avail Bio. HL is named on a patent for assays to measure
- intact prostate-specific antigen and a patent for a statistical method to detect prostate cancer
- 373 commercialized by OPKO Health (4KScore). HL receives royalties from sales of the assay and
- 374 has stock in OPKO Health. HL serves on the Scientific Advisory Board for Fujirebio Diagnostics
- 375 Inc and owns stock in Diaprost AB and Acousort AB.

376 Data Availability:

- 377 GWAS summary statistics used in this analysis are available for download from Kachuri et al are
- 378 available from the following Zenodo repository: <u>https://doi.org/10.5281/zenodo.7460134</u>.
- 379 Transcriptome prediction weights and models used for MetaXcan analyses are available from:

380 <u>https://predictdb.org</u>.

Funding sources:

- 382 The Precision PSA study is supported by funding from the National Institutes of Health (NIH)
- and National Cancer Institute (NCI) under award number R01CA241410 (PI: JSW). REG is
- 384 supported by a Prostate Cancer Foundation Young Investigator Award. LK is supported by
- funding from National Cancer Institute (R00CA246076). JPS is supported by funding from the
- 386 National Institute of General Medical Sciences (T32GM007347). HL is supported in part by
- funding from NIH/NCI (P30-CA008748, U01-CA199338, R01CA244948) and the Swedish
- 388 Cancer Society (Cancerfonden 20 1354 PjF). RK is supported by funding from the NIH (R01
- 389 CA244948 and R01 CA175491).
- 390 The content is solely the responsibility of the authors and does not necessarily represent the
- 391 official views of the NIH.

392 **References**

393	1.	Lilja H, Ulmert D, Vickers AJ. Prostate-specific antigen and prostate cancer: prediction,
394		detection and monitoring. Nat Rev Cancer. 2008;8(4):268-278. doi:10.1038/nrc2351
395	2.	Cucchiara V, Cooperberg MR, Dall'Era M, et al. Genomic Markers in Prostate Cancer
396		Decision Making. Eur Urol. 2018;73(4):572-582. doi:10.1016/j.eururo.2017.10.036
397	3.	LeBeau AM, Kostova M, Craik CS, Denmeade SR. Prostate-specific antigen: an
398		overlooked candidate for the targeted treatment and selective imaging of prostate cancer.
399		Biol Chem. 2010;391(4):333-343. doi:10.1515/BC.2010.044
400	4.	Qiu SD, Young CY, Bilhartz DL, et al. In situ hybridization of prostate-specific antigen
401		mRNA in human prostate. J Urol. 1990;144(6):1550-1556. doi:10.1016/s0022-
402		5347(17)39797-5
403	5.	Lilja H, Oldbring J, Rannevik G, Laurell CB. Seminal vesicle-secreted proteins and their
404		reactions during gelation and liquefaction of human semen. J Clin Invest. 1987;80(2):281-
405		285.
406	6.	Pinsky PF, Kramer BS, Crawford ED, et al. Prostate volume and prostate-specific antigen
407		levels in men enrolled in a large screening trial. Urology. 2006;68(2):352-356.
408		doi:10.1016/j.urology.2006.02.026
409	7.	Ilic D, Neuberger MM, Djulbegovic M, Dahm P. Screening for prostate cancer. Cochrane

410 Database Syst Rev. 2013;2013(1):CD004720. doi: 10.1002/14651858.CD004720.pub3.

- 411 8. Fenton JJ, Weyrich MS, Durbin S, Liu Y, Bang H, Melnikow J. Prostate-Specific Antigen-
- 412 Based Screening for Prostate Cancer: Evidence Report and Systematic Review for the US
- 413 Preventive Services Task Force. *JAMA*. 2018;319(18):1914-1931.
- 414 doi:10.1001/jama.2018.3712
- 415 9. Ilic D, Djulbegovic M, Jung JH, et al. Prostate cancer screening with prostate-specific
- 416 antigen (PSA) test: a systematic review and meta-analysis. *The BMJ*. 2018;362:k3519.

417 doi:10.1136/bmj.k3519

- 418 10. Potosky AL, Feuer EJ, Levin DL. Impact of screening on incidence and mortality of
- 419 prostate cancer in the United States. *Epidemiol Rev.* 2001;23(1):181-186.
- 420 doi:10.1093/oxfordjournals.epirev.a000787
- Han PKJ, Kobrin S, Breen N, et al. National Evidence on the Use of Shared Decision
 Making in Prostate-Specific Antigen Screening. *Ann Fam Med.* 2013;11(4):306-314.
 doi:10.1370/afm.1539
- 424 12. Hugosson J, Roobol MJ, Månsson M, et al. A 16-yr Follow-up of the European
- 425 Randomized study of Screening for Prostate Cancer. *Eur Urol.* 2019;76(1):43-51.
- 426 doi:10.1016/j.eururo.2019.02.009
- 427 13. de Koning HJ, Gulati R, Moss SM, et al. The efficacy of prostate-specific antigen
- 428 screening: Impact of key components in the ERSPC and PLCO trials. *Cancer*.
- 429 2018;124(6):1197-1206. doi:10.1002/cncr.31178

	430	14.	Bansal A.	Murray DI	K. Wu JT.	. Stephenson RA	. Middleton RG	. Meikle AW	. Heritability	v of
--	-----	-----	-----------	-----------	-----------	-----------------	----------------	-------------	----------------	------

431 Prostate-Specific Antigen and Relationship with Zonal Prostate Volumes in Aging Twins*.

432 *J Clin Endocrinol Metab.* 2000;85(3):1272-1276. doi:10.1210/jcem.85.3.6399

- 433 15. Pilia G, Chen WM, Scuteri A, et al. Heritability of Cardiovascular and Personality Traits in
- 434 6,148 Sardinians. *PLoS Genet*. 2006;2(8):e132. doi:10.1371/journal.pgen.0020132
- 435 16. Hoffmann TJ, Passarelli MN, Graff RE, et al. Genome-wide association study of prostate-
- 436 specific antigen levels identifies novel loci independent of prostate cancer. *Nat Commun.*
- 437 2017;8:14248. doi:10.1038/ncomms14248
- 438 17. Kachuri L, Hoffmann TJ, Jiang Y, et al. Incorporating Genetic Determinants of Prostate-
- 439 Specific Antigen Levels Improves Prostate Cancer Screening. *MedRvix*.
- 440 doi:10.1101/2022.04.18.22273850
- 441 18. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are
- 442 more likely to be eQTLs: annotation to enhance discovery from GWAS. *PLoS Genet*.
- 443 2010;6(4):e1000888. doi:10.1371/journal.pgen.1000888
- 444 19. Gamazon ER, Wheeler HE, Shah KP, et al. A gene-based association method for mapping

traits using reference transcriptome data. *Nat Genet*. 2015;47(9):1091-1098.

- 446 doi:10.1038/ng.3367
- 447 20. Gusev A, Ko A, Shi H, et al. Integrative approaches for large-scale transcriptome-wide
- 448 association studies. *Nat Genet*. 2016;48(3):245-252. doi:10.1038/ng.3506

449	21.	Pasaniuc B, Price AL. Dissecting the genetics of complex traits using summary association
450		statistics. Nat Rev Genet. 2017;18(2):117-127. doi:10.1038/nrg.2016.142
451	22.	Barbeira AN, Dickinson SP, Bonazzola R, et al. Exploring the phenotypic consequences of
452		tissue specific gene expression variation inferred from GWAS summary statistics. Nat
453		Commun. 2018;9(1):1825. doi:10.1038/s41467-018-03621-1
454	23.	Barbeira, A.N., Bonazzola, R., Gamazon, E.R. \Box <i>et al.</i> \Box Exploiting the GTEx resources to
455		decipher the mechanisms at GWAS loci. Genome Biol. 2021;22(49). doi: 10.1186/s13059-
456		020-02252-4
457	24.	Yang J, Ferreira T, Morris AP, et al. Conditional and joint multiple-SNP analysis of GWAS
458		summary statistics identifies additional variants influencing complex traits. Nat Genet.
459		2012;44(4):369-S3. doi:10.1038/ng.2213
460	25.	Wen X, Pique-Regi R, Luca F. Integrating molecular QTL data into genome-wide genetic
461		association analysis: Probabilistic assessment of enrichment and colocalization. PLOS
462		Genet. 2017;13(3):e1006646. doi:10.1371/journal.pgen.1006646
463	26.	Hukku A, Sampson MG, Luca F, Pique-Regi R, Wen X. Analyzing and reconciling
464		colocalization and transcriptome-wide association studies from the perspective of
465		inferential reproducibility. Am J Hum Genet. 2022;109(5):825-837.
466		doi:10.1016/j.ajhg.2022.04.005
467	27.	Berisa T, Pickrell JK. Approximately independent linkage disequilibrium blocks in human
468		populations. Bioinformatics. 2016;32(2):283-285. doi:10.1093/bioinformatics/btv546

24

469	28.	Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and collaborative HTML5 gene list
470		enrichment analysis tool. BMC Bioinformatics. 2013;14(1):128. doi:10.1186/1471-2105-14-

471 128

- 472 29. Xie Z, Bailey A, Kuleshov MV, et al. Gene Set Knowledge Discovery with Enrichr. Curr
- 473 *Protoc*. 2021;1(3):e90. doi:10.1002/cpz1.90
- 474 30. Balk SP, Ko YJ, Bubley GJ. Biology of Prostate-Specific Antigen. J Clin Oncol.
- 475 2003;21(2):383-391. doi:10.1200/JCO.2003.02.083
- 476 31. Barbeira AN, Pividori M, Zheng J, Wheeler HE, Nicolae DL, Im HK. Integrating predicted
- 477 transcriptome from multiple tissues improves association detection. *PLOS Genet*.
- 478 2019;15(1):e1007889. doi:10.1371/journal.pgen.1007889
- 479 32. Tindall EA, Hoang HN, Southey MC, et al. The 4q27 locus and prostate cancer risk. *BMC*480 *Cancer*. 2010;10(1):69. doi:10.1186/1471-2407-10-69
- 481 33. Yoshino S, Hara T, Weng JS, Takahashi Y, Seiki M, Sakamoto T. Genetic Screening of
- 482 New Genes Responsible for Cellular Adaptation to Hypoxia Using a Genome-Wide shRNA

483 Library. *PLoS ONE*. 2012;7(4):e35590. doi:10.1371/journal.pone.0035590

- 484 34. Yoshino S, Matsui Y, Fukui Y, et al. EXOSC9 depletion attenuates P-body formation,
- 485 stress resistance, and tumorigenicity of cancer cells. *Sci Rep.* 2020;10(1):9275.
- 486 doi:10.1038/s41598-020-66455-2

487	35.	Burns DT, Donkervoort S, Müller JS, et al. Variants in EXOSC9 Disrupt the RNA
488		Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am J Hum
489		Genet. 2018;102(5):858-873. doi:10.1016/j.ajhg.2018.03.011
490	36.	O'Rourke DJ, DiJohnson DA, Caiazzo RJ, et al. Autoantibody Signatures as Biomarkers to
491		Distinguish Prostate Cancer from Benign Prostatic Hyperplasia in Patients with Increased
492		Serum Prostate Specific Antigen. Clin Chim Acta Int J Clin Chem. 2012;413(5-6):561-567.
493		doi:10.1016/j.cca.2011.11.027
494	37.	Feng T, Wei D, Li Q, et al. Four Novel Prognostic Genes Related to Prostate Cancer
495		Identified Using Co-expression Structure Network Analysis. Front Genet. 2021;12. doi:
496		10.3389/fgene.2021.584164
497	38.	Yang R, Du Y, Wang L, Chen Z, Liu X. Weighted gene co-expression network analysis
498		identifies CCNA2 as a treatment target of prostate cancer through inhibiting cell cycle. J
499		Cancer. 2020;11(5):1203-1211. doi:10.7150/jca.38173
500	39.	Smale ST, Kadonaga JT. The RNA polymerase II core promoter. Annu Rev Biochem.
501		2003;72:449-479. doi:10.1146/annurev.biochem.72.121801.161520
502	40.	Wagner SD, Yakovchuk P, Gilman B, et al. RNA polymerase II acts as an RNA-dependent
503		RNA polymerase to extend and destabilize a non-coding RNA. EMBO J. 2013;32(6):781-
504		790. doi:10.1038/emboj.2013.18
505	41.	Schier AC, Taatjes DJ. Structure and mechanism of the RNA polymerase II transcription
506		machinery. Genes Dev. 2020;34(7-8):465-488. doi:10.1101/gad.335679.119

507	42.	Louie MC, Yang HQ, Ma AH, et al. Androgen-induced recruitment of RNA polymerase II
508		to a nuclear receptor-p160 coactivator complex. Proc Natl Acad Sci. 2003;100(5):2226-
509		2230. doi:10.1073/pnas.0437824100
510	43.	Zhang X, Wang W, Zhu W, et al. Mechanisms and Functions of Long Non-Coding RNAs
511		at Multiple Regulatory Levels. Int J Mol Sci. 2019;20(22):5573. doi:10.3390/ijms20225573
512	44.	Misawa A, Takayama K, Inoue S. Long non-coding RNAs and prostate cancer. Cancer Sci.
513		2017;108(11):2107-2114. doi:10.1111/cas.13352
514	45.	Zhang, J., Chang, Y., Xia, H. at al. HIST1H2BN induced cell proliferation and EMT
515		phenotype in prostate cancer via NF-κB signal pathway. □ Genes Genom. 2021;43:1361-
516		1369. doi: 10.1007/s13258-021-01164-2
517	46.	Liu Q, Reed M, Zhu H, et al. Epigenome-wide DNA methylation and transcriptome
518		profiling of localized and locally advanced prostate cancer: Uncovering new molecular
519		markers. Genomics. 2022;114(5):110474. doi:10.1016/j.ygeno.2022.110474
520	47.	Pressinotti NC, Klocker H, Schäfer G, et al. Differential expression of apoptotic genes
521		PDIA3 and MAP3K5 distinguishes between low- and high-risk prostate cancer. Mol
522		Cancer. 2009;8:130. doi:10.1186/1476-4598-8-130
523	48.	Mahajan NP, Liu Y, Majumder S, et al. Activated Cdc42-associated kinase Ack1 promotes
524		prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad
525		Sci USA. 2007;104(20):8438-8443. doi:10.1073/pnas.0700420104

526	49.	Davalieva K, Kiprijanovska S, Komina S, Petrusevska G, Zografska NC, Polenakovic M.
527		Proteomics analysis of urine reveals acute phase response proteins as candidate diagnostic
528		biomarkers for prostate cancer. Proteome Sci. 2015;13:2. doi:10.1186/s12953-014-0059-9
529	50.	Krishnan N, Titus MA, Thapar R. The Prolyl Isomerase Pin1 Regulates mRNA Levels of
530		Genes with Short Half-Lives by Targeting Specific RNA Binding Proteins. PLOS ONE.
531		2014;9(1):e85427. doi:10.1371/journal.pone.0085427
532	51.	Wang Y, Pei X, Xu P, et al. E2F7, regulated by miR230c, inhibits apoptosis and promotes
533		cell cycle of prostate cancer cells. Oncol Rep. 2020;44(3):849-862.
534		doi:10.3892/or.2020.7659
535	52.	Sheeba JDJ, Hegde S, Tamboli N, Nadig N, Keshavamurthy R, Ranganathan P. Gene
536		expression signature of castrate resistant prostate cancer. BioRxiv. 2022.03.16.484397.
537		doi:10.1101/2022.03.16.484397
538	53.	Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-
539		resistant prostate cancer. Nature. 2012;487(7406):239-243. doi:10.1038/nature11125
540	54.	Lew QJ, Chu KL, Chia YL, Cheong N, Chao SH. HEXIM1, a New Player in the p53
541		Pathway. Cancers. 2013;5(3):838-856. doi:10.3390/cancers5030838
542	55.	Chen R, Yik JHN, Lew QJ, Chao SH. Brd4 and HEXIM1: Multiple Roles in P-TEFb
543		Regulation and Cancer. BioMed Res Int. 2014;2014:e232870. doi:10.1155/2014/232870

J = J = J = J = J = J = J = J = J = J =	544	56.	Chen CD.	. Sawvers	CL. NF-K	B Activates	Prostate-S	pecific A	Antigen E	xpression a	and
---	-----	-----	----------	-----------	----------	-------------	------------	-----------	-----------	-------------	-----

- 545 Upregulated in Androgen-Independent Prostate Cancer. *Mol Cell Biol.* 2002;22(8):2862-
- 546 2870. doi:10.1128/MCB.22.8.2862-2870.2002
- 547 57. Hara Y, Yamagata K, Oguchi K, Baba T. Nuclear localization of profilin III-ArpM1
- 548 complex in mouse spermiogenesis. *FEBS Lett.* 2008;582(20):2998-3004.
- 549 doi:10.1016/j.febslet.2008.07.058
- 550 58. Umer N, Arévalo L, Phadke S, et al. Loss of Profilin3 Impairs Spermiogenesis by Affecting
- 551 Acrosome Biogenesis, Autophagy, Manchette Development and Mitochondrial
- 552 Organization. Front Cell Dev Biol. 2021;9 9:749559. doi: 10.3389/fcell.2021.749559
- 553 59. Song F, Amos CI, Lee JE, et al. Identification of a melanoma susceptibility locus and

somatic mutation in TET2. *Carcinogenesis*. 2014;35(9):2097-2101.

- 555 doi:10.1093/carcin/bgu140
- 556 60. Law PJ, Timofeeva M, Fernandez-Rozadilla C, et al. Association analyses identify 31 new

risk loci for colorectal cancer susceptibility. *Nat Commun.* 2019;10(1):2154.

- 558 doi:10.1038/s41467-019-09775-w
- McKay JD, Hung RJ, Han Y, et al. Large-scale association analysis identifies new lung
 cancer susceptibility loci and heterogeneity in genetic susceptibility across histological
- 561 subtypes. *Nat Genet*. 2017;49(7):1126-1132. doi:10.1038/ng.3892
- 562 62. THE GTEX CONSORTIUM. The GTEx Consortium atlas of genetic regulatory effects
 563 across human tissues. *Science*. 2020;369(6509):1318-1330. doi:10.1126/science.aaz1776

564	63.	Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current
565		polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51(4):584-591.
566		doi:10.1038/s41588-019-0379-x
567	64.	Wainberg M, Sinnott-Armstrong N, Mancuso N, et al. Opportunities and challenges for
568		transcriptome-wide association studies. Nat Genet. 2019;51(4):592-599.
569		doi:10.1038/s41588-019-0385-z

- 570 65. Liang, Y., Pividori, M., Manichaikul, A. \Box et al. \Box Polygenic transcriptome risk scores
- 571 (PTRS) can improve portability of polygenic risk scores across ancestries. *Genome*
- 572 *Biol* 2022;23(23). doi: 10.1186/s13059-021-02591-w

573 Figure Titles and Legends:

574 Figures 1-3. TWAS results by chromosome, as depicted by (1) Miami plot for whole blood 575 analyses, (2) Miami plot for prostate tissue analyses, and (3) Manhattan plot for cross-tissue 576 analyses. Each dot represents a gene, and the red dashed lines represent the significance 577 thresholds after Bonferroni correction (whole blood: 4.10e-6, prostate: 3.61e-6, cross-tissue: 578 2.25e-6). For the Miami plots in figures 1 and 2, all statistically significant genes are annotated, 579 and the genes independent of results from the largest prior GWAS are highlighted in yellow; the 580 genes in the upper half of the plots were positively associated with PSA levels, and the genes in 581 the lower half of the plots were inversely associated with PSA levels. For the Manhattan plot in 582 figure 3, the 30 genes with the smallest association p-values are annotated and colored blue, and 583 significant genes from the whole blood and prostate tissue analyses are annotated and colored 584 vellow. Directions of association between genes and PSA levels are not available for cross-tissue 585 analyses due to the joint tissue inference methodology used in S-MultiXcan. 586 Figure 4. Statistically significant genes overlapping across TWAS analyses. Of the 587 significant gene sets from whole blood (41 genes), prostate tissue (39 genes), and cross-tissue 588 analyses (155 genes), 13 genes were significant across all three analyses, 36 genes were 589 significant in exactly two analyses, and 124 genes were significant in a single analysis. 590 Figure 5. GO term enrichment results from the cross-tissue TWAS. The GO molecular 591 function and biological process data repositories were queried for pathway enrichment analyses. 592 The color gradient represents the magnitude of p-values, with darker colors corresponding to 593 smaller values. The size of the circles represents the number of genes in the pathway.

594 **Table Titles**

595 **Table 1.** Novel genes associated with prostate-specific antigen (PSA) levels in transcriptome-

596 wide association studies (TWAS) based on whole blood, prostate, and cross-tissue predicted

597 gene expression*

Ensembl gene ID	Gene name	Chr	Cytoband†	Analysis ~	Z-score	Beta	р	p-bonf
ENSG00000132128	LRRC41	1	p33	Prostate	5.04	0.29	4.76E-07	6.59E-03
				Whole Blood	5.18	17.92	2.21E-07	2.69E-03
ENSG00000159592	GPBP1L1	1	p34.1	Cross-Tissue	-1.92	-	2.08E-08	4.59E-04
ENSG00000159596	TMEM69	1	p34.1	Whole Blood	5.18	0.28	2.21E-07	2.69E-03
ENSG00000173660	UQCRH	1	p33	Whole Blood	5.04	8.04	4.76E-07	5.80E-03
ENSG0000070831	CDC42	1	p36.12	Cross-Tissue	-1.55	-	6.24E-07	1.37E-02
ENSG00000184378	ACTRT3	3	q26.2	Whole Blood	4.99	0.25	5.90E-07	7.19E-03
				Whole Blood	-4.63	-0.03	3.65E-06	4.45E-02
ENSG00000055955	ITIH4	3	p21.1	Prostate	-4.69	-0.03	2.69E-06	3.72E-02
ENSG00000163950	SLBP	4	p16.3	Cross-Tissue	-2.15	-	8.40E-08	1.85E-03
				Whole Blood	4.94	0.61	7.80E-07	9.51E-03
ENSG00000145386	CCNA2	4	q27	Cross-Tissue	-1.81	-	1.02E-06	2.25E-02
				Whole Blood	4.77	0.09	1.80E-06	2.19E-02
				Prostate	-4.86	-0.42	1.18E-06	1.63E-02
ENSG00000123737	EXOSC9	4	q27	Cross-Tissue	0.36	-	8.60E-07	1.89E-02
ENSG00000233822	HIST1H2BN	6	p22.1	Prostate	5.35	0.24	8.86E-08	1.23E-03
	RP11-							
ENSG00000272447	182L21.6	10	q22.3	Cross-Tissue	1.25	-	1.54E-07	3.40E-03
ENSG00000264230	ANXA8L1	10	q11.22	Cross-Tissue	-0.46	-	2.17E-07	4.77E-03
ENSG00000165891	E2F7	12	q21.2	Cross-Tissue	1.45	-	8.54E-09	1.88E-04
ENSG00000188277	C15orf62	15	q15.1	Cross-Tissue	-0.85	-	2.01E-07	4.42E-03
	RP11-							
ENSG00000259359	327J17.2	15	q26.2	Cross-Tissue	-0.16	-	5.82E-07	1.28E-02
ENSG00000155719	OTOA	16	p12.2	Prostate	-4.82	-5.36	1.44E-06	1.99E-02
ENSG00000197445	C16orf47	16	q22.3	Cross-Tissue	0.44	-	1.11E-07	2.47E-03
ENSG00000141052	MYOCD	17	p12	Cross-Tissue	-3.03	-	1.20E-07	2.66E-03
ENSG00000181513	ACBD4	17	q21.31	Cross-Tissue	-1.05	-	2.17E-06	4.77E-02
ENSG00000186834	HEXIM1	17	q21.31	Prostate	5.03	0.12	4.95E-07	6.85E-03

Abbreviations: Chr – chromosome; p-bonf – Bonferroni-adjusted p-value

* The genes included in this table were significant (Bonferroni-adjusted p < 0.05) in at least one TWAS and, based on conditional analyses, independent from the largest prior genome-wide association study of PSA levels.

† GRCh38

[~] Indicates the tissue(s) in which predicted gene expression was significantly associated with PSA levels.

598 **Table 2.** Gene level colocalization results for significant genes from the cross-tissue

599 transcriptome-wide association study*

Ensembl gene ID	Gene name	Chr	Cytoband [†]	GRCP	GLCP
ENSG0000069275	NUCKS1	1	q32.1	0.97	2.55
ENSG00000117280	RAB29	1	q32.1	1.13	0.52
ENSG00000117602	RCAN3	1	p36.11	2.13	-24.54
ENSG00000143603	KCNN3	1	q21.3	1.42	-136.50
ENSG00000158715	SLC45A3	1	q32.1	0.59	15.17
ENSG00000163344	PMVK	1	q21.3	1.97	-50.77
ENSG00000163346	PBXIP1	1	q21.3	1.99	-14.21
ENSG0000270361	RP11-307C12.13	1	q21.3	1.08	-0.32
ENSG00000115507	OTX1	2	p15	4.91	-7.33
ENSG00000143869	GDF7	2	p24.1	1.00	620.30
ENSG0000068885	IFT80	3	q25.33	2.41	24.05
ENSG0000072858	SIDT1	3	q13.2	0.62	-211.30
ENSG00000113810	SMC4	3	q25.33	2.18	-52.64
ENSG00000132394	EEFSEC	3	q21.3	1.34	-160.40
ENSG00000175792	RUVBL1	3	q21.3	1.24	-72.12
ENSG00000177311	ZBTB38	3	q23	1.22	-39.66
ENSG00000186432	KPNA4	3	q25.33	1.27	-19.18
ENSG00000213186	TRIM59	3	q25.33	1.54	-38.26
ENSG00000123737	EXOSC9	4	q27	2.24	-108.20
ENSG00000145386	CCNA2	4	q27	1.39	-54.29
ENSG0000049656	CLPTM1L	5	p15.33	0.71	-27.67
ENSG00000164362	TERT	5	p15.33	0.72	4.54
ENSG00000184357	HIST1H1B	6	p22.1	0.92	2.70
ENSG00000189298	ZKSCAN3	6	p22.1	0.84	1.28
ENSG00000204713	TRIM27	6	p22.1	0.76	-12.84
ENSG0000233822	HIST1H2BN	6	p22.1	1.08	-9.88
ENSG00000281831	НСР5В	6	p22.1	0.88	1.25
ENSG00000164684	ZNF704	8	q21.13	1.00	-94.45
ENSG00000167034	NKX3-1	8	p21.2	0.96	-293.10
ENSG0000056558	TRAF1	9	q33.2	0.78	5,137.00
ENSG0000095261	PSMD5	9	q33.2	0.61	-14.25
ENSG00000119403	PHF19	9	q33.2	0.97	-23.73
ENSG00000130956	HABP4	9	q22.32	0.82	30.20
ENSG00000130958	SLC35D2	9	q22.32	1.22	-11.44
ENSG00000165244	ZNF367	9	q22.32	0.60	-10.13
ENSG00000148700	ADD3	10	q25.1	1.21	-118.60
ENSG0000272447	RP11-182L21.6	10	q22.3	0.99	5.94
ENSG00000137673	MMP7	11	q22.2	0.96	183.70
ENSG00000158636	EMSY	11	q13.5	2.64	-9.56
ENSG00000177951	BET1L	11	p15.5	0.78	-63.92
ENSG00000111707	SUDS3	12	q24.23	1.33	-225.60
ENSG00000175899	A2M	12	p13.31	0.64	-156.60
ENSG00000172766	NAA16	13	q14.11	1.25	-14.31
ENSG00000259359	<i>RP11-327J17.2</i>	15	q26.2	1.10	2.93

ENSG00000141052	MYOCD	17	p12	0.62	-1.94			
ENSG00000275410	HNF1B	17	q12	0.81	2.32			
ENSG00000176920	FUT2	19	q13.33	3.04	320.20			
ENSG00000177045	SIX5	19	q13.32	1.87	-15.39			
ENSG00000185800	DMWD	19	q13.32	1.00	461.40			
ENSG00000185022 MAFF 22 q13.1 3.63 3.06								
Abbreviations: Chr – chromosome; GLCP - gene-level colocalization probability;								
GRCP - gene-level variant colocalization probability								
* The genes in bold were, based on COJO analyses, independent from the largest prior								
genome-wide association study of prostate-specific antigen levels.								
† GRCh38								

600 **Table 3.** Results from pathway analyses based on all significant genes identified in the whole blood,

601 prostate tissue, and cross-tissue transcriptome-wide association studies

Database	Pathway	Overlap	р	Score	Genes
		W	hole Blood	1	
KEGG	renin-angiotensin system	2/23	0.047	335.87	KLK1;KLK2
		Cı	ross-Tissue		
GO Molecular Function	RNA polymerase II transcription regulatory region sequence-specific DNA binding (GO:0000977)	26/1359	6.82E-04	30.85	<i>EHF;ZBTB4;ETS2;GLIS2;HOXA10;POU5</i> <i>F1B;PGBD1;HOXA9;SIX5;ZNF704;ZKSC</i> <i>AN3;OTX1;ZBTB7B;ZNF367;E2F7;NKX3-</i> <i>1;NKX2-</i> <i>6;BCL11A;ZBTB38;HNF1B;TBX3;DMRTA</i> <i>2;TFAP4;MAFF;MKX;TP53</i>
GO Molecular Function	sequence-specific double- stranded DNA binding (GO:1990837)	14/712	0.024	18.07	ETS2;TBX3;GLIS2;HOXA10;DMRTA2;HO XA9;TFAP4;ZNF704;MAFF;OTX1;ZBTB7 B;TP53;E2F7;NKX3-1
GO Molecular Function	double-stranded DNA binding (GO:0003690)	14/651	0.013	22.45	NUCKS1;ETS2;TBX3;GLIS2;HOXA10;DM RTA2;HOXA9;TFAP4;ZNF704;MAFF;OT X1;ZBTB7B;E2F7;NKX3-1
GO Molecular Function	RNA polymerase II cis- regulatory region sequence- specific DNA binding (GO:0000978)	26/1149	6.54E-05	47.24	<i>EHF;ZBTB4;ETS2;GLIS2;HOXA10;POU5</i> <i>F1B;PGBD1;HOXA9;SIX5;ZNF704;ZKSC</i> <i>AN3;OTX1;ZBTB7B;ZNF367;E2F7;NKX3-</i> <i>1;NKX2-</i> <i>6;BCL11A;ZBTB38;HNF1B;TBX3;DMRTA</i> <i>2;TFAP4;MAFF;MKX;TP53</i>
GO Molecular Function	cis-regulatory region sequence-specific DNA binding (GO:0000987)	27/1149	3.69E-05	53.95	<i>EHF;ZBTB4;ETS2;GLIS2;HOXA10;POU5</i> <i>F1B;PGBD1;HOXA9;SIX5;ZNF704;ZKSC</i> <i>AN3;OTX1;ZBTB7B;ZNF367;E2F7;NKX3-</i> <i>1;NKX2-</i> <i>6;BCL11A;ZBTB38;HMGA1;HNF1B;TBX3</i> <i>;DMRTA2;TFAP4;MAFF;MKX;TP53</i>
GO Molecular Function	sequence-specific DNA binding (GO:0043565)	17/707	0.0012	35.01	ZBTB38;ZBTB4;ETS2;TBX3;GLIS2;HOXA 10;DMRTA2;HOXA9;TFAP4;TERT;ZNF70 4;MAFF;ZKSCAN3;OTX1;ZBTB7B;E2F7; NKX3-1
GO Molecular Function	endopeptidase activity (GO:0004175)	8/315	0.049	19.86	MMP7;KLK1;ADAMTS18;KLK5;KLK3;KL K15;KLK2;KLK8
GO Molecular Function	histone deacetylase binding (GO:0042826)	5/1993	0.016	53.49	HOXA10;TFAP4;SUDS3;TP53;NKX3-1
GO Molecular Function	serine-type endopeptidase activity (GO:0004252)	6/105	0.0047	69.79	KLK1;KLK5;KLK3;KLK15;KLK2;KLK8
GO Molecular Function	serine-type peptidase activity (GO:0008236)	8/125	3.30E-04	110.44	KLK1;KLK5;KLK4;KLK3;KLK15;KLK2;K LK8;KLK11
GO Molecular Function	thioesterase binding (GO:0031996)	2/11	0.049	166.1	CDC42;TRAF1
GO Biological Process	regulation of transcription by RNA polymerase II (GO:0006357)	36/2206	0.0064	28.19	EHF;NUCKS1;ZBTB4;ETS2;GLIS2;HOXA 10;POU5F1B;PGBD1;SDR16C5;HOXA9; ZNF827;SIX5;ZNF704;RUVBL1;ZKSCAN3 ;TRIM27;OTX1;SUDS3;ZBTB7B;ZNF367; E2F7;NKX3-1;MYOCD;NKX2- 6;BCL11A;ZBTB38;HMGA1;HNF1B;TBX3 ;DMRTA2;TFAP4;MAFF;MKX;TP53;TLR 4;FGFR2 EHE.NUCKS1;DPVID1;ZPTP4;ETS2;CUS
GO BIOlogical	regulation of transcription,	38/2244	0.0028	33.00	ERF, NUCKSI, PDAIPI; ZBIB4; EIS2; GLIS

Process	DNA-templated (GO:0006355)				2;HOXA10;POU5F1B;PGBD1;HOXA9;SI X5;ZNF704;RUVBL1;ZKSCAN3;GPBP1L1 ;OTX1;SUDS3;ZBTB7B;JARID2;ZNF367; E2F7;NKX3-1;MYOCD;NKX2- 6;BCL11A;ZBTB38;SETDB2;HMGA1;HN F1B;TBX3;GDF7;DMRTA2;TFAP4;MAFF ;NAA16;MKX;TP53;PHF19
GO Biological Process	positive regulation of transcription, DNA- templated (GO:0045893)	22/1183	0.027	24.05	EHF;MYOCD;NKX2- 6;ZBTB38;HMGA1;HNF1B;ETS2;TBX3;G LIS2;GDF7;HOXA10;TFAP4;ZNF827;MA FF;ZKSCAN3;NAA16;OTX1;TP53;TLR4;F GFR2;E2F7;NKX3-1
GO Biological Process	positive regulation of transcription by RNA polymerase II (GO:0045944)	18/908	0.032	23.3	<i>EHF;MYOCD;NKX2-</i> <i>6;ZBTB38;HMGA1;HNF1B;TBX3;GLIS2;</i> <i>HOXA10;TERT;ZNF827;MAFF;OTX1;TP5</i> <i>3;TLR4;FGFR2;E2F7;NKX3-1</i>
GO Biological Process	negative regulation of transcription, DNA- templated (GO:0045892)	20/948	0.018	30.19	<i>BCL11A;ZBTB38;SETDB2;HMGA1;PBXIP</i> <i>1;ZBTB4;ETS2;TBX3;GLIS2;SDR16C5;TF</i> <i>AP4;ZKSCAN3;TRIM27;SUDS3;ZBTB7B;J</i> <i>ARID2;TP53;FGFR2;E2F7;NKX3-1</i>
GO Biological Process	negative regulation of cellular macromolecule biosynthetic process (GO:2000113)	13/547	0.041	26.39	ZBTB38;SETDB2;HMGA1;PBXIP1;ZBTB4 ;TBX3;GLIS2;TFAP4;ZKSCAN3;SUDS3;J ARID2;TP53;NKX3-1
GO Biological Process	negative regulation of nucleic acid-templated transcription (GO:1903507)	13/464	0.021	37.74	ZBTB38;SETDB2;HMGA1;PBXIP1;ZBTB4 ;TBX3;GLIS2;TFAP4;ZKSCAN3;SUDS3;J ARID2;TP53;NKX3-1
GO Biological Process	regulation of cyclin- dependent protein serine/threonine kinase activity (GO:0000079)	5/82	0.047	66.09	CCNA2;MYOCD;CDKN2C;TFAP4;CDK5 RAP1
GO Biological Process	cellular component disassembly (GO:0022411)	5/66	0.027	94.49	MMP7;KLK5;KLK4;KLK2;A2M
GO Biological Process	extracellular matrix disassembly (GO:0022617)	5/66	0.027	94.49	MMP7;KLK5;KLK4;KLK2;A2M
GO Biological Process	negative regulation of cyclin-dependent protein serine/threonine kinase activity (GO:0045736)	3/20	0.047	176.28	MYOCD;TFAP4;CDK5RAP1
GO Biological Process	regulation of systemic arterial blood pressure (GO:0003073)	3/16	0.032	251.29	KLK1;KLK3;KLK2
GO Molecular Function	RNA polymerase II transcription regulatory region sequence-specific DNA binding (GO:0000977)	26/1359	6.82E-04	30.85	<i>EHF;ZBTB4;ETS2;GLIS2;HOXA10;POU5</i> <i>F1B;PGBD1;HOXA9;SIX5;ZNF704;ZKSC</i> <i>AN3;OTX1;ZBTB7B;ZNF367;E2F7;NKX3-</i> <i>1;NKX2-</i> <i>6;BCL11A;ZBTB38;HNF1B;TBX3;DMRTA</i> <i>2;TFAP4;MAFF;MKX;TP53</i>

Figure 1: Miami Plot for Whole Blood TWAS Analysis

Figure 2: Miami Plot for Prostate Tissue TWAS Analysis

Figure 3: Manhattan plot for cross-tissue analyses

Figure 5: GO term enrichment results from the cross-tissue TWAS.

