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Abstract 
 
During viral infection the structure of host chromatin is modified. It is generally assumed that 
these chromatin modifications will affect variant-gene mapping, and therefore gene expression. 
What is not clear is how limitations imposed by host germline risk affect the expression changes 
that occur with infection induced chromatin remodelling. Critically, this lack of information 
extends to how germline variants associated with severe SARS-CoV-2 impact on tissue-specific 
gene expression changes in response to infection-induced chromatin conformation changes. 
Here we combined temporal chromatin conformation data from SARS-CoV-2 stimulated cells 
with a lung spatial-eQTL gene expression analysis to contextualise the functional effects and 
contributions of germline risk on the severe phenotypes observed in SARS-CoV-2. We identify 
changes in lung-specific SARS-CoV-2 risk variant-gene mapping across the infection time 
course. Our results provide evidence for infection-induced chromatin remodelling that impacts 
the regulation of genes associated with the severity of SARS-CoV-2 infection. The gene targets 
we identified are functionally involved in host chromatin modifications and maintenance and the 
expression of these genes is amplified by SARS-CoV-2-induced epigenetic remodelling. The 
effect of this remodelling includes transcriptional changes to gene targets such as SMARCA4, 
NCOR1, DNMT1, DNMT3a, DAXX, and PIAS4, all critical components of epigenetic control 
mechanisms and SARS-CoV-2 antiviral activity, along with several genes involved in surfactant 
metabolism. We show how severe-phenotype-associated eQTLs form and break in an infection 
time-course-dependent manner that mimics positive feedback loops connecting germline 
variation with the process of viral infection and replication. Our results provide a novel bridge 
between existing COVID-19 epigenetic research and demonstrate the critical role of epigenomics 
in understanding SARS-CoV-2-risk-associated gene regulation in the lung. 
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Introduction 
 
Genome-wide association studies of phenotypes observed in patients with COVID-19 have 
identified reproducible genetic associations indicating a genetic component to severity risk. 
Nonetheless, information about the functional effect of risk variants in the non-coding genome 
lacks two critical pieces of information, (1) the tissue-specificity of gene regulation and (2) the 
temporal effects of tissue-specific variant-gene pairs expressed under SARS-CoV-2 infected 
cells. Ninety-five gene targets associated with severity of infection were identified by COVID-19 
GWAS’s1. These were collectively mapped from 18 loci within the ‘hospitalisation’ phenotype and 
11 loci within the ‘severe’ phenotype (i.e. hospitalised, respiratory support and/or death). Both act 
as a proxy for disease severity. The data, derived from the COVID-19 HGI1-3, is the most 
comprehensive GWAS on COVID-19 globally. The consortium used gene mapping techniques 
such as the closest gene, genes with a loss-of-function or missense variant in LD with a lead 
variant, genes with a fine-mapped cis-eQTL variant in GTEx4 and eQTL catalog that is in LD with 
a lead variant and highest gene prioritised by OpenTargetGenetics’ V2G score5. None of these 
methods accounts for cell/tissue specificity relevant to the phenotype under study, nor do these 
studies consider epigenetic mechanisms that influence gene expression under SARS-CoV-2 
conditions. These are arguably the most critical aspects of understanding the functional 
consequences of genetic risk6.   
 
Mounting evidence7-10 suggests that epigenetic signals contribute to the severity of SARS-CoV-2 
infection. Lung epithelial cells are the first target of SARS-CoV-2, and the A549ACE2 cell line 
constitutes a relevant cellular context for SARS-CoV-2 infection. Substantial chromatin 
condensation, increases in H3K9me3 and H3K27me3, and decreases in H3K9ac9 resulting in 
induction of inflammatory genes, and suppression of type 1 interferon-responsive antiviral genes 
and virus sensors was observed in SARS-CoV-2 infected A549ACE2 cells7,9. This is attributed to 
ORF8, which encodes a SARS-CoV-2 specific histone mimic9. In another infection-like model, 
macrophages treated with LPS and IFN-γ, genome-wide changes in chromatin loops, 
acetylation, and expression were observed by Hi-C over 24 hours at 7 time intervals10. 
Chromatin loops exhibit transcriptional control by increasing contact frequencies between 
enhancers and their target genes, which are partly regulated by external stimuli such as infection 
and substantial changes in gene transcription10. SMARCA4, identified as a SARS-CoV-2 risk 
gene target6 and by CRISPR screen as the second most proviral gene following ACE211, forms 
part of the SWI/SNF remodelling complex that regulates chromatin accessibility and gene 
expression. Knockout of SMARCA4 conferred resistance (i.e. proviral) to SARS-CoV-2 and was 
found to be unique to ACE2-receptor-mediated viruses11. Collectively, SARS-CoV-2 induces 
substantial chromatin remodelling by ORF8 and histone post-translational modifications and 
induces specific proviral gene programs. At the same time, host susceptibility in the germline 
could form a positive feedback loop in chromatin accessibility via gene targets such as 
SMARCA4 and other chromatin remodellers.  
 
Several functional assays applying whole-genome KO CRISPR screens, or specific regions12, for 
identifying SARS-CoV-2 regulators have been reported11,13-18. These screens varied in the viral 
isolate, CRISPR library and cell type. A meta-analysis showed a high level of cell-type specificity 
of the identified hits13. Regardless, these experiments uncovered critical host factors for the 
virus. Top proviral genes include ACE2 and CTSL across all screens11,13-18, SMARCA411,13 and 
TMEM106B17, and antiviral genes such as DAXX12, CABIN1, HIRA and XRCC311,13, PIAS1 and 
26. Several top pro/antiviral genes are involved in chromatin remodelling, DNA repair and histone 
modifications (i.e. epigenetic modifications). Epigenetic regulation occurs at multiple levels, 
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including through DNA methylation, histone modification, RNA interference, nucleosome 
remodelling and modulation of 3D chromatin structure, and contains almost all molecular 
mechanisms affecting gene expression in a reversible, transmissible, and adaptive way without 
altering the sequence of genomic DNA. 
 
Epigenetic modifications constitute antiviral restriction used by host cells as an innate immune 
defence against viral DNA and RNA19, they are also involved in the innate immune response20 to 
SARS-CoV-2 infection. For example, chromatin remodelling complexes SWI/SNF contribute to 
the activation of interferon-stimulated gene promoters and are master regulators of gene 
expression more broadly21. DNA methyltransferase enzymes (DNMTs) have a role in epigenetics 
and change in chromatin structures22. Epigenetic repression (i.e. rapid loading of histones 
bearing heterochromatic marks) also represses viral gene expression in a tug-of-war that is only 
revealed when viral countermeasures are experimentally removed19. PML-NBs are critical 
proteins involved in orchestrating the epigenetic repression of foreign DNA and RNA. Some 
PML-NB components increase in response to interferon signalling, and others, including the 
histone chaperone complex Daxx-ATRX, which loads histone variant H3.3, suppress viral 
replication. DNA viruses, including herpesviruses and HBV, package and/or encode viral proteins 
that can overcome this suppression19, highlighting PML-NBs as critical structures in the 
epigenetic suppression of viral activity. 
 
The arms race between virus and host involves epigenetic mechanisms, including those innate 
to the host, those hijacked by the virus, and in the case of SARS-CoV-2, contributed to by viral 
protein histone-mimic ORF89. What is not clear is how limitations imposed by host germline risk 
affect the expression changes that occur with infection induced chromatin remodelling. 
Specifically, the single gene impact from variants associated with the severity of SARS-CoV-2 
infection has not been investigated for tissue-specific, infection-induced chromatin conformation 
changes temporally. In this study, we analysed gene targets of SARS-CoV-2 risk variants at 
different time points in lung epithelial cells: 0 hours (uninfected), 8 hours post-infection (8hpi), 
and 24 hours post-infection (24hpi)7. We also analysed gene expression data from lung tissue4. 
Recent results9,11 suggest there may be an epigenetic competition between the host and SARS-
CoV-2. Here we find that germline risk in the severe phenotype, coupled with the epigenetic 
impact of SARS-CoV-2, limits the cells' ability to carry out relevant antiviral activities. Critically, 
the gene targets we identified are associated with host chromatin modifications amplified by 
SARS-CoV-2-induced epigenetic remodelling. Finally, we identify how this SARS-CoV-2-
mediated process in genetically susceptible individuals mimics processes in normal and 
pathologically aged cells23, which may partly explain the severe phenotypes observed in younger 
patients and the exacerbated symptoms in some older patients. The profile of infection-induced 
(i.e. driven by differential interactions; lost/gained across time) gene activity, we identify, couples 
host germline risk with SARS-CoV-2-induced host epigenetic modifications9 for the first time.  
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Results 

 
Ho et al.7 identified structural changes to chromatin organisation in response to SARS-CoV-2 
infection in human lung epithelial cells expressing the ACE2 receptor (i.e. A549ACE2 cells). We 
hypothesised that these structural changes to chromatin organisation were associated with 
altered variant-gene mapping and temporally defined alterations in transcriptional activity within 
the infected cells. CoDeS3D24 integrates GWAS data with Hi-C and eQTLs to identify putative 
tissue-specific functional outcomes associated with physical connections between regulatory 
sites and genes. We used CoDeS3D to integrate information on SARS-CoV-2 risk (i.e. variants 
associated with severe and hospitalised phenotypes), chromatin conformation data captured 
from uninfected (0h) and infected A549ACE2 cells7 at 8hpi (early) and 24hpi (late) time points post-
infection, and eQTL data from lung tissue4 (Figure 1a). The spatial-eQTLs captured targeting 
genes within lung tissue are herein called ‘SCeQTLs’. Across the three time points (i.e. 
uninfected, 8hpi and 24hpi), we detected a total of 30,438 regulatory interactions from 7,419 
SCeQTLs involving SNPs associated with the severe phenotype and 33,284 interactions from 
7,788 SCeQTLs for the hospitalised phenotype (Figure 1b; Supplementary table 1). These 
regulatory interactions involved 362 and 445 genes for the severe and hospitalised phenotypes, 
respectively (Figure 1b; Supplementary table 1). There was significant SCeQTL overlap between 
the hospitalised (76.5%) and severe (80.3%) phenotypes (Supplementary table 1), consistent 
with the observed overlap in SNPs associated with the SARS-CoV-2 severe and hospitalised 
severity phenotypes (Supplementary figure 1a). CoDeS3D identified 59 of the 95 genes within 
the COVID-19 HGI1 severe gene set (Supplementary table 2a).  
 
Chromatin domains and loops are deregulated in SARS-CoV-2 infected A549ACE2 cells7,8. We 
hypothesised that these chromatin alterations would result in dynamic infection-associated 
changes in SCeQTLs and target genes. We classified SCeQTL-gene interactions unique to the 
severe and hospitalised phenotypes and those that were shared between the phenotypes as 
being “gained”, “lost”, or “retained” according to their dynamics upon infection. 484, 677 and 
2,488 SeQTL-gene interactions were lost across the time course within the severe, hospitalised, 
and shared groups, respectively. 672, 963 and 5,326 SeQTL-gene interactions were retained, 
and 345, 427 and 1,825 SeQTL-gene interactions were gained (Figure 1b; See Methods). 
Collectively, these differential interactions account for 55%, 54% and 45% of the SeQTL-gene 
interactions within the severe, hospitalised, and shared groups, respectively (Supplementary 
figure 1e). One hundred sixty-five shared, 34 severe and 82 hospitalised genes were retained 
following infection (Supplementary figure 1d).  
 
The proportions of cis and trans-regulated genes that are lost (hospitalised p = 0.0232; 
shared p = 3.72 x 10-3) and retained (shared p = 2.28 x 10-7; hospitalised p = 2.51 x 10-6; 
severe p = 9.87 x 10-5) significantly differed for the severe and hospitalised associated SCeQTLs 
(Figure 1c). Trans interactions were particularly dynamic. For example, of the forty-eight genes 
targeted by trans-only SCeQTLs (Supplementary figure 1c), forty were lost or gained with 
increasing time of infection. Notably, there was a significant increase in trans-acting SCeQTLs 
over the infection time course (Supplementary figure 1b). 
 
To examine gene-level changes, we calculated the difference in the number of interactions for 
each gene targeted by a SCeQTL in uninfected cells and at 24hpi. The interactions were 
categorised based on constant, increased, or decreased numbers over the infection time course. 
There is a significant association between the difference in interaction numbers and gene 
transcript levels (i.e. up or down-regulation) for genes with SCeQTLs that were unique to the 
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severe (Fisher's test p = 3.67 x 10-13) or shared between the severe and hospitalised (Fisher's 
test p = 0.026) phenotypes (Figure 1d). Across all interaction categories, the most significant 
effects in the shared group were associated with the upregulation of the target gene (Figure 1d; 
Supplementary table 3). For hospitalised genes with constant interactions (i.e. SCeQTLs 
equalled the same number over time), there was an equal association with up and down-
regulation of the target gene transcript, in contrast to severe and shared phenotypes where 
constant interactions were proportionally associated with up-regulation (Figure 1d; 
Supplementary table 3). 
 
Similarly, hospitalised genes with decreases in the number of SCeQTLs over time tended to be 
associated with downregulation of the gene transcript levels, while severe and shared genes in 
the same interaction category were associated with upregulation (Figure 1d; Supplementary 
table 3). Finally, hospitalised genes with SCeQTLs that increased over the infection time course 
were proportionally most associated with downregulation of the gene transcript levels, in contrast 
to upregulation observed in shared only-genes with the same interaction category (i.e. increased) 
(Figure 1d; Supplementary table 3). Overall, this suggests a different pattern of regulatory control 
of genes in the hospitalised phenotype.  
 
The regulation of established risk genes is differentially impacted by variants associated 
with hospitalisation or severe phenotypes across the SARS-CoV-2 infection time course.  
 
We hypothesised that the effect of chromatin remodelling following SARS-CoV-2 infection would 
implicate phenotype-specific transcriptional changes to established risk genes. Gene 
prioritisation was undertaken using two approaches, (1) SARS-CoV-2 associated host genes 
identified by functional studies (i.e. CRISPR screens)11,13-18 and (2) surfactant metabolism genes, 
which are expressed at lower levels in COVID-19 patients with ARDS25 (Figure 2; Supplementary 
table 4a). Genes within the HLA locus were excluded from this analysis. 
 
Pathway analysis of all genes with transcript levels associated with SARS-CoV-2 risk variants 
across time identified enrichment in 28 processes that included surfactant metabolism genes 
(Figure 2; Supplementary table 4a). G:Profiler26 results were refined to include only the pathway 
databases results (i.e. WP, HP, REAC and KEGG), gene ontology terms were removed. Several 
pathways driven by surfactant genes are involved in functions of the immune system, i.e. 
phagosome (p range = 3.90 x 10-5 to 3.51 x 10-3), immune system (p = 0.03), adaptive immune 
system (p = 0.04), immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 
(p = 0.01). The remaining are directly involved in pathways covering functions/diseases of the 
lung. For instance, lung fibrosis (p range = 6.98 x 10-4 to 2.89 x 10-3), cough (p range = 0.001 to 
0.037), and diseases associated with surfactant metabolism (p range = 9.77 x 10-5 to 0.04) 
(Supplementary table 4a). Whilst many of the pathways involve the same few surfactant genes 
(i.e. SFTPD, SFTPC, SFTPA1, SFTPA2; Figure 2), indicating the same pathways with different 
names, other genes are driving these enrichments (Supplementary table 4a).    
 
The surfactant genes (i.e. SFTA2, SFTPA1, SFTPA2, SFTPC, SFTPD and SFTPD-AS1) encode 
components of the lung’s innate immune system with roles in the maintenance of healthy lung 
function and clearance of pathogens27. The surfactant genes are primarily enriched in gained 
and retained pathways (Figure 2). Consistent with our hypothesis, the regulatory profiles of the 
surfactant genes (SFTA2, SFTPA1, SFTPA2, SFTPC, SFTPD and SFTPD-AS1) are specific to 
both the time post-infection and the genotypes associated with severe or hospitalisation (Figure 
3). Most SCeQTLs associated with hospitalisation targeting SFTPC in the uninfected cells were 
retained across the infection time-course, like the hospitalised and severe SFTPD-SCeQTLs 
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(Figure 3). SCeQTLs of the remaining surfactant genes (i.e. SFTA2, SFTPA1, SFTPA2 and 
SFTPD-AS1) were lost and gained across the infection time-course in patterns that were specific 
to the hospitalised and severe phenotypes. For example, the SFTA2-SCeQTLs mainly were 
shared between the hospitalised and severe phenotypes at 24hpi. Notably, 8 out of 9 of the 
SFTA2-SCeQTLs at 24hpi were correlated with a decrease in transcript levels, and these 
SCeQTLs were gained over time. By contrast, SFTPA1-SCeQTLs mainly were (4 of 5) lost over 
the infection time-course, with only one SeQTL that correlates with an increase in SFTPA1 
transcript levels being present in both the hospitalised and severe phenotypes at 24hpi.  
 
Amongst the seven SFTPA2-SCeQTLs at 24hpi, those associated with the severe phenotype 
predominantly correlated with decreases in transcript levels (i.e. 5:2 decrease: increase). By 
contrast, the hospitalised SFTPA2-SCeQTLs at 24hpi tended to increase transcript levels (2:1 
ratio increase: decrease).  
 
SFTPC and SFTPD were targeted by SCeQTLs that mainly were retained across the infection 
time course. For example, SFTPC transcript levels were upregulated by 2/3rds of the 
hospitalised-only SCeQTLs associated with this gene over time. Finally, 38 of the 45 SFTPD-
SCeQTLs shared between hospitalised, and severe phenotypes were retained across the 
infection time course. Interestingly, the shared SFTPD-SCeQTLs correlated with increases in the 
transcript levels. By contrast, those SFTPD-SCeQTLs associated explicitly with the severe 
phenotype correlated with decreases in transcript levels. Notably, the only SCeQTL captured 
targeting SFTPD-AS1 was associated with increased transcript levels and was lost at 8 hpi. 
SFTPD is the only ‘prioritised’ surfactant gene that overlaps the COVID-19 HGI1 targets 
(Supplementary table 2a).  
 
Changes to the regulation of chromatin remodelling and transcription control genes are 
associated with infection severity. 
 
XRCC3 (Chr 14) is an antiviral gene11,13 identified as a SARS-CoV-2 risk gene11. Two eQTLs 
were captured targeting XRCC3 transcript levels in both the severe and hospitalised phenotypes. 
Notably, these SCeQTLs were correlated with reductions in XRCC3 transcript levels, and both 
were lost by 24hpi, and the gene was no longer expressed (Figure 3; Supplementary table 1).   
 
We hypothesised that the proteins encoded by the SCeQTL targeted genes would work together 
in shared biological pathways. We queried the STRING28 protein-protein interaction database to 
identify functionally related gene protein product clusters. The largest cluster of interacting genes 
(n = 40) included genes that are involved in chromatin remodelling (i.e. SMARCA4, NCOR1, 
DNMT3A, DAXX, DNMT1, SETDB1, and CHD7; Figure 4a; Supplementary figure 2). SMARCA4 
is widely recognised as being second to only ACE2 as the most pro-SARS-CoV-2 viral gene11,13. 
SCeQTLs were captured targeting SMARCA4 in both the hospitalised and severe phenotypes 
(Figure 4b; Supplementary table 1). However, the gain, loss, and retention patterns of these 
captured SCeQTLs differ in a phenotype-specific manner across the infection time course 
(Figure 4b; Supplementary table 1). The only SCeQTL captured upregulating SMARCA4 was 
associated with the hospitalised phenotype in the uninfected cells – this SCeQTL was lost by 
8hpi. Notably, there were 44 severe phenotype-associated SCeQTLs captured targeting 
SMARCA4 at 24hpi. These 44 SCeQTLs were all correlated with reductions in SMARCA4 
transcript levels. By contrast, whilst it was also correlated with a decrease in SMARCA4 
transcript levels, there was only one hospitalised phenotype associated SMARCA4-SCeQTL at 
24hpi (Figure 3b). We observed that the hospitalised/shared SMARCA4-SCeQTLs are located in 
more distal loci than the SCeQTLs associated with the severe phenotype (Figure 5a). These 
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results are consistent with observations of proviral effects upon downregulation of SMARCA411 
and suggest the existence of a positive feedback loop involving SNPs associated with the severe 
phenotype in response to SARS-CoV-2 infection.  
 
Among the other chromatin remodelling enzymes, CHD7 is notable as the SCeQTLs that are 
gained, lost, and retained across time have opposite effects, up-regulatory and down-regulatory 
transcript levels in the severe and hospitalised phenotypes, respectively (Figure 4b). Notably, 
two severe phenotype-associated CHD7-SCeQTLs are lost, and two are gained across the 
infection time course. By contrast, 3 of 5 hospitalised associated CHD7-SCeQTLs are retained 
from the uninfected cells to 24hpi. As observed for SMARCA4, the CHD7-SCeQTLs were 
arranged in two distinct blocks (Figure 5b). These results are consistent with SARS-CoV-2 
infection-dependent changes in CHD7 regulation interacting with inherited genetic variation to 
impact infection outcome.  
 
DNMT1 and DNMT3A encode cytosine-5-methyltransferases responsible for maintaining DNA 
methylation and de novo DNA methylation of CpG structures in the human genome, 
respectively29. Neither DNMT1 nor DNMT3A has SCeQTLs in uninfected cells. However, 
SCeQTLs targeting both genes are captured at 24hpi. Notably, the SCeQTLs for DNMT1 
downregulates transcript levels, while those for DNMT3A upregulate transcript levels (Figure 4b; 
Supplementary table 1). The DNMT3A-SCeQTLs were located > 1Mb from the gene body and 
are likely to be involved in fine-tuning the regulation of DNMT3A. The upregulation of DNMT3A 
expression over the infection time course appears to be consistent with observations that 
amongst SARS-CoV-2 infected patients, worse outcomes were associated with a hyper-
methylated status30.  
 
The nuclear receptor corepressor 1 gene (NCOR1) ratio to the silencing mediator of retinoic acid 
and thyroid hormone receptor (SMRT) contributes to the fine-tuning of inflammatory versus 
tolerogenic balance31. Therefore, it is notable that most of the 210 SCeQTLs targeting down-
regulation of NCOR1 in uninfected cells were retained over the infection time course with SNPs 
associated with hospitalisation. Whilst only 13 of 210 SCeQTLs targeting the downregulation of 
NCOR1 were captured in the severe phenotype and were retained out to 24hpi (Figure 4b; 
Supplementary table 1).  
 
Daxx is an epigenetic repressor of viruses32, and a potent inhibitor of SARS-CoV-2 and SARS-
CoV replication in human cells12. Daxx forms a complex with ATRX and is mainly known for its 
antiviral activity against DNA viruses replicating in the nucleus19. However, DAXX can also 
restrict SARS-CoV-2 by rapid re-localisation to the cytoplasmic viral replication sites32. Therefore, 
it is notable that two SCeQTLs that were captured and associated with the upregulation of DAXX 
transcript levels in uninfected cells were lost by 8hpi. These eQTLs were shared between the 
hospitalised and severe phenotypes (Figure 4b; Supplementary table 1). This is consistent with 
SARS-CoV-2 mediated chromatin remodelling mediating down-regulation of Daxx expression 
during the infection time course.  
 
The tissue specificity of both eQTLs and chromatin structure is widely recognised4,33-35. We 
parsed the SCeQTL-gene pairs associated with the chromatin remodelling cluster (Figure 4a) 
through the GTEx catalog4 to determine their tissue specificity (Figure 6; Supplementary table 5). 
Of 293 SCeQTL-gene pairs associated with regulating the seven chromatin remodelling genes 
(i.e. SMARCA4, NCOR1, DNMT3A, DAXX, DNMT1, SETDB1, and CHD7), 278 (94.8%) were 
present in ‘cells cultured fibroblasts’. Superficially, this is consistent with observations that 
pathological fibroblasts36 contribute to rapidly ensuing pulmonary fibrosis in COVID-1937. The 
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effects of these SCeQTLs in ‘whole blood’ (n = 234; 79.8%) and ‘artery tibial’ (n = 220; 75.0%) 
were also largely conserved (Figure 6; Supplementary table 5b). Among the tissues where these 
effects were not conserved (i.e. eQTLs were identified but were not associated with the same 
lung gene transcripts), ‘muscle skeletal’ (n = 280; 95.6%), ‘pancreas’ (n = 250; 85.3%) and 
‘adipose subcutaneous’ (n = 244; 83.3%) (Figure 6b; Supplementary table 5b) were three tissues 
with the most eQTL activity. Sei38 predicted the regulatory activity of chromatin-SCeQTLs by 
integrating 21,907 chromatin profiles (transcription factor, histone marks, and chromatin 
accessibility profiles across a wide range of cell types). This identified clusters of enhancer 
activity and transcription driven mainly by the transcription 1-4 profiles and aligned with clusters 
of lung-SCeQTLs-gene targets from other tissues in GTEx (Figure 6a). Notably, the transcription 
1-4 profiles identified by Sei are primarily defined by H3K36me3 and the patterns of RELA, 
TAL2, SOX10, HNF4A, TP53, AR, CEBPB, OTX2 and NANOG binding in different cell types, 
and an absence of CTCF binding in the A549 lung epithelium. 38  
 
Germline risk in PIAS4 involved in SUMOylation of ACE2  
 
The E3 SUMO ligase PIAS4 promotes the SUMOylation and stabilisation of ACE2. PIAS4 
knockouts have reduced SARS-CoV-2 infection39. Germline risk variants associated with both 
the hospitalised and severe phenotypes were captured as SCeQTLs targeting PIAS4 transcript 
levels (Figure 3). However, the SCeQTLs associated with the severe phenotype were more 
dynamic over the infection time course when compared to the hospitalisation phenotype. 
Notably, from the uninfected cells to 24hpi, 8 PIAS4-SCeQTLs from the severe phenotype were 
upregulating PIAS4. By contrast, only 1 SCeQTL from the hospitalised phenotype was captured 
targeting upregulation of the PIAS4 gene transcript at 24hpi. As observed earlier, the 
hospitalised and shared SCeQTLs were located within blocks more distal to the PIAS4 gene 
(Figure 5c). Notably, 3 out of 4 of these distally located hospitalised SCeQTLs were lost over the 
infection-time course. The observation that all of the SCeQTLs captured targeting PIAS4 were 
associated with increases in transcript levels is consistent with observations by Jin et al.39 that 
suggest a more significant burden of PIAS4 in the severe phenotype, with greater activity 
retained at 24hpi.  
 

Discussion 
 
We combined temporal data from SARS-CoV-2 stimulated cells7, and a spatial-eQTL analysis in 
lung tissue to identify gene regulatory changes that occur across the SARS-CoV-2 infection time 
course. Our results provide evidence for the direct effects of infection-induced chromatin 
remodelling on regulatory impacts of inherited germline variants that are associated with severity 
of SARS-CoV-2 infection. The results for the effect of eQTL target genes, such as PIAS4, 
SMARCA4, XRCC3 and DAXX, on the severity of infection are supported by published functional 
assays9,11,13-18. The severe phenotype-associated eQTLs that were captured targeting genes 
involved in chromatin remodelling (i.e. SMARCA4, NCOR1, DNMT3A, DAXX, DNMT1, SETDB1, 
CHD7), surfactant metabolism (i.e. SFTA2, SFTPA1, SFTPA2, SFTPC, SFTPD and SFTPD-
AS1), and viral responses (e.g. XRCC311,13 and PIAS439) form and break in an infection time-
course dependent manner that mimics positive feedback loops connecting germline variation 
with the process of viral infection and replication.  
 
The analysis of SARS-CoV-2-stimulated cells we performed uncovered previously undescribed 
lung-specific gene targets associated with severe COVID-19. However, this study has several 
limitations. 1) We were limited to analysing common genetic variants (MAF ≥ 0.05). Including 
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rare variants with larger effect sizes may impact additional genes with more significant 
phenotypic consequences. We have, however, identified a link in gene deletion studies and their 
control elements (i.e. common SARS-CoV-2 risk variants highlighted here), which converges two 
methods for functional annotation, reinforcing the potential significance of these genetic variants 
at a population level. 2) The protein interaction networks depended on known and predicted 
protein interaction data (including direct and indirect functional associations) within the STRING 
database28. Likely, this dataset does not capture all biologically relevant protein interactions. 
Finally, 3) we did not capture the spatial genome organisation [e.g. Hi-C data] and gene 
expression data from identical samples. Therefore, inter-sample variation between the different 
datasets will impact the analysis. Notwithstanding these limitations, we have systematically 
identified the lung-specific regulatory role of variants associated with hospitalisation and severe 
SARS-CoV-2 infection and captured how these interactions change over time under infection 
conditions.  
 
COVID-19 occurs within physiological limits that result from the impact of the patient’s germline 
and somatic variants impacting environmental signals over a lifetime. As such, the germline 
variants significantly contribute to the limits of how the patient’s cells and tissues respond to 
infections, including SARS-CoV-2. These contributions need not be fixed by the developmental 
state of the cell, as evidenced by the interactions between the germline variants and SARS-CoV-
2 infection-induced chromatin remodelling on gene regulation that we identified. Of course, the 
remodelling occurs in all genotypes and is not limited to those prone to more severe infection. 
However, the presence of germline variants associated with severity of infection within control 
elements highlights a) those regulatory interactions that change and b) dynamic changes (i.e. 
increases or decreases in expression) that contribute to infection severity. For example, 
pulmonary surfactants are a complex of lipids and proteins that enhance pathogen clearance and 
regulate adaptive and innate immune-cell functions27. SARS-CoV-2 targets alveolar type-II cells, 
the lung cells that produce surfactant40. At the same time, surfactant levels are markedly reduced 
in the subset of COVID-19 patients who present with ARDS25,41. Therefore, the observation that 
germline risk variants impact the temporal pattern of surfactant gene regulation across the 
SARS-CoV-2 infection time-course identifies critical targets (e.g. SFTPD, SFTPA2, SFTA2) for 
therapeutic intervention through the restoration of ‘typical’ expression levels. In support, 
exogenous surfactant treatment in some patients with COVID-19 experiencing respiratory failure 
was found to be the catalyst for the successful extubation and clinical improvement of the 
patient42. Finally, several clinical trials are currently examining the use of exogenous surfactants 
to treat SARS-CoV-2-induced ARDS, highlighted in this review (Herman et al.43).  
 
Chromatin remodelling impacts gene regulation and expression by providing the transcription 
machinery with dynamic access to genes and control elements (via nucleosome movement) to 
an otherwise tightly packaged genome. There is significant chromatin remodelling across the 
SARS-CoV-2 infection time course7,8. We provide evidence that this remodelling is enhanced in 
genotypes susceptible to severe SARS-CoV-2. This results from regulatory changes to 
chromatin and DNA-associated gene targets we have identified and acts in a positive feedback 
loop associated with severity. Among the chromatin-associated target genes we identified, the 
proteins of CHD7, DAXX, and SMARCA4 can all function as remodellers via editing 
(incorporating histone H3.3)21. We identified a phenotypic switch associated with the regulation 
of CHD7. SMARCA4 has more proviral regulatory activity in the severe phenotype, and the up-
regulation of DAXX is lost due to SARS-CoV-2-induced chromatin changes - all contributing to a 
more proviral environment. The importance of these host restrictions in SARS-CoV-2 is 
supported by recent results from a meta-analysis of SARS-CoV-2 CRISPR experiments showing 
H3.3 chaperone complexes, HIRA and CABIN1 highly significant for antiviral activity across all 6 
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cells lines included13. SMARCA4 was also directly identified as being proviral11. In addition, 
viruses have adapted ways to overcome these host restrictions. For example, HIV utilises host 
ATP-dependent chromatin remodelling factors to displace nucleosomes, thereby increasing DNA 
accessibility for HIV integration44. Herpesviruses and HBV produce viral proteins targeting the 
PML-NB components such as Daxx-ARTX19. SARS-CoV-2 mimics a histone protein that 
effectively suppresses type 1 interferon-responsive antiviral genes9. While well-established 
interferon-associated gene targets (i.e. IL10RB, IFNAR2; Supplementary table 1) associated with 
severe COVID-191-3 likely contribute to limiting the cell's ability to respond effectively to SARS-
CoV-2 under the conditions discussed. Evidence supports a mechanistic role for these genes in 
the pathogenesis of severe COVID-19.  
 
CRISPR assays11,13-18 support the putative roles for XRCC3 (antiviral) and SMARCA4 
(proviral)11,13, PIAS4 (antiviral)39 and DAXX (antiviral)12 that we identified as lung-specific 
regulatory targets and changing across the SARS-CoV-2 infection time course. Critically, we 
show that in most tissues we compared with (discussed below), there is no overlap in eQTL 
targets associated with these genes; therefore, contextually, these effects are lung-specific and 
will be different in other cells/tissues. Among the gene targets, XRCC3, SMARCA4 and DAXX 
are directly involved in transcriptional control and chromatin remodelling. At the same time, the 
PIAS4 protein is the crucial SUMO ligase prompting the SUMOlyation and stabilisation of 
ACE239, which is essential for SARS-CoV-2 replication. In line with the results of Jin et al.39 
which showed a more severe infection with higher levels of PIAS4, we found the severe 
phenotype to have more up regulatory activity compared with one only up regulatory eQTL 
gained in the hospitalised phenotype across the infection time course. This finding is limited to 
the late stage of infection, i.e. 24hpi, whereas severe is not. Therefore, the physiological limits 
imposed by the severe-only eQTLs targeting PIAS4 are not limited to a particular phase of 
infection. We have previously identified SMARCA4 as an eQTL target gene associated with the 
severe and hospitalised SARS-CoV-2 phenotypes6. However, the temporal data integration 
highlights the role of severe-only SMARCA4 eQTLs in producing a more significant regulatory 
burden compared with the more distant and temporally-regulated SMARCA4 eQTLs in the 
hospitalised phenotype. The only eQTL upregulating SMARCA4 is lost by 8hpi, which based on 
the evidence presented here, is associated with a loss of antiviral activity. XRCC311,13 and 
DAXX12, both shared genes, provide an example of how the cell tries to reduce infection burden 
by expressing these antiviral genes; however, lose their interactions due to SARS-CoV-2 and, 
therefore, antiviral activity. DAXX, in particular, forms part of a well-established protein complex 
Daxx-ATRX, mainly known for its role in antiviral activity against DNA viruses19, but is shown to 
rapidly re-localise to the site of SARS-CoV-2 viral replication within the cytoplasm and represses 
transcription32. Loss of this activity was previously shown32 to reduce the cell’s ability to block the 
effects of SARS-CoV-2. Whilst there may be regulatory activity to these genes not associated 
with infection severity, in people with this germline risk profile, the proviral environment is 
amplified directly by SARS-CoV-2. Finally, among shared genes with few proviral hospitalised-
only eQTLs, such as SMARCA4 and PIAS4, this highlights a scenario where limitations of the 
cell (i.e. germline risk) are less than the severe phenotype, whereby the direct effects of SARS-
CoV-2 are reduced.  
 
We observed a tendency for the distance between eQTLs, and their target genes to be 
associated with the hospitalised and severe phenotypes (e.g. SMARCA4 and PIAS4). Despite 
variants in the hospitalised and severe phenotypes sharing target genes within lung tissue, we 
suggest that localised promoter elements are associated with severe cases because they are 
hitting the central control elements of the gene. In contrast, distal eQTLs associated with the 
hospitalised phenotype are involved in fine-tuning gene expression. It is trivial that the location of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2023. ; https://doi.org/10.1101/2023.05.03.23289478doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.03.23289478
http://creativecommons.org/licenses/by-nc-nd/4.0/


variants within conserved ‘core’ promoter elements will impact gene regulation, whereas more 
distal eQTLs are likely to fine-tune regulation and have smaller effects45, these observations 
need to be confirmed for the situations identified in this manuscript.  
 
Epigenetic modifications are part of a dynamic process involved in immune defence and antiviral 
restriction19. We identified NCOR1 and DNMTs 1 and 3a as genes whose regulation dynamically 
changes with infection and is altered in people susceptible to hospitalisation and severe 
infection. DNMTs may influence antiviral responses22, via methylation-induced transcriptional 
suppression. By inhibiting DNMTs with decitabine (known to reduce levels of DNMT1 and 
DNMT3a), Hennessey et al.22 found that transcription of Toll-like receptor 3, a pattern recognition 
protein for the innate immune system, was significantly down-regulated. Administration of 
decitabine also accelerated the resolution of lung injury in a mice model of ARD via an increase 
in regulatory T cells46. The evidence suggests that the gained severe and hospitalised eQTLs 
that correlated with the downregulation of DNMT1 may be protective, and the hospitalised-only 
eQTLs upregulating DNMT3a may contribute to a more serious clinical phenotype. This is an 
area of ongoing investigation, with one clinical trial studying the efficacy of decitabine in COVID-
19-related ARDS47. NCOR1 is a well-studied transcriptional corepressor complex that represses 
the function of nuclear receptors and thus regulates critical inflammatory and metabolic 
processes48. NCoR1 genetically inactivates HDAC3, which impairs the activation of pro-
inflammatory genes in the hyperinflammatory response to LPS in macrophages49. Down-
regulation of NCOR1 and potential loss of the NCoR1 protein may remove the HDAC3-
associated break on hyperinflammatory syndrome induced by SARS-CoV-2, associated with 
disease morbidity and mortality50. NCoR1 may form part of this aberrant process and potentially 
be targetable.  
 
The transcriptional response to a defined stimulus can vary among cell types34. Here, we 
identified eQTLs correlated with the expression of its target genes in lung tissue. However, we 
also found that lung-eQTLs correlated to transcripts of the chromatin remodeller genes are more 
than 90% the same in fibroblast cells. These cells are involved in the repair and remodelling of 
the extracellular matrix. By producing ECM-remodelling enzymes and inflammatory cytokines, 
damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell 
infiltration at the expense of lung function36. Fibroblasts can also support viral replication and 
contribute to the inflammatory response in the lungs, while pathological fibroblasts36 contribute to 
rapidly ensuing pulmonary fibrosis in COVID-1937. The interaction between germline risk and 
SARS-CoV-2 in epithelial cells and lung tissue may also function similarly in fibroblasts. This 
presents an intriguing possibility that the interaction between germline risk and gene regulation 
we identified occurs in lung fibroblasts and contributes to COVID-19-induced pulmonary fibrosis. 
Confirming that these interactions occur in non-immortalised fibroblasts in response to SARS-
CoV-2 infection-induced chromatin remodelling is essential for developing therapeutic 
interventions to reduce this complication.  
 
Elderly populations are at higher risk of severe disease and death from SARS-CoV-251. 
Epigenetic mechanisms, such as changes to chromatin architecture and global heterochromatin 
loss and redistribution, are characteristic features of aging23,52. Therefore, the infection-induced 
regulatory changes in chromatin and DNA-modifying gene expression we identified may lead to 
changes that mimic the epigenetic profile of aged cells. Several lines of evidence support this 
hypothesis, 1) In aged cells, the expression of DNMT1 is decreased, while DNMT3a is 
increased52. This matches the patterns observed from the risk variants targeting these genes in 
the severe and hospitalised phenotypes. 2) The remodelling complex SWI/SNF is required for 
co-expression of the telomere binding proteins, which are essential for maintaining telomere 
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length and structure in human fibroblasts52, and inhibition of SMARCA4 prevented aging-
dependant proteins shortening the lifespan in Drosophila Parkinson’s models. This aligns with 
the SWI/SNF gene target (i.e. SMARCA4 and CHD7) patterns observed in the severe 
phenotype. Our results may partly explain rare cases of young patients with severe disease while 
contributing to the burden in older adults.  
 
Assigning target genes to GWAS-identified variants remains complex53, and is highlighted by the 
large difference (38%) in gene targets we mapped compared to the COVID-19 HGI consortium 
using the same risk variants. The tissue specificity of both eQTLs and chromatin structure is 
widely recognised4,33-35. The eQTL context-dependence (i.e. cell/tissue specificity and 
development state) has an effect. It is therefore not surprising we see this divergence, the 
COVID-19 HGI used methods that did not include tissue-specific gene expression, nor did they 
account for physical chromatin interactions between the risk variant and its predicted gene 
target. In addition, the overlaps we identified between the CRISPR screen results11,13-18 and 
CoDeS3D uncover the compound effect of host germline risk with SARS-CoV-2-specific 
pro/antiviral host physiological factors.   
 
Conclusion 
 
In conclusion, we present evidence for the convergence of multiple gene regulatory mechanisms, 
including SARS-CoV-2-induced changes in chromatin organisation7-9, with predicted lung-
specific transcription of pro/antiviral host factors associated with germline risk to severe infection. 
We show that several genes forming protein interactions are involved in critical aspects of the 
cell's antiviral response and are supported by functional assays of SARS-CoV-2 infection11,13-18. 
Two crucial findings are associated with our results: (1) several of the genes targeted by 
germline variants associated with the severity of SARS-CoV-2 infection are transcriptionally 
affected by host chromatin modification to epithelial cells under SARS-CoV-2 infection 
conditions. These include the chromatin remodeller, surfactant genes and genes involved in viral 
response, which may mimic positive feedback loops. (2) the interactions driving the regulation of 
these genes are phenotypically distinct, shown here to be more skewed to the severe phenotype 
regardless of sharing gene targets. Under normal conditions, these germline limitations may 
have minimal physiological impact. However, we show how under pathological conditions 
(SARS-CoV-2 infection), these limitations enhance the proviral environment in the lung via 
SARS-CoV-2-mediated chromatin modifications. 
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Methods 
 
Identification of SNP-gene pairs following infection with SARS-CoV-2. Genome-wide 
association study (GWAS) data for SARS-CoV-2 clinical phenotypes was obtained from the 
Covid-19 Host Genetics initiative2,3 (COVID-19 HGI). Single nucleotide polymorphisms (SNPs) 
for the hospitalised versus population and severe (hospitalised AND death or respiratory support) 
versus population (p-value threshold of 1 x 10-5) cohorts were obtained from COVID-19 HGI 
release 7 (https://www.covid19hg.org/results/r7/; Supplementary Table 1). SNPs in linkage 
disequilibrium within 5,000 base pairs at an R2 threshold of > 0.8 from European populations 
were obtained from 1000 Genomes phase 3 data54. Full summary statistics and details from 
COVID-19 HGI are available at https://app.covid19hg.org/44.  
 
Assigning putative transcriptional functions to SARS-CoV-2 SNPs across time following 
infection. SARS-CoV-2-associated SNPs were analysed using CoDes3D24 to identify spatially 
constrained expression quantitative trait loci (eQTLs) and their target genes. Spatial connections 
for each SNP-gene pair were identified from Hi-C chromatin contact data derived from uninfected 
(0h) and infected (8h and 24hpi) A549ACE2 cells7 (GEO accession: GSE162612). To identify 
which SNPs, with minor allele frequency threshold of 0.05, are eQTLs, the SNP-gene pairs were 
used to query lung tissue within the GTEx database (version 8)4. Multiple testing was corrected 
using the Benjamini-Hochberg procedure55 (FDR < 0.05), and interactions were kept if the 
logarithm of allelic fold change (log_aFC) ≥ 0.05. eQTL and gene chromosome positions were 
annotated using the human reference genome GRCh38/hg19.  
 
Analysis of gene expression dynamics based on interactions over time. Based on a 
modified analysis within the Ho et al.7 paper, the SCeQTL-gene interaction data was curated 
based on assignment into three categories: lost (“0h” and “0h+8h”), retained (“0h+8h+24h” and 
“0h+24h”) and gained (“8h+24h” and “24h”), respectively, upon infection. We used the same 
interaction categories to assess the relationship between gene transcript levels and changes in 
the number of interactions. Additionally, we classified the SCeQTL-gene pairs into “down” 
(log2aFC < 0) and “up” (log2aFC > 0). For each gene, the change in the number of interactions I 
was computed as follows: 
 

I = #(retained interactions) + #(gained interactions) – #(lost interactions) 
 
Genes were partitioned into three categories based on I: “reduced” (I < 0), “constant” (I = 0), 
“increased” (I > 0) (Supplementary table 3). We used Fisher’s test on 3x2 contingency tables to 
assess significance. Results were presented as proportion plots with each combination of gene 
transcript and interaction category shown by phenotype; severe, hospitalised and shared.  
 
Pathway analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis was conducted using the g:GOSt g:Profiler (‘gprofiler2’) R 
package. The Reactome (REAC), WikiPathways (WP) and Human Phenotype Ontology (HP) 
databases were included. Pathways and significant terms were selected based on the g:SCS 
default algorithm with the threshold of adjusted p-value < 0.05 (Supplementary table 4). 
Statistical significance was calculated considering only annotated genes of the hsapiens 
organism in the Ensembl database.    
 
Protein-protein interaction network analysis. Curated protein-protein interaction data were 
obtained from STRING (https://string-db.org). STRING was mined using lists of genes targeted 
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by spatially constrained eQTLs and the following parameters: experiments, text mining, co-
expression and databases, and species limited to “Homo sapiens”. The network was constructed 
with the highest evidence interaction score of ≥ 0.9. Singletons were removed from the network.  
 
 
 
Systematic prediction of sequence regulatory activities from SARS-CoV-2 eQTLs.  
Sei38 is a deep-learning-based framework for systematically predicting sequence regulatory 
activities and applying sequence information to understand human genetics data. SNPs from 
COVID-19 HGI severe and hospitalised phenotypes, along with all LD SNPs, were annotated 
with chromosomal position, reference (REF) and alternate (ALT) allele using the GTEx lookup 
table for all variants genotyped in GTEx, with chromosome positions, REF and ALT alleles, 
SNPs from dbSNP 151, GTEx variant IDs (constructed as chr_pos_ref_alt_build), and hg19 
liftover variant ID, for all variants in release V8. Input eQTLs were queried for regulatory activities 
using the Sei web server (https://hb.flatironinstitute.org/sei/). 
 
Gene prioritisation. Gene prioritisation was undertaken to determine the effect of regulatory 
changes over time. Data for gene prioritisation was obtained from two sources; (1) SARS-CoV-2 
associated host genes identified by functional studies (i.e. CRISPR screens)11,13-18 and (2) 
surfactant metabolism genes (Figure 2; Supplementary table 4a). Genes within the HLA locus 
were excluded from this analysis. The COVID-19 HGI consortium GWAS target genes predicted 
from V2G, eGenes, coding variants, and distance (closest gene) were filtered by COVID-19 
phenotype 'critical illness' & 'hospitalised'. Ninety-five predicted gene targets from COVID-19 
HGI1 hospitalised and severe datasets were extracted and screened for spatial lung-eQTL 
activity using CoDeS3D results (Supplementary table 2). Custom tracks 
(https://genome.ucsc.edu/cgi-bin/hgCustom) on the UCSC Genome Browser human genome 
assembly GRCh38/hg38 were used to visualise SCeQTLs. The GENCODE V41 track was also 
included. To identify lung SCeQTL-gene matches from the 7 clustered chromatin remodellers 
genes, GTEx (version 8) was queried for cis eQTLs-gene pairs in the remaining 48 tissues in the 
catalogue.  
 
Availability of data and materials 
Codes3D - https://github.com/Genome3d/codes3d  
GWAS data - https://www.covid19hg.org/results/r7/  
Hi-C data - https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162612  
GTEx data - https://storage.googleapis.com/gtex_analysis_v8/reference/GTEx_Analysis_2017-
06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.lookup_table.txt.gz  
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Figures 

 
 
Figure 1. SARS-CoV-2 reprogrammes gene expression, including altering targets of SCeQTLs 
associated with infection severity. (a) Computational pipeline. The Codes3D pipeline generates a 
set of target genes associated with the severe and hospitalised phenotypes. SNPs obtained from 
COVID-19 HGI1 (Supplementary table 1) were screened through A549ACE2 cell Hi-C data from Ho et 
al. (2021)7 generated before and after SARS-CoV-2 infection (i.e. 0h, 8h and 24hpi) to identify cis (< 1 
Mb), trans (> 1 Mb) and trans-interchromosomal SNP-gene interactions. eQTL effects were identified 
by testing the SNP-gene pairs against lung tissue in the GTEx database (version 8)4. SNP-gene pairs 
were classified according to time and retention following SARS-CoV-2 infection. The resulting 
statistically significant (FDR ≤ 0.05) SARS-CoV-2-specific genes (spatial lung eQTL-gene pairs, 
herein: SCeQTLs) from both the hospitalised and severe phenotypes were assessed for protein-
protein interactions using the STRING28 database. All genes were assessed using g:Profiler26 
pathway analysis (KEGG, REAC, HP and WP) tool to obtain gene ontology terms. A literature search 
further prioritised genes and the results found here (Supplementary table 4). (b) Count of SNP-gene 
pairs and SCeQTL-gene targets by time/category. (c) Proportion of genes that are 
lost/gained/retained from cis or trans interactions across shared/severe/hospitalised phenotypes. A 
two-sided test of proportions for equality was applied between cis and trans. (d) I value was 
calculated per gene based on the change in number of interactions over time. The proportion of 
interactions based on its effect (i.e. up/down regulation) by I value is shown. p-values were obtained 
from Fisher’s test on 3x2 contingency tables (Supplementary table 3). *p<.05, **p<.01, ***p<.001. 
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Figure 2. Gained and surfactant gene sets alter pathways associated with infection severity.  
Pathway analysis of all genes with transcript levels associated with SARS-CoV-2 risk variants over 
time. Pathways were categorised by gained, lost, and retained gene sets across both phenotypes. All 
retained = retained genes shared between both phenotypes, all = phenotype-specific retained genes 
and all retained, lost = all, and phenotype-specific lost genes gained = all, and phenotype-specific 
gained genes. (a) KEGG (b) Human Phenotype Ontology (c) Reactome and (d) Wiki Pathways 
databases were queried via g:Profiler26. K-means clustering was conducted on p-values. The most 
significant tend to be clustered around pathways driven by retained genes. Enrichment in pathways 
driven by surfactant genes is highlighted in green, and the surfactant genes involved are listed next to 
each pathway (Supplementary table 2a). We have highlighted all genes involved in lung fibrosis (p 
range = 6.98 x 10-4 to 2.89 x 10-3) due to its role in SARS-CoV-2 mortality37. We identified enrichment 
in processes that included antiviral programming (i.e. interferon response and signalling, chemokine 
signalling and lung function/pathologies). The gained category reflects pathways where the inclusion 
of eQTL gene targets that are expressed only in 24hpi and 8 + 24hpi drive the pathway enrichments. 
Among the 11 gained pathways (highlighted in blue), pericarditis (p = 0.024 and 0.029; severe and all 
retained, respectively), DLCO decrease (p = 0.019) and abnormal (p = 0.019) and Th17 (p = 0.007), 
Th1 and Th2 (p = 0.030 and 0.012; severe and hospitalised, respectively) cell differentiation support 
epidemiological evidence56-58 for clinically relevant phenotypes associated with SARS-CoV-2 
(Supplementary table 2b).  
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Figure 3. SCeQTL patterns associated with surfactants and other prioritised genes. SCeQTLs 
regulating the expression of prioritised genes are shown to be phenotypically distinct and governed by 
temporality. P4HA4 is driving the association with pericarditis (Figure 2) and is preferentially 
upregulated in the hospitalised phenotype compared to severe (1 retained SCeQTL is 
downregulating). PIAS4 shows more activity in the severe phenotype. Most regulatory activity to 
SFTPA1 is lost. SFTPA2 activity has a specific pattern of up/down-regulation associated with severe. 
Up regulatory activity associated with SFTPC is lost in the hospitalised phenotype. Across both 
phenotypes, SFTPD is predominantly being upregulated, with 2 retained SCeQTLs from severe 
downregulating. Across both phenotypes, SFTPD-AS1 and XRCC3 activity is lost (Supplementary 
table 1). eQTL; expression quantitative trait loci. 
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Figure 4. Chromatin remodellers form the largest protein cluster, with phenotypically divergent 
effect sizes. (a) The largest protein cluster from the entire STRING28 protein interaction network of 
genes (severe = 362, hospitalised = 445; Supplementary figure 2). SMARCA4 and its 6 close 
neighbours are all involved in chromatin remodelling. PIAS4 is also highlighted for its critical role in 
SUMOlyation of the ACE2 receptor39. (b) SCeQTLs regulating the expression of genes from (a) show 
unique phenotypic patterns with infection-induced alterations to chromatin, changing the number of 
interactions. aFC; allelic fold change 
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Figure 5. Genes that are phenotypically shared have distinct regulatory patterns. Genome 
tracks show SCeQTLs regulating PIAS4 and chromatin remodellers, SMARCA4 and CHD7. 
Hospitalised and shared eQTLs are annotated. Unannotated eQTLs are associated with the severe 
phenotype. There are defined blocks of SCeQTLs by phenotype. (a) SMARCA4 highlights more 
distant SCeQTLs are shared, with only 1 retained in the hospitalised phenotype at 24h (b) CHD7 
SCeQTLs associated with severe in the more distant block all downregulate, whereas hospitalised 
SCeQTLs all upregulate. (c) Only 1 SCeQTL regulating PIAS4 associated with the hospitalised 
phenotype is retained at 24hpi; the remaining are associated with severe. A similar pattern is 
observed in (a).  
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Figure 6. Lung-SCeQTLs regulating chromatin remodellers also target fibroblast cells, with 
predicted regulatory activities driving the overlaps. 293 lung-SCeQTLs associated with 
chromatin-modifying genes were screened for eQTL-gene pair matches in GTEx4 tissues (n = 48) to 
determine tissue-specificity. The same SCeQTLs were parsed through Sei38 to determine predicted 
regulatory functions. Positive Sei scores indicate an increased sequence class activity by the 
alternate alleles. Each column represents 1 lung-SCeQTL, and rows represent (a) predicted Sei 
regulatory functions for each SCeQTL and (b) whether the lung-SCeQTL-gene targets are the same 
in other GTEx tissues. Lung-SCeQTL-gene pair matches from CoDeS3D are coloured navy, and 
nonmatches are coloured light blue. The heatmap is ordered by the number of SCeQTL-gene pair 
overlaps with the lung. There are 0 eQTL-gene pair overlaps in 26 tissues, 10 tissues < 50, and the 
remaining 12 tissues 50 – 293 (Supplementary table 5b). ‘Cells cultured fibroblasts’ (n = 278), ‘whole 
blood’ (n = 234) and ‘artery tibial’ (n = 220) were the top 3 overlapping tissues. The greater the Sei 
score, the higher the confidence in predicted regulatory activity. There are distinct blocks of 
transcription and enhancer activity.  
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Supplementary Figures 
 

 
Supplementary figure 1. (a) Severe (69.9%) and hospitalised (70.1%) GWAS variants, along with 
those in LD (R2 > 0.8), overlap. (b) Ratio of cis/trans interactions across time. Trans SCeQTLs 
increase over time, consistent with weakening chromatin domains and deregulated loops. (c) Genes 
being targeted by trans-only SCeQTLs. 40 of 48 are either lost or gained across time. (d) The upset 
plot shows overlaps and distinct predicted gene targets. 165 shared, 34 severe and 82 hospitalised 
were retained following infection. Gene targets gained over time are highlighted in red. (e) Differential 
interactions (i.e. SNP-gene pairs) across time in severe (55%), hospitalised (54%), and shared (45%) 
groups. 
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Supplementary figure 2. Protein-protein interaction network of all predicted target genes 
associated with germline risk of severe SARS-CoV-2 infection. The entire STRING28 database 
protein interaction network from severe and hospitalised genes expanded from Figure 3. Singletons 
were removed from the network. The largest within-network cluster is centered on SMARCA4 and its 
chromatin remodeller neighbours.  
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