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Abstract

Postexposure vaccination has the potential to prevent or modify the course of clinical dis-

ease among those exposed to a pathogen. However, due to logistical constraints, postexposure

vaccine trials have been difficult to implement in practice. In place of trials, investigators have

used observational data to estimate the effectiveness or optimal timing window for postexposure

vaccines, but the relationship between these analyses and those that would be conducted in a

trial is often unclear. Here, we define several possible target trials for postexposure vaccination

and show how, under certain conditions, they can be emulated using observational data. We

emphasize the importance of the incubation period and the timing of vaccination in trial de-

sign and emulation. As an example, we specify a protocol for postexposure vaccination against

mpox and provide a step-by-step description of how to emulate it using data from a healthcare

database or contact tracing program. We further illustrate some of the benefits of the target

trial approach through simulation.
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1 Introduction

For a millennium or more humans have been inoculating healthy, unexposed individuals to prevent

the onset of future disease [1]. Today, this remains the dominant paradigm for the development

and mass administration of vaccines. By contrast, using vaccines to prevent clinical disease among

those already exposed to a pathogen, i.e. postexposure vaccination, remains an under-utilized

strategy despite its potential to curb outbreaks and prevent the worst sequelae of disease [2].

This is due, in part, to the difficulty of running postexposure trials, particularly during a large

outbreak, as investigators must identify, randomize, and vaccinate participants all in the, often

short, time window between exposure and symptom onset. Even when these trials are feasible, the

effectiveness of a postexposure vaccine is likely to vary dramatically based on the time elapsed since

exposure, which can make it difficult to compare estimates across trials with different distributions

of vaccination times. Finally, when there is other evidence to support effectiveness, and when other

treatments are unavailable, a randomized postexposure trial may be considered unethical.

In the absence of trial data, an alternative approach is to use observational data to emulate

the trial desired [3, 4] (called a “target trial”), for instance by using electronic healthcare records

or public health contact tracing databases to define cohorts of individuals exposed to infection

and comparing outcomes among those who do and do not receive post-exposure vaccination. In

this paper, we define several target trials for assessing the effectiveness of postexposure vaccination

depending on the causal quantity of interest (Note, in a slight abuse of terminology we refer to

vaccine effectiveness rather than efficacy throughout, even when the target trial itself could reason-

ably be called an efficacy trial because, ultimately, the observational data used for the emulation

are collected under real world conditions). We also discuss the conditions under which a trial can

be emulated from observational data. We show how the target trial framework can help clarify the

causal question and resolve common biases in the observational analysis of postexposure effective-

ness through alignment of time zero, eligibility, and assignment as well as an unambiguous definition

of the treatment strategies being contrasted. We provide an example protocol for emulating a trial

of a postexposure vaccine for mpox and illustrate some of the benefits of this approach through

simulation.
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2 Design challenges: incubation period and timing of vaccination

The success of postexposure prophylactic vaccination is determined by two competing forces: the

incubation period of the pathogen and how long it takes to receive a vaccine. To provide benefit

postexposure, a vaccine must stimulate an immune response faster, greater, or more specific than

that provoked by natural infection alone. For example, in the case of smallpox, a vaccine adminis-

tered within 72 hours after exposure to the variola virus (the causative virus of smallpox) induces

an antibody response 4 to 8 days earlier than the variola virus itself, most likely because the vaccine

response bypasses the initial stages of natural infection in the respiratory tract [5, 6]. However,

delays in receiving a vaccine are common as participants must first either recognize or be notified

of their exposure and then present at a healthcare clinic where a vaccine is available.

The resulting overlap between the timing of vaccination and the timing of symptom onset creates

several design challenges (see Figure 1). First, the effectiveness of a vaccine may vary substantially

depending on how quickly participants can be vaccinated postexposure (top panel, Figure 1). In

a randomized trial, the protocol specifies the precise vaccination strategy to be evaluated and

must strike a balance between existing exposure identification, enrollment, and care coordination

systems and what is known about the biology governing the natural course of infection. This can

be difficult when the incubation period or mechanism of action of a postexposure vaccine are not

well established. Under these circumstances, longer delays may be permitted with a secondary goal

to infer the optimal postexposure window to administer the vaccine. In an observational setting,

by contrast, the protocol for vaccine timing is often less clear or may even be absent, in which case

the vaccination strategy being evaluated may be ambiguous.

Second, when vaccination is delayed there is also the possibility that some participants may have

already developed symptoms prior to enrollment or vaccination. A vaccine can prevent symptoms

only if administered before those symptoms start. However, when those who have symptoms

at enrollment are excluded, this has implications for the population to which estimates can be

generalized, as the design implicitly conditions on those who survive symptom free. When they

are included, they may attenuate estimates of vaccine effectiveness relative to an ideally conducted

trial as presumably vaccination post symptom onset is ineffective at preventing illness. In a trial,

because eligibility is assessed prior to randomization, participants can be screened independent of
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their vaccination strategy and thus effect estimates remain unbiased. However, in an observational

study this event is observed only among those who are vaccinated and therefore bias may result if

they are differentially excluded.

Finally, another challenge specific to observational studies is the lack of an unambiguous assign-

ment to a vaccination strategy at time zero [7]. In a trial, participants are explicitly assigned to

either vaccine or no vaccine (or placebo) at the time of enrollment and prospectively followed. By

contrast, in an observational study, a participant’s vaccination strategy is often defined retrospec-

tively by what they do (or do not do) over the follow up period (middle panel, Figure 1). When

there are delays in receiving a vaccine, this creates the possibility of bias due to immortal time

among the vaccinated as they have survived symptom-free long enough to become vaccinated [8],

whereas the unvaccinated are defined independently of their survival time.

In a trial, the challenges posed by overlap between when vaccines are received and the incubation

period can be addressed through careful design and a clear protocol, for instance by specifying

a window in which people are eligible to be vaccinated, screening based on uniform criteria at

enrollment, and having unified time zero for all strategies. In an observational study, these fixes

are often unavailable. However, these challenges can still be resolved through careful consideration

of the trial that one would like to perform, but cannot, and then attempting to emulate it in the

observational data (bottom panel, Figure 1).

3 Specifying the target trial

3.1 Set up and notation

We consider the emulation of a target trial designed to estimate the effect of postexposure vaccine

therapy on the ∆-day risk of clinical disease. The time index t denotes days since exposure to

a case. We have available observational data O = (L0, A0, D1 . . . , L∆−1, A∆−1, D∆, X
∗, T ∗) on

participants, where Lt is a set of time-varying covariates and L0 includes all covariates prior to

time zero (i.e. pre-exposure). We define the following variables:

X : day of vaccine administration, X∗ = min(X,∆) where X ∈ N+

3
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Figure 1: Illustration of the challenges of evaluating postexposure vaccination using observational
data. The top panel shows the distribution of symptom onset times among cases as well as vaccine
effectiveness as a function of postexposure day of administration for a hypothetical pathogen. The
middle panel shows an observational study with 5 vaccinated (V) and 5 unvaccinated (C) individuals
in which there are delays in receiving vaccines. Dots show the time exposure status is first defined
and Xs show symptom onset. The dashed line represents possible immortal time among vaccinated
who have to survive symptom free long enough to be vaccinated. The bottom panel shows a nested
sequence of daily trials among the same individuals in which there is no immortal time bias because
the timing of enrollment and exposure assignment coincides in each trial.
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T : day of clinical disease onset, T ∗ = min(T,∆) where T ∈ N+

At : indicator of vaccination status on day t, At ∈ {0, 1}

Dt : indicator of clinical disease on day t, Dt ∈ {0, 1}

Note that under these definitions, when X < x then Ax = 1 and T < ∆ implies D∆ = 1. We

bin both vaccination time and symptom onset time into days since exposure and administratively

censor after ∆ days postexposure (i.e. those unvaccinated during follow up have X = ∆ and those

without clinical disease have T = ∆). The trial outcome Y is the development of clinical disease

within ∆ days postexposure, i.e. Y = D∆. For clarity, we make a few simplifying assumptions,

although extensions that relax them are possible. First, we assume that the vaccine itself does not

cause mild symptoms that can be mistaken for clinical disease. Second, we assume that the timing

of the primary exposure event is measured without error and unambiguously defined. Third, we

assume the goal of postexposure vaccination is the prevention of clinical disease in those exposed

rather than reduction in disease severity or risk of further transmission, although in both cases the

conceptualization of the target trial may be similar.

3.2 Possible trial designs

Under the theory that the earlier a vaccine is administered postexposure the better, the ideal causal

quantity of interest, in terms of maximizing effectiveness, is likely

V E(0) = 1− Pr[Y x=0 = 1]

Pr[Y x>∆ = 1]

where Y x=0 is a counterfactual indicator of symptoms within ∆ days under immediate postexposure

vaccination on day 0 and Y x>∆ is the counterfactual outcome under no vaccination over follow

up (Note, using our definition of time-varying treatment At, we could alternatively write this as

V E(0) = 1 − Pr[Y aK=1 = 1]/Pr[Y aK=0 = 1] where K = ∆ − 1). In a randomized controlled

trial with perfect adherence, this quantity could be estimated by recruiting eligible participants

immediately postexposure, randomizing them to receive vaccine or no vaccine, and comparing ∆-

day incidence of symptoms in the two groups (we discuss estimating vaccine effectiveness based on

the hazard ratio rather than cumulative incidence in section A.10 of the Appendix).
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Alternatively, if the goal was to estimate vaccine effectiveness by day, we could imagine a design

in which participants are still enrolled immediately postexposure and randomized to vaccine or no

vaccine, but then further randomly assigned a day that they are to receive a vaccine. In this case

our casual contrast of interest is the t-specific vaccine effectiveness

V E(t) = 1− Pr[Y x=t = 1]

Pr[Y x>∆ = 1]
.

Such a design permits the estimation of the maximum delay window beyond which population

effectiveness falls below a minimum threshold (see section A.11 of the Appendix). However, several

challenges prevent both trials from being conducted in practice. Most importantly, the timing

of enrollment and vaccination are rarely within the control of the investigator due to delays in

identifying those exposed, referring them to care, and accessing a vaccine. Even if these delays

were reduced in a controlled environment, that setting may not reflect how vaccines are actually

administered in clinical practice and therefore less informative about real world effectiveness.

Another design, which allows participants to present “naturally”, is to specify a fixed time

window that participants are eligible for enrollment and randomize them on the postexposure day

they present. Given that length of delay is likely a strong determinant of effectiveness, we could

improve efficiency by blocking eligible participants on the postexposure day they present. Such a

design targets the t-specific vaccine effectiveness among those presenting symptom-free, i.e.

V ET>t(t) = 1− Pr[Y x=t = 1 | X ≥ t, T > t]

Pr[Y x>∆ = 1 | X ≥ t, T > t]

by comparing vaccine and no vaccine groups within enrollment strata. Note that, in general, the

t-specific vaccine efficacies, V ET>t(t), will not be the same as the V E(t) defined previously as they

are conditional on surviving symptom-free. Because participants are allowed to present naturally,

those that present earlier may be systematically different than those presenting later with respect to

their risk of developing clinical disease. Indeed, V E(t) and V ET>t(t) will only coincide when there

is no effect modification by enrollment day or symptom onset time, which are both implausible.

Absent this, the two measures of VE answer fundamentally different policy questions. The first,

V E(t), answers: at the time of exposure how effective would a vaccine be if administered after
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a t-day delay? The second, V ET>t(t), answers the question: given that an individual presents

symptom-free on day t, how effective would receiving a vaccine now be versus not?

A final design possibility is to enroll participants immediately but allow a grace period [9, 10],

i.e. a fixed time window after randomization in which vaccination can be initiated. We discuss

designs that allow for a grace period further in section A.3 of the Appendix.

3.3 Example protocol for a target trial of a postexposure Mpox vaccine

To illustrate a postexposure trial emulation, here we outline a protocol for a target trial to evaluate

the effectiveness of the JYNNEOS vaccine as postexposure prophylaxis against development of

symptomatic mpox infection. For simplicity, we focus on a single design: a trial with a fixed

enrollment period in which participants are randomized on the postexposure day they present.

The human mpox virus (MPXV) is an orthopox virus and related to the virus that causes

smallpox. In April 2022, an outbreak of mpox occurred in several countries prompting the World

Health Organization to declare a public health emergency of international concern [11]. A two-dose

live replicating vaccine for smallpox and mpox (MVA-BN), licensed as JYNNEOSTM, was approved

by the Food and Drug Administration (FDA) in 2019. During the outbreak, the vaccine was offered

as postexposure prophylaxis to contacts of confirmed mpox cases. In guidance documents, the U.S.

Centers for Disease Control and Prevention (CDC) recommended that unvaccinated people exposed

to the mpox virus be vaccinated with a first vaccine dose against mpox within 4 days of exposure for

the greatest likelihood of preventing disease [12], though also suggested there may still be benefit to

vaccination within 14 days of exposure [13, 14]. Licensure of JYNNEOS was supported by animal

studies [6, 15–17] and immunogenicity studies [18] but to date no trial data on the postexposure

effectiveness of the vaccine against mpox exists. Therefore, an emulation of a postexposure trial

using observational data may provide useful evidence for setting policy.

Table 1 gives an overview of the target trial protocol to estimate V ET>t. In Appendix section

A.4, we provide further description of each component of the protocol.
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Table 1: Example protocol for the specification and emulation of a target trial of postexposure
vaccination for prevention of mpox.

Protocol
component

Target trial specification Emulation

Eligibility Higha or intermediateb risk exposure to a
PCR-confirmed mpox case within the first 14
days postexposure AND negative PCR for mpox
or orthopox virus at enrollment AND no
symptoms AND no prior history of JYNNEOS
vaccination

same

Treatment
strategies

(1) JYNNEOS vaccination immediately upon
enrollment
(2) no JYNNEOS vaccination during 21 days
postexposure

same

Treatment
assignment

non-blinded 1:1 random assignment to either (1)
or (2) at enrollment

same but randomization is
emulated by conditioning on
covariates

Outcomes 21-day cumulative incidence of disease defined as
symptom onset and PCR-confirmed mpox or
orthopox

same

Follow up Start at exposure date and follow until clinical
disease onset, loss to follow up, or 21 days have
elapsed, whichever is first

same

Causal contrast Intention to treat (ITT)
Per protocol

observational analog of per
protocol effect

Statistical
analysis

ITT: compare cumulative incidence of clinical
disease under each strategy, adjusting for loss to
follow up and prognostic factors to increase
efficiency

Per protocol: Use IPW/g-formula/ g-estimation
to account for non-adherence.

same as per protocol

a High risk: direct mucosal or broken skin contact with lesions or bodily fluids OR any sexual or intimate
mucosal contact OR indirect mucosal or broken skin contact with lesions or bodily fluids via linens,
clothing, or other materials.

b Intermediate risk: unmasked exposure to respiratory droplets (within 6 ft for >3 hours) OR direct contact
between intact skin and lesions or bodily fluids OR indirect contact between intact skin and lesions or
bodily fluids via linens, clothing, or other materials OR indirect contact between exposed individual’s
clothing with linens or bodily fluids.

8

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.05.03.23289471doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.03.23289471
http://creativecommons.org/licenses/by/4.0/


4 Emulating postexposure trials

Once the target trial is specified, we can attempt to emulate it using observational data. Emu-

lating a postexposure vaccination trial will generally require linking high quality case and contact

surveillance with clinical databases or registries recording vaccinations as well as intensive post

vaccination symptom monitoring. Here, we outline how to emulate the main components of the

target trial as well as common challenges, using the JYNNEOS vaccine example to help ground our

discussion. Additional details on the identifiability conditions and specific data manipulation and

estimation steps necessary to emulate all trial designs discussed above are available in the Appendix

(sections A.5 - A.7).

Eligibility

Ideally, eligibility criteria in the emulation should match those in the target trial. In particular, this

means we cannot include restrictions based on post-baseline events (e.g. “exclude those vaccinated

more than 15 days after exposure or those vaccinated after symptoms”) as these may introduce bias

and would be unavailable at baseline in the target trial. Additional challenges may arise because

there is no direct contact with participants at enrollment. Rather we must rely on routinely collected

data which may not be fit-for-purpose. For instance, we may have to assume that those without

a previous vaccination in the electronic medical records database did not receive a vaccine from a

different healthcare system.

More broadly, when emulating postexposure trials, determining eligibility requires knowing who

is actually at risk of infection. This means proper classification of those exposed to an index case

is needed as well as an accurate history of vaccination or previous infection and screening for

symptoms or PCR-positivity at enrollment. Infection history may be spotty if it mostly consists

of prior recorded infections unless the pathogen is novel or invades a mostly naive population.

Vaccination history may come from medical records or vaccination registries. Ideally, contacts of

the index case would all be offered PCR testing upon notification of exposure and then enrolled

in active symptom tracking, such as through daily phone calls or text messages, as this would

prevent differential eligibility assessments of vaccinated and unvaccinated participants. However,

in practice, investigators may have to assume that the lack of a positive PCR test and/or no passive
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symptom report constitutes no infection at time eligibility is assessed in the emulation.

Treatment strategies

The vaccination strategies to be emulated should also match those in the target trial. As partici-

pants in observational data sets will almost always be aware of their treatment strategy, the trial

emulated will typically be a pragmatic (unblinded) trial. To emulate a target trial, we identify

individuals in the database who meet all of the eligibility criteria. We then assign them to the

strategy or strategies that are consistent with their observed data at baseline.

To properly “assign” participants to strategies in the emulation, accurate data on the postex-

posure timing of vaccination is necessary. This will also allow us to censor them when they deviate

from their assigned protocol. In order to identify the unvaccinated, we must inevitably assume that

those without vaccinations recorded in a registry or health records truly did not receive a vaccine

during follow up. This may be a problem if participants can receive care from sources not covered

by study data.

Another challenge is that, to properly define regimes, the exposure date should be accurate

and unambiguously defined. The accuracy of exposure information may depend on the salience of

the event and the ability of index cases or their contacts to recall interactions. An unambiguous

definition requires a detailed description of what constitutes possibly infectious contact informed by

the underlying biology. In our mpox example, this description comes from guidance published by

the CDC, but may not be as clear for other pathogens. Participants may also be exposed multiple

times or over an extended duration, in which case determining which time to set as the definitive

exposure date may be less clear. As a sensitivity analysis we might consider multiple alternative

definitions.

Assignment procedures

In the emulation, allocation to treatment strategies is assumed to be random conditional on a

sufficient set of covariates to control confounding. For postexposure vaccination against mpox this

may include time since exposure, risk level of contact with index case, calendar week, geographic

region, age, sex, gender, coexisting conditions affecting immune system (e.g. HIV or STIs, obesity,

cancer, immune suppressing therapies), and proxies for healthcare utilization (e.g. flu vaccination,
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outpatient visits, HIV-PrEP).

In practice, our ability to correctly estimate effects will depend on the conditional randomization

assumption, at least approximately, holding (equivalent to assuming that there is little residual

confounding). If those who access postexposure vaccines are those with higher risk exposures to

mpox or with weaker immune systems (along some dimension not captured by the covariates) then

we will likely underestimate the true effectiveness of the vaccine. On the other hand, if those who

access postexposure vaccines are healthier and more likely to engage in healthy behaviors more

broadly (again along dimensions not captured by the covariates), then we will likely overestimate

the true effectiveness of the vaccine. The availability of rich covariate information on participants

as well as deep subject matter knowledge about the determinants of both who gets vaccinated and

the clinical course of disease are essential.

While direct verification of this assumption is not possible, several design and analytic strategies

can limit or quantify the bias that would result from violations. One strategy is to identify possible

negative outcome controls [19, 20], that is outcomes where confounding structure is expected to be

similar but are plausibly unaffected by vaccination. For instance, routine visits for other conditions

may be a proxy for unmeasured health-seeking behaviors or testing positive for syphilis may be

a proxy for unmeasured high-risk sexual behavior. Another strategy is to conduct a sensitivity

analysis to quantify the potential bias by evaluating change in estimated effect across a plausible

range of parameter values dictating the strength of unmeasured confounding [21].

Outcome

Outcome definitions and measurements should be as similar to those in the target trial as possible.

In a postexposure vaccine trial, there is often a regular system for monitoring of symptoms over the

follow up period. In an observational emulation, this data may be passively collected, leaving the

opportunity for potential outcome missclassification, particularly when there is a mild form of the

disease which may go unnoticed or unreported or when participants may seek care from providers

not covered by study data sources. This may be less of a concern when cases are reportable or the

pathogen is novel. Existing symptom monitoring systems may be in place as part of contact tracing

and testing systems in which case they can be leveraged. Ideally, ascertainment of symptoms would

be blind to an individual’s vaccination status. If those who are vaccinated are better surveilled or
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use passive systems more frequently this could introduce bias.

Causal contrast

In theory the contrasts will be the same as in the target trial, although in some instances a corollary

of the intention-to-treat effect may not be estimable from the observational data. Here, we focus

on the per-protocol [22] analysis of V ET>t.

Statistical analysis

Compared to the analyses in the target trial, the analyses in the emulation are complicated by

two factors. First, randomization is assumed to only hold conditional on covariates. Therefore our

analysis must include an appropriate method of adjustment such as outcome regression, matching,

inverse-probability weighting, or a combination thereof.

Second, unlike in a trial, in an emulation the assigned strategy at baseline is not known, rather

it must be inferred from the observed data. In particular, participants are not assigned to vaccine

or no vaccine at time zero. To avoid immortal time bias, we need to choose a start of follow up

in the emulation in a way that ensures that the distribution of time since exposure is the same in

both groups [23]. In the fixed enrollment period design, this can be accomplished via emulating

nested daily sequential trials: starting from exposure date, each day we identify participants who

are eligible to participate (e.g. no prior vaccination or mpox infection) and assign those receiving a

vaccine on that day to the vaccine strategy and those who do not receive a vaccine on that day to

the no vaccine strategy (see Appendix section A.6). In this setup, unvaccinated participants will be

eligible to serve as controls in multiple trials until they receive a vaccine or develop symptoms. To

estimate per protocol effects, we censor participants when their data deviates from their “assigned”

regime and then adjust for possible time-varying selection bias using any g-method such as inverse-

probability of censoring weights. Additionally, because we are using the same participant in multiple

nested trials our observations are no longer independent. Therefore, appropriate adjustment to our

standard errors is necessary to account for possible correlation across observations. Adjustment

can be made either by using a cluster-robust variance estimator or the bootstrap.
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Figure 2: Distribution of simulated vaccination times (X∗) among vaccinated and symptom onset
times (T ∗) among cases when V E = 0 over the 21 days of follow up showing the degree of overlap.

5 Simulation

To demonstrate the benefits of the target trial approach, we simulated data from hypothetical

observational study under a known data generation process in which there is an overlap between

vaccination timing and the timing of symptom onset (full details in section A.12 of the Appendix).

Figure 2 shows an example of the overlap in the distribution of simulated vaccination times and

disease onset times when V E = 0. We used this setup to compare explicit emulation of a target

trial with a few common estimation strategies drawn from the literature. Specifically, we compare

the following strategies:

1. naive, leave - a simple comparison of the “ever vaccinated” and “never vaccinated” using

the relative risk regression model Pr[Y = 1 | X] = exp{β0 + β1I(X < 21)} with vaccine

effectiveness estimated as V̂ E = 1− exp(β̂1).

2. naive, move - re-classify those who receive vaccine after developing symptoms as “unvacci-

nated”, i.e. we use the relative risk regression model Pr[Y = 1 | X] = exp{β0 + β1I(X < T )}

where I(X < T ) implies only those who receive vaccine prior to symptom onset are “vacci-
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nated” with vaccine effectiveness again estimated as V̂ E = 1− exp(β̂1).

3. target trial - we emulate a sequence of nested daily trials as described above and in section

A.6 of the Appendix. In each trial, we censor participants when they deviate from their

assigned strategy at baseline and use inverse-probability of censoring weights to adjust for

selection bias. These nested trials are combined, and vaccine effectiveness is estimated using

standardized cumulative incidence curves from a pooled logistic regression.

In Figure 3 we compare estimates of V E to the truth across two scenarios: the first when the

true V E = 0% and the second when the true V E = 31.6%. Under the null, the naive approaches

are upwardly biased due to immortal time bias (i.e. by definition vaccinated have to survive

long enough to be vaccinated while unvaccinated are at risk at all time points), while the target

trial approaches yield valid estimates. This persists in scenario 2 where V E = 31.6%, although

the relative bias of the first approach is somewhat offset by the fact that those vaccinated after

developing symptoms are included with vaccinated. In the appendix, we also compare estimation

strategies when V E varies with timing of vaccination (Figure A7), when effectiveness is defined as

one minus the hazard ratio and/or a time-varying cox model is used (Figure A8), and when the

degree of overlap between vaccination and symptom onset is varied (Figure A9). Of note, in this

simple scenario both the target trial emulation approach and the time-varying cox model yielded

unbiased estimates of VE when defined as one minus the hazard ratio.

6 Discussion

Accurate assessments of postexposure effectiveness of vaccines could be useful for curbing the worst

sequelae of many pathogens, but trials are often infeasible or unethical. Here, we specified target

trials for postexposure vaccination and describe how to emulate them using observational data.

Using the example of mpox vaccines, we discussed some of the unique challenges of emulating

postexposure vaccination trials, including the central role played by the distribution of vaccination

times and the incubation period. Throughout we emphasize the clarifying role of the target trial

framework and conclude with simulations showing how emulating the trial can help avoid several

common biases in observational analyses.
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Figure 3: Simulated V E estimates compared to the truth for the three estimation strategies de-
scribed in section 5. Based on 1000 monte carlo simulations. Dashed line shows true value in each
scenario.

Previous studies have emulated trials of pre-exposure vaccines, particularly during the COVID-

19 pandemic [24–27]. These studies filled gaps in the literature by emulating trials which were not

feasible to implement in practice such as head-to-head comparisons of vaccines [25], effectiveness

against new variants [26], effectiveness of boosters [27, 28], and effectiveness in important subgroups

such as children [26] and the immunocompromised. Observational emulations of post-exposure

vaccines could perform a similar function.

We considered postexposure trials where the goal of vaccination is to prevent the onset of clini-

cal disease. However, other goals such as reducing severity or transmission are also possible. In rich

observational datasets multiple primary and secondary endpoints may be feasible. To emulate trials

in which the goal is to reduce severity, one could simply replace onset with an alternative outcome

such as hospitalization or death due to disease of interest in the trials outlined above. Emulating

a trial of the effect of postexposure vaccination on transmission would require close follow up or

even random testing of the contacts of the vaccinated and unvaccinated participants and may be
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compromised by changes in exposure behaviors due to lack of blinding in most observational set-

tings. However, if PCR tests were administered to everyone independent of symptoms, effectiveness

against infection (PCR-positivity) is a lower bound on effectiveness against transmission [29].
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Web Appendix: Defining and emulating

target trials of the effects of postexposure

vaccination using observational data
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A Appendix

A.1 Day zero randomization designs

In the main text, we discussed two trial designs starting on postexposure day zero. In the first,

participants are enrolled on postexposure day zero, randomized, and immediately receive either

vaccine or no vaccine with the goal of estimating the ∆-day vaccine effectiveness in the ideal case

in which there is no delay between exposure and vaccination. Under perfect adherence this trial

targets the estimand

V E(0) = 1− Pr[Y x=0 = 1]

Pr[Y x>∆ = 1]

or, alternatively,

V E(0) = 1− Pr[Y aK=1 = 1]

Pr[Y aK=0 = 1]

using our definition of time-varying treatment At with K = ∆− 1 and overbars representing past

history, i.e. Ak = (A0, A1, . . . , Ak). This value is likely an upper bound on vaccine effectiveness

under more plausible scenarios of delay.

In the second design, participants are still enrolled and randomized on postexposure day zero,

but they are then further randomly assigned a postexposure date to receive the vaccine. Under

perfect adherence, the casual contrast of interest is now the t-specific vaccine effectiveness

V E(t) = 1− Pr[Y x=t = 1]

Pr[Y x>∆ = 1]
.

or, alternatively,

V E(t) = 1− Pr[Y (at−1=0,at=1) = 1]

Pr[Y aK=0 = 1]

with underbars representing future history, i.e. Ak = (Ak, Ak+1, . . . , A∆−1). This could be used,

for instance, to determine the time window public health officials and policymakers should advise

individuals at risk of exposure to seek vaccination within if they are exposed (see Section A.11).
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A.2 Fixed enrollment period designs

Also mentioned in the main text, when the timing of vaccination is not under the strict control

of the investigator, a possible design is to specify a fixed time window in which participants are

eligible to be vaccinated and randomize them on the postexposure day they present. Under perfect

adherence, this design could then target the t-specific vaccine effectiveness among those presenting

symptom-free, i.e.

V ET>t(t) = 1− Pr[Y x=t = 1 | X ≥ t, T > t]

Pr[Y x>∆ = 1 | X ≥ t, T > t]

or

V ET>t(t) = 1− Pr[Y (At−1,1t) = 1 | At−1 = 0, T > t]

Pr[Y (At−1,0t) = 1 | At−1 = 0, T > t]

by comparing vaccine and no vaccine groups within enrollment strata. Note that, in general, the t-

specific vaccine efficacies, V ET>t(t), targeted in this trial will not be the same as the V E(t) defined

previously as they are conditional on presentation time and being symptom-free at enrollment.

More often, in practice, the t-specific estimates V ET>t(t) are pooled together into a weighted

average effectiveness over the enrollment period. However, we stress caution in interpreting pooled

estimates. Because participants are allowed to present naturally rather than being assigned a time

at day zero, those that present earlier may be systematically different than those presenting later

with respect to their risk of developing clinical disease. Therefore the pooled estimates are among a

subpopulation who survive symptom-free and may not generalize to other populations with different

propensities for delay.
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A.3 Adding a grace period

An alternative to the day zero design which also allows for delays in vaccination but doesn’t require

consideration of all possible delay regimes is to specify a grace period, i.e. a fixed time window

after randomization in which vaccination can be initiated. For example, in a postexposure trial

of a varicella vaccine, investigators might randomize sibling contacts of an index case to vaccine

or placebo and then specify contacts are adherent if they receive their assigned treatment within

within 72 hours of the appearance of the first skin lesion in the index case. Under this design, the

causal target would be the average vaccine effectiveness if received during the m days of the grace

period, i.e.

V Em = 1− Pr[Y g(X,m) = 1]

Pr[Y x>∆ = 1]

where

g(X,m) : get vaccinated within m days of exposure under the expected vaccine

administration pattern f∗(X | Lt, X > t, T > t)

and where, for instance, in the hypothetical varicella trialm = 3. Although in theory randomization

could occur on any postexposure day followed by m-day grace period, in practice grace periods

starting from randomization on day zero probably make the most sense. When effectiveness varies

by the time since exposure, as it most certainly does for postexposure vaccines, a grace period

design estimates the average effectiveness under the “natural” course of vaccination over the grace

period, i.e.

f∗(X | Lt, X > t, T > t) =


fobs(X | Lt, X > t, T > t) : t < m

1 : t ≥ m

,

or alternatively

f∗(A | Lt, At−1, Dt−1 = 0) =


fobs(A | Lt, At−1, Dt−1 = 0) : t < m

1 : t ≥ m
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using time-varying treatment At instead of X and time-varying disease indicator Dk in place of

T . We note the effectiveness under other stochastic strategies may be possible under additional

assumptions [1]. This implies that two trials identical in all respects except for the distribution of

vaccinations over the grace period could yield substantially different estimates. Therefore, a trialist

pursuing this design has to strike a balance when defining a grace period between ensuring the

period is short enough that benefit is immunologically possible and the trial is adequately powered,

but also long enough that the regime is clinically feasible under reasonable assumptions about how

quickly patients are notified of their exposure to a case and can access a vaccine in the real world.

If properly conceived, a grace period design can provide evidence about average effectiveness of

postexposure vaccination administered within a certain window under real world conditions. As

such it may be a more useful estimate for population planning or modeling studies than those

produced by the fixed enrollment period design above.
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A.4 Example target trial specification for JYNNEOS vaccine

Eligibility

Individuals over 18 years of age who had an intermediate or high risk exposure to a person with

laboratory confirmed mpox case, no history of JYNNEOS vaccination, no positive PCR for mpox

or other orthopox virus at enrollment, and who were referred within 14 days of exposure are eligible

for this study. We use the CDC definitions of high and intermediate risk exposures [2] for mpox

(Table 1).

Treatment strategies

1) a single JYNNEOS vaccination dose (either the intradermal or subcutaneous regimen) at enroll-

ment and 2) no mpox vaccination dose over the 21-day follow up period.

Assignment procedures

Individuals are randomly assigned to one strategy within permuted assignment blocks defined by

day of presentation at the clinic and possibly other covariates of interest. Individuals are aware of

the strategy to which they have been assigned (unblinded).

Outcomes

The primary outcome is PCR-confirmed mpox or orthopox infection within 21 days of exposure.

Secondary outcomes could include disease severity or safety endpoints.

Follow-up period

Follow-up begins at date of exposure to the index case and ends at either the occurrence of the

outcome, 21 days after exposure, or loss to follow-up, whichever occurs first (We discuss the possi-

bility of delayed outcomes based on biology and their implications for observational emulations in

Appendix section A.9).

Causal contrasts

Intent-to-treat and per protocol effects of JYNNEOS vaccination.
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Statistical analysis

In the intention-to-treat (ITT) analysis, we compare the cumulative incidences in each group defined

by assignment and calculate the vaccine effectiveness as V E = 1 − Pr[Y=1|Z=1]
Pr[Y=1|Z=0] where Z is an

indicator of random assignment to strategy (1) or (2). In the stratified design, we can either

calculate ITT effects for the t-specific vaccine efficacies separately or, under additional assumptions,

pool together into a 14-day average. Cumulative incidence curves can be estimated in each arm

via the Kaplan-Meier estimator or a pooled logistic model. Loss to follow-up can bias estimates of

ITT effects [3]. We can adjust for the resulting selection bias under the assumption that measured

covariates (in practice often just baseline) include all determinants of loss to follow-up and the

outcome.

The per-protocol analysis is similar to the ITT analysis except that individuals are censored if

they deviate from their assigned treatment strategy, e.g. by declining the vaccine when assigned

to vaccine or obtaining it outside of the trial if assigned to no vaccine. We can adjust for the

possible time-varying selection bias due to censoring for protocol deviations (and/or loss to follow-

up) through an appropriate g-method under the assumption that the measured variables include

approximately all determinants of adherence and the outcome. 95% confidence intervals may be

estimated via bootstrapping.
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A.5 Identifiability conditions

Here, we review the conditions under which data from an observational emulation can be used to

identify the causal contrasts of interest in the target trial designs discussed above. As previously,

let Dg
k+1, A

g
k+1, and L

g
k+1 represent the counterfactual outcome, vaccination, and covariate history

under vaccination strategy g. To identify effects, the following conditions must hold for k =

0, . . . ,∆− 1:

1. Consistency: If Ak = agk then Dk+1 = Dg
k+1 and Lk = L

g
k

2. Sequential exchangeability: Dg
k+1 ⊥⊥ Ag

k | Lk = lk, A
g
k−1 = agk−1, Dk = 0

3. Positivity: fLk,A
g
k−1,Dk

(lk, a
g
k−1, 0) ̸= 0 =⇒ Pr(Ak = agk | Lk = lk, Ak−1 = agk−1) > 0

The first condition requires that our vaccination strategies are sufficiently well-defined such that

they match an intervention that would be proscribed in the target postexposure trial and are

reflected in the observed vaccination patterns in our observational study. The second condition is

alternatively known as the “no unmeasured confounding assumption” and requires that sufficient

covariate information is collected in the observational study such that potential outcomes are as

if randomized, i.e. conditionally independent, given past vaccination and covariate history. The

final assumption requires that there is a positive probability of receiving a vaccine in each covariate

strata.

In Figure A1, we use Single World Intervention Graphs (SWIGs) to represent the postexposure

process, i.e. time-varying evolution of vaccination, symptoms, and covariates. Because SWIGs

explicitly depict potential outcomes under interventions they are well-suited to reasoning about

exchangeability conditions. On a SWIG, a potential outcome Dg
t is conditionally independent of

treatment At if there are no unblocked backdoor paths connecting Dg
t and At conditional on past

treatment and covariate history. Using SWIGs helps us illuminate a subtle point regarding the

conditional exchangeability assumption under the grace period strategy compared to the static

strategies in the fixed enrollment period and day zero designs, which is developed further in [1].

Specifically, when there is an unmeasured common cause of vaccination UA at any two time-points

exchangeability will hold for the static regimes of the fixed-enrollment and day zero designs, but it

will not hold for the grace period under natural initiation of treatment.
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2
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(a) SWIG for static regime in fixed-enrollment period and day zero designs.

L0 A0 | Ag+
0 Dg

1 Lg
1 Ag

1 | Ag+
1 Dg

2

ULUA

(b) SWIG for natural regime in grace period design.

Figure A1: Causal graphs depicting the postexposure process under different interventions. The
variables L0, L1, A0, A1, D1, and D2 are as defined in the main text. Unmeasured variable UL is a
common cause of measured covariates and the outcome (symptoms) and unmeasured variable UA

is a common cause of vaccination. The blue line highlights the open backdoor path which leads to
a failure of the sequential exchangeability assumption.
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A.6 Data setup and additional emulation details

Here, we demonstrate the data manipulation steps required to emulate the three trial designs —day

zero, fixed enrollment period, and grace period— discussed above using observational data. Our

goal is to emulate the analysis that would have been conducted in the ideal trial assuming that the

necessary identifiability conditions are valid in the observational study.

Two crucial differences between a randomized trial and an observational study are that 1) the

former has a well defined start of follow up, or time zero, from which study outcomes are assessed and

2) all participants are assigned a particular treatment strategy. By contrast observational studies

generally do not have a uniquely defined time zero and participants may have data consistent with

multiple treatment strategies. In each design, certain data manipulation steps are applied to the

observational data to solve these issues.

A.6.1 Fixed enrollment period trial emulation

When emulating a fixed enrollment period design, the issue is that participants in the observational

data generally meet the eligibility criteria at multiple time points, and therefore there is no unam-

biguous time zero from which to start follow up. For instance, consider a postexposure vaccination

trial in which participants are eligible anytime in the first 5 days after exposure if they have no

previous vaccination history and no symptoms at presentation. In a real trial the participant would

be enrolled and randomized on a particular day and that would be their time zero. In the observa-

tional data, a participant may meet these criteria continuously, for instance between days 0 and 4.

The question is then when should their follow-up start? On day 0, 1, 2, 3, or 4? The choice has to

be applied equivalently to vaccinated and unvaccinated participants to avoid immortal time bias.

One possibility is to randomly choose a start time among the days they are eligible. However, a

more efficient choice is to use every eligible time by emulating a sequence of multiple nested target

trials each with a different start time. A natural choice for postexposure vaccination for a pathogen

with a relatively short incubation period is to emulate a series of daily nested trials, i.e. on day

zero condition on those who meet the eligibility criteria and compare those who are vaccinated on

that day to those who are unvaccinated on that day, and then repeat on all days within the fixed

enrollment period (schematic Figure A2). Participants in the observational study can be enrolled
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in trials starting on multiple days as long as they meet the eligibility criteria at time zero. As

suggested in [4], this design is akin to estimating the parameters of the structural nested model

βt,∆(V t) = log
Pr[D

(At−1,1,1t+1)
t = 1|It = 1, V t, Dt−1 = 0]

Pr[D
(At−1,0,0t+1)
t = 1|It = 1, V t, Dt−1 = 0]

where It is an indicator that a participant is eligible for the trial starting on day t and Vt are a

subset of covariates which may be effect modifiers.

To demonstrate the required data manipulation steps, consider the six individuals shown in

Table A1 with vaccination and symptom onset times recorded during a hypothetical observational

study. To emulate a trial with a fixed five day enrollment period postexposure, we create one

copy of the dataset for each trial day. Then in each copy we apply the proper eligibility criteria

(e.g. individuals should be disease-free and not vaccinated on a previous day) and assign those

vaccinated on that trial day to be “vaccinated” and those who have not been vaccinated yet to

be “unvaccinated”. For example, individual 2 in Table A1 is vaccinated on on day 2 and doesn’t

develop symptoms, therefore in the emulation they will participate in 3 trials (i.e. those starting

on postexposure day 0, 1, and 2). In trials starting after postexposure day 2 they are no longer

eligible because they have already been vaccinated. In each trial, follow up time is adjusted to start

on the postexposure day of interest and end either at symptom onset or at the maximum follow up

day which may be fixed from the index exposure day or be of fixed length from the trial day. In

intention-to-treat analyses, participants are “assigned” based on their baseline status in the nested

trial and followed throughout regardless of whether they later deviate. In per protocol analyses,

individuals in each nested trial are censored when they deviate from their baseline assignment in

that trial. For example, individual 3 in Table A1 is unvaccinated in trials starting on days 0 through

3, but in each of these trials is censored on day 4 in the per protocol analysis because they deviate

from their baseline assignment by becoming vaccinated.

A.6.2 Day zero trial emulation

When emulating a day zero trial in which participants are randomized to a particular delay before

receiving a vaccine after exposure, the issue is that participants in the observational data will have

data consistent with multiple delay regimes. Consider a trial where participants are randomized on
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Table A1: Enrollment of six hypothetical individuals in daily nested trials for 5-day vaccination
window based on observed data.

ID Vaccination
(1: yes, 0: no)

Day of
vaccination

Clinical disease
(1: yes, 0: no)

Day of
disease onset

No. of trials
enrolled

1 1 0 0 - 1 (day 0)
2 1 2 0 - 3 (days 0-2)
3 1 4 1 8 5 (days 0-4)
4 1 7 1 2 2 (days 0-1)
5 0 - 0 - 6 (days 0-5)
6 0 - 1 5 5 (days 0-4)

day zero to one of the following strategies: (1) receive vaccine on day zero, (2) receive vaccine on

day one, (3) receive vaccine on day two, (4) receive vaccine on day three, or (5) to receive no vaccine

over the follow up period (schematic Figure A3). In a real trial participants would be assigned to

one of the five regimes at the start. In the observational data, however, some individuals will get

vaccinated on day 0 and therefore only have data compatible with the first strategy, but others will

not get vaccinated on day zero and will have data compatible with multiple strategies at baseline.

The question is now which strategy should we assign them to? As with the start time in the

previous design, one option is to pick a single strategy at random from the strategies their data

is consistent with. However, the more efficient choice is to assign them to all possible strategies

by creating exact copies —often called clones— of any individual whose data is consistent with

multiple regimes and assign each of their clones to a different strategy.

To demonstrate the required data manipulation steps, let’s return to the six hypothetical in-

dividuals from Table A1, but now in Table A2 we will use their data to emulate a day zero trial

in which participants are randomized to strategies (1)-(5) in previous paragraph. Starting with

the first individual, they are vaccinated on day zero and therefore have data consistent only with

strategy (1), thus they are not cloned. The second individual, however, is not vaccinated until day

2 and therefore at time zero they have data consistent with any of the strategies (1)-(5), thus we

make five clones of the second individual by copying their data five times and assigning each obser-

vation to a different regime. We then follow each clone forward and censor them when they deviate

from their assigned regime. For instance, we know the second individual is vaccinated on day 2,

therefore on day 0 we censor the clone assigned to strategy (1) because they were not vaccinated

on that day. Likewise, on day 1 we censor the clone assigned to strategy (2) because they were
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Table A2: Emulation of day zero trial with five vaccination delay strategies using data from six
hypothetical individuals.

ID Vaccination
(1: yes, 0: no)

Day of
vaccination

Clinical disease
(1: yes, 0: no)

Day of
disease onset

No. of clones
(regimes)

1 1 0 0 - 1 (1)
2 1 2 0 - 5 (1-5)
3 1 4 1 8 5 (1-5)
4 1 7 1 2 5 (1-5)
5 0 - 0 - 5 (1-5)
6 0 - 1 5 5 (1-5)

not vaccinated on that day either, then on day 2 we censor all the remaining clones except the one

assigned to strategy (3). Importantly, if the individual has symptoms before a clone is censored, as

is the case for the strategy (3) and (4) clones for individual 4, then all clones will have symptoms

and therefore the case is assigned to all strategies. This multiple allocation of events prevents the

bias that could arise if events occurring during the delay period are systematically assigned to one

of the five strategies only.

A.6.3 Grace period trial emulation

Finally, when emulating the grace period design the issues are similar to those in the day zero trial

in which participants are randomized to a delay strategy, i.e. some participants in the observational

study have data consistent with multiple regimes. Consider a trial where participants are random-

ized at day zero to either (1) receive vaccine sometime within the first five days postexposure or

(2) to receive no vaccine over the follow up period (schematic Figure A4). As before, if the trial

were actually conducted everyone would have an unambiguous assignment at time zero. However,

in the observational data individuals who receive vaccine after day zero have data consistent with

both regimes in the period before receiving the vaccine. This is important when considering some

individuals may acquire symptoms prior to receiving vaccination during the grace period, in which

case one might ask oneself to which strategy should they be assigned? The solution, as before, is

to create clones when individuals have data consistent with multiple regimes, assign each clone to

a regime, and then censor them if they deviate from their assigned regime.

To demonstrate the required data manipulation steps, we return again to the same six hypo-

thetical individuals, but now in Table A3 we will use their data to emulate a trial with a five day
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Table A3: Emulation of trial with five day grace period vaccination using data from six hypothetical
individuals.

ID Vaccination
(1: yes, 0: no)

Day of
vaccination

Clinical disease
(1: yes, 0: no)

Day of
disease onset

No. of clones
(regimes)

1 1 0 0 - 1 (1)
2 1 2 0 - 2 (1-2)
3 1 4 1 8 2 (1-2)
4 1 7 1 2 2 (1-2)
5 0 - 0 - 2 (1-2)
6 0 - 1 5 2 (1-2)

grace period (i.e. m = 5). Starting with the first individual, they are vaccinated on day zero and

therefore have data consistent only with strategy (1) and therefore they are not cloned. The second

individual, however, is not vaccinated until day 2 and therefore at time zero has data consistent

both strategies (1) and (2), thus we make two clones of the second individual by copying their

data and assigning each observation to one of the two regimes. We then follow each clone forward

and censor them when they deviate from their assigned regime. For instance, we know the second

individual is vaccinated on day 2, therefore on day 2 we censor the clone assigned to regime (2),

i.e. receive no vaccine over the follow up period. Again, if the individual has symptoms before any

clone is censored, as is the case for individual 4, then all clones will have symptoms and therefore

the case is assigned to all strategies strategies. This double allocation of events prevents the bias

that could arise if events occurring during the grace period are systematically assigned to one of

the two strategies only.
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Figure A2: Schematic of nested daily trial design, on each day participants are assigned to vaccine
or no vaccine, conditional on their history up to that day. Squares represent a pool of participants
eligible for randomization and get smaller to show that the size of the pool shrinks as the number
of eligible participants decreases due to symptom onset and previous vaccination; circles represent
the status of individuals who have been randomized. Time moves from left to right.

34

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.05.03.23289471doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.03.23289471
http://creativecommons.org/licenses/by/4.0/


Y

Y

Y

Y

Y

1111

1110

1100

1000

0000

Figure A3: Schematic of a trial in which participants are randomized on day zero to a specific
vaccination delay strategy. In the figure, on day zero, participants are assigned to either (1) receive
vaccine on day 0, (2) receive vaccine on day 1, (3) receive vaccine on day 2, (4) receive vaccine
on day 3, or (5) do not receive vaccine during the follow up period, with assignment probabilities
allowed to vary between strategies. This could also be done by first randomizing participants to
vaccine or no vaccine and then randomizing the day of vaccination among those assigned vaccine.

Y

Y

1???
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0000

Figure A4: Schematic of trials with a grace period, participants are randomized to a strategy
starting on day zero and given a fixed length time window in which they can initiate and then
sustain thereafter.
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A.7 Estimation using inverse probability of censoring weights

Once we have completed the necessary data manipulation steps to emulate the designs above, anal-

ysis of the per-protocol effects of postexposure vaccination can be conducted. Here, we describe one

possible estimation approach based on inverse probability weighting, although others are possible.

The algorithm proceeds as follows:

1. For each regime of interest Z, define censoring indicator Ck which is one when the individual

deviates from the assigned regime and zero when they are adherent. For example, consider

a 4-day delay regime for the day zero design: if an individual is vaccinated prior to day 4,

then Ck = 1 on the day of vaccination and Ck = 0 before; if they are vaccinated after day 4

or never vaccinated, then Ck = 1 on day 4 and Ck = 0 before; and if they are vaccinated as

indicate on day 4, then Ck = 0 throughout.

2. Using the entire dataset, fit a pooled (over time) parametric regression model for the con-

ditional probability of being censored f(Ck|Lk, Ak, Ck−1 = Dk−1 = 0, Z). For example we

could assume a pooled logistic regression model.

3. For each individual, i, and at each time point, k, in 1, . . . ,∆− 1

(a) Obtain predicted values P̂r(Ck = 0|Lk, Ak, Ck−1 = Dk−1 = 0, Z).

(b) Form the appropriate weights for remaining uncensored:

i. For the fixed-enrollment period design,

Ŵk =
k∏

j=1

I(Ck = 0)

P̂r(Cj = 0|Lj , Aj , Cj−1 = Dj−1 = 0, Z)
,

with the weights equal to 1 for those assigned to the “vaccinate” strategy (as those

who initiate are always adherent).

ii. For the day zero designs,

Ŵk =

k∏
j=1

I(Ck = 0)

P̂r(Cj = 0|Lj , Aj , Cj−1 = Dj−1 = 0, Z)
,

where prior to the day indicated the weights are the probability of remaining unvac-
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cinated and the weights after are for the probability of being vaccinated the specified

day.

iii. For a natural grace period design,

Ŵk =

k∏
j=1

1

P̂r(Cj = 0|Lj , Aj , Cj−1 = Dj−1 = 0, Z)
,

for those assigned to the “never vaccinate” strategy and

Ŵk =
k∏

j=1

I(Rj+1 ≤ m)

P̂r(Rj ≤ m|Lj , Aj , Dj−1 = 0, Z)

for the grace period strategy where Rk is the number of consecutive days prior to k

that an individual failed to be vaccinated and

P̂r(Rj ≤ m|Lj , Aj , Dj−1 = 0, Z) =


1 : Rj < m

P̂r(Cj = 0|Lj , Aj , Cj−1 = Dj−1 = 0, Z) : Rj = m,

4. Using the weights Ŵk, fit a suitable weighted pooled (over time) parametric regression model

for the discrete-time hazard of symptom onset Pr[Dk+1 = 1|Dk = 0, Lk, Z]. For example, for

a day zero trial, we could fit the pooled logistic regression model

Pr[Dk+1 = 1|Dk = 0, Z, L0] = expit{ψ0λ(k) + ψ1f(Z) + ψ2L0}

where λ(k) is the unvaccinated odds of symptom onset and f(Z) is a function of the vacci-

nation delay. To relax assumptions on functional form, we can allow f(Z) and λ(k) to be

members of a class of flexible such as restricted cubic splines.

5. Compute V E curve for ∆-day cumulative incidence by standardizing

P̂r[Y z = 1] =
∆−1∑
k=0

ĥzk(L0)×
k−1∏
j=0

{
1− ĥzj (L0)

}

for each regime z ∈ Z where ĥzk(L0) = P̂r[Dk+1 = 1|Dk = 0, Z = z, L0] and then for any two

regimes calculate V E = 1− P̂r[Y z = 1]/P̂r[Y z∗ = 1].
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6. For inference, draw bootstrap replicates 1, . . . , B by sampling with replacement from the

dataset and repeat steps 2 through 5 to get estimates ψ̂1, . . . , ψ̂B. Calculate bootstrapped

standard error from ŜEboot =
√

1
B−1

∑B
i=1(ψ̂i − ψ)2. An α-level confidence interval may be

formed via ψ̂ ± Z1−α/2ŜEboot.
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A.8 Hypothetical data example for estimation using inverse probability of cen-

soring weights

Table A4: Data four five hypothetical individuals whose vaccination histories are consistent with
at least one of: the never vaccinate strategy, the 2-day delay strategy, and a strategy to vaccinate
under a grace period with m = 3. We define pk = Pr(Ck = 0|Lk, Ak, Ck−1 = Dk−1 = 0, Z) as the
observed probability of remaining uncensored at time k.

Person
(i)

Time
(k)

Vaccination
(Ak)

Consec. days
unvaccinated

(Rk)

Onset of
symptoms

(Dk)

Wk under
never

vaccinate

Wk under
2-day
delay

Wk under
grace
period

1 0 0 0 0 1
p0

1
p0

1

1 1 0 1 0 1
p0p1

1
p0p1

1

1 2 0 2 0 1
p0p1p2

0 1

1 3 0 3 0 1
p0p1p2p3

0 1

2 0 1 0 0 0 0 1
2 1 1 1 0 0 0 1
2 2 1 2 0 0 0 1
2 3 1 0 0 0 0 1

3 0 0 0 0 1
p0

1
p0

1

3 1 0 1 0 1
p0p1

1
p0p1

1

3 2 1 2 0 0 1
p0p1p2

1

3 3 1 0 0 0 1 1

4 0 0 0 0 1
p0

1
p0

1

4 1 0 1 0 1
p0p1

1
p1p1

1

4 2 0 2 0 1
p0p1p2

0 1

4 3 1 3 0 0 0 1
p3

5 0 0 0 0 1
p0

1
p0

1

5 1 0 1 1 1
p0p1

1
p0p1

1

5 2 0 2 1 0 0 0
5 3 0 3 1 0 0 0
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A.9 Adjusting trial outcomes based on biology

Sometimes there is strong biological theory or evidence about the postexposure window in which

vaccination is likely to be successful, for instance, when data from postvaccination serological

assessments of antibody responses suggests meaningful change in immune responses occurs only

after 7 days. In this case, there may be interest in restricting the time frame in which infection

events count against vaccination. In a trial, this may be handled by re-defining the outcome such

that only cases which occur more than 2 days post randomization are counted as events in both

arms. Cases that occur prior to this are not counted in either trial arm. This is how outcomes were

defined, for instance, in many of the trials of SARS-CoV-2 vaccines.

In observational emulations, we can similarly re-define vaccination outcomes based on biology,

however we have to be careful to ensure that the new definitions are applied fairly across vaccination

groups. In traditional analyses, bias can occur when all unvaccinated cases are counted from day

zero but vaccinated cases are counted from the day of vaccination. This is fixed when using

any of the target trial designs described previously because time zero is properly aligned in both

groups. With a clear time zero in each nested trial or cloned regime, we can then unambiguously

define delayed outcomes for all vaccination strategies. For instance, using the notation introduced

previously, we define trial outcome Y ∗ = I(D∆ = 1, Dδ = 0) where δ here is the number of days

after randomization in which cases do not count against the vaccine or no vaccine groups.
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A.10 Effect measures for vaccine effectiveness

In the main text, we defined vaccine effectiveness in terms of the cumulative incidence of symptoms

or disease over the follow up period, e.g.

V E(t) = 1− Pr[Y x=t = 1]

Pr[Y x>∆ = 1]

comparing vaccination regimes vaccinated on day t and never vaccinated over follow up. However,

it is also common in the literature to see vaccine effectiveness defined instead in terms of hazards,

e.g.

V Eλ(t) = 1− λx=t(k)

λx>∆(k)

where λx(k) is the (average) hazard rate over the follow up period, e.g.

λx(k) =
1

∆

∆∑
k=1

Pr[Dx
k = 1|Dx

k−1 = 0]

In the applied literature, these are sometimes used interchangeably even though they will rarely

coincide, e.g. they will not coincide when hazard rates are nonconstant or heterogeneous or non-

proportional. In the causal literature, there is a preference against causal hazard ratios particularly

when they are time-varying (as they almost certainly are in practice) as they condition on survival

and therefore introduce possible selection bias by construction.

However, previous work [5] has shown that patterns in V E(t) and V Eλ(t) could, in some

circumstances, help elucidate the mechanism of action of a particular vaccine, for instance to help

distinguish whether a vaccine produces “all-or-none” or “leaky” protection against infection.
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A.11 Determining maximum postexposure vaccination delay

When setting guidelines for postexposure vaccination, a common problem is determining the max-

imum vaccination delay before effectiveness falls below a certain cost-benefit threshold. This quan-

tity is important both for policymakers communicating with high risk groups and the broader

public about what to do in the event of an exposure as well as to help practitioners determine

whether vaccination is still indicated upon presentation. Absent clear biology or immune response

data, it can be difficult to determine empirically even when postexposure trials are possible as trial

participants are generally only assigned to vaccine or no vaccine/placebo not to a specific day to

be vaccinated. In this section, we suggest a methods for estimating the maximum delay based on

a pre-specified minimum effectiveness bound. In principle, these methods could be applied either

in a randomized trial where the day of vaccination is not strictly controlled or in an observational

emulation.

Suppose u(Y g) is a utility function quantifying the health benefits of vaccination strategy g and

V is a subset of covariates defining subpopulations of interest, such as certain high risk exposure

groups, then the conditional mean

m(g, v) ≡ E[u(Y g) | V = v]

is the expected utility under a hypothetical policy in which everyone in the subpopulation receives

vaccination strategy g. Comparing the expected utility m(g, v) for across different regimes g ∈ G

quantifies the counterfactual benefits of vaccination under different delays.

To determine the optimal guidance regarding postexposure delays, we might consider two dis-

tinct classes of regimes and subpopulations (although others are certainly possible):

• A class of day zero regimes in which everyone is vaccinated after a delay of x∗ days, i.e.

g(x) = x∗ and V = 1 for everyone.

• A class of regimes in which all of those remaining unvaccinated and symptom-free on day x∗

are vaccinated, i.e. g(x) = x∗ and V = I(X > x∗, T > x∗).

Each answers a slightly different question and may be relevant under different circumstances. The

second is more relevant for practitioners counseling patients who present symptom-free on their
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options after exposure, while the first is more relevant for public health guidance telling those

currently unexposed how quickly they need to get to a clinic after exposure.

Our goal is then to find the maximum value of x∗ in which the utility in subpopulations of

interest remains above some minimum viable threshold, i.e.

xopt(v) ≡ argmaxx∗∈X {m(x∗, v) ≥ θmin}

To take a simple example, consider the case that m(x∗, v) is just the vaccine effectiveness (i.e. there

are no other costs or benefits) in which case we want to solve

xopt(v) = argmaxx∗∈X {V E∗(x∗, v) ≥ θmin}

where

V E∗(x∗, V ) = 1− Pr[Y x=x∗
= 1 | V ]

Pr[Y x>∆ = 1 | V ]
.

In this case, xopt(v) is the maximum delay before vaccine effectiveness falls below some minimum

threshold.

To determine xopt(v) for the first class of regimes, one approach would be to calculate V̂ E(t)

from the day zero design separately for each regime as V E(t) = V E∗(t, 1) and then determine

the maximum value of t where V̂ E(t) remains above the threshold. However, we can also increase

efficiency by pooling across the cloned strategies and fitting a model with a flexible function of the

delay regime such as that in ??. We can then estimate the V̂ E(t) curve either from estimated hazard

ratios or from standardized cumulative incidence curves depending on effect measure of interest and

using inverse probability of censoring weights to adjust for nonadherence among unvaccinated where

applicable.

Alternatively, to determine xopt(v) for the second class of regimes, we could use the stratified

estimates V̂ ET>t(t) from each of the nested daily trial emulations as V ET>t(t) = V E∗(t, I(X >

t, T > t)) and then determine the maximum value of t where V̂ ET>t(t) remains above the threshold.

However, this assumes we observe sufficient numbers of individuals being vaccinated on each day to

obtain reliable estimates. In practice, we might prefer to increase efficiency by pooling across trials

and fitting a model with a flexible function of vaccination timing such as that in ??. We can then
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estimate the V̂ ET>t(t) curve either from estimated hazard ratios or from standardized cumulative

incidence curves depending on effect measure of interest and using inverse probability of censoring

weights to adjust for nonadherence among unvaccinated where applicable.
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A.12 Simulation

To demonstrate the benefits of the target trial approach, we simulated data from hypothetical

observational study under a known data generation process in which there is an overlap between

vaccination timing and the timing of symptom onset. We used this setup to compare explicit

emulation of a target trial with a few common estimation strategies drawn from the literature. In

all simulations, we drew datasets of size 1000, estimated the V E under each estimation strategy,

and repeated the across 1000 Monte Carlo samples to calculate the bias and efficiency.

A.12.1 Data generating mechanism

We simulated postexposure vaccination by first drawing a vaccine “assignment” indicator, Z, from

a Bernoulli distribution with probability 0.5 and then drawing a postexposure delay, X∗, from

a Poisson distribution with a mean of 5 days. In an observational study, we assume that true

assignment is unknown and therefore we only observe vaccination times among the vaccinated, i.e.

X = ZX∗. We then simulated symptom onset over the 21 days of follow up after exposure based

on the discrete time hazard model

Pr[Dk = 1 | Dk−1 = 0, X] = expit{α0,k + log(1− V Eλ(X)) · I(X < k)}

for k in {0, . . . , 21} where Y = D21 and the baseline hazard α0,k was defined such that there

is a 50% probability of symptoms given exposure among unvaccinated and onset times among

cases had a Log-Normal distribution with parameters chosen based on previous estimates of the

incubation period for mpox [6]. We assumed vaccination reduces probability of symptoms but does

not affect onset timing and only works if administered prior to onset. For those with simulated

vaccination times that occur after symptom onset we assumed 25% still receive the vaccine, while

vaccination time was censored for the remaining. We generated data under three scenarios for

vaccine effectiveness:

• scenario 1: the null case that vaccination is completely ineffective, i.e.

V Eλ = 0
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• scenario 2: vaccination reduces hazard of symptom onset by a constant of 40% (corresponding

to 21-day VE of 31.6% based on cumulative incidence), i.e.

V Eλ = 0.49

• scenario 3: a more realistic scenario in which effectiveness is a function of postexposure

timing, i.e.

V Eλ(x) = 0.8/[1 + exp{0.75(x− 4)}]

The full data generation process may be written as:

X∗ ∼ Poisson(5)

Z ∼ Bernoulli(0.5)

W ∼ Bernoulli(0.25)

for k ∈ {1, . . . , 21} : Dk ∼ Bernoulli(expit{α0,k + log(1− V Eλ(X
∗)) · Z · I(X∗ < k)}})

T = 21−
21∑
k=1

Dk

X = Z ·X∗ · I(X∗ < T ) +W · Z ·X∗ · I(X∗ ≥ T )

Y = D21

where

α0,k = logit

[
0.25 · Φ(k)− Φ(k − 1)

1− Φ(k − 1)

]
and Φ is the cumulative distribution function for a log-normal distribution with log mean of 2.1

and log standard deviation of 0.59.

Figure A5 shows the overlap in the distribution of vaccination times and disease onset times

when V E = 0. Note that under this process, there is no structural source of confounding, i.e.

vaccination status and timing is random with respect to symptom onset. Rather bias comes from

the true “assignment” being unknown to the investigator.
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A.12.2 Target and estimation: V E based on the cumulative incidence

In the first set of simulations, our target parameter was the vaccine effectiveness based on the

relative reduction in cumulative incidence, i.e.

V ET>t = 1− Pr[Y x=t = 1 | X ≥ t, T > t]

Pr[Y x>∆ = 1 | X ≥ t, T > t]
,

which is the same as the estimand defined for an ideal trial based on a fixed-enrollment period

design. We compared three different estimation strategies:

1. näıve, leave - a simple comparison of the “ever vaccinated” and “never vaccinated” using

the relative risk regression model Pr[Y = 1 | X] = exp{β0 + β1I(X < 21)} and vaccine

effectiveness is estimated as V̂ ET>t = 1− exp(β̂1).

2. näıve, move - those who receive vaccine after developing symptoms are re-classified as “unvac-

cinated”, i.e. we use the relative risk regression model Pr[Y = 1 | X] = exp{β0+β1I(X < T )}

where I(X < T ) implies only those who receive vaccine prior to symptom onset are “vacci-

nated” and vaccine effectiveness is estimated as V̂ ET>t = 1− exp(β̂1) as before.

3. target trial - we emulate a sequence of nested daily trials by taking those who are symptom free

and unvaccinated prior to start and compare those are vaccinated on that day to those who are

not. In each trial, we censor the unvaccinated when they become vaccinated and use inverse-

probability of censoring weights to account for informative censoring. These nested trials

are combined and vaccine effectiveness is estimated using standardized cumulative incidence

curves from a pooled logistic regression and standard errors are estimated using cluster-robust

variance estimator.

The first two are strategies that we have seen used in observational studies of post-exposure vacci-

nation and the last is the one proposed in this paper.
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A.12.3 Target and estimation: V E based on the hazard

In another set of simulations, we also considered targeting the vaccine effectiveness based on the

(average) hazard rather than the cumulative incidence of symptom onset, i.e.

V Eλ,T>t = 1−
1
∆

∑∆
k=1 Pr[D

x=t
k = 1|Dx=t

k−1 = 0, X > t]
1
∆

∑∆
k=1 Pr[D

x>∆
k = 1|Dx>∆

k−1 = 0, X > t]
,

We compared four different estimation strategies:

1. näıve, leave - similar to above however we estimate incidence rates rather than cumulative

incidence through poisson regression Pr[Y = 1 | X] = exp{β0 + β1I(X < 21)} with offset

log(T ) and vaccine effectiveness is estimated as V̂ E = 1− exp(β̂1).

2. näıve, move - those who receive vaccine after developing symptoms are re-classified as “un-

vaccinated”, i.e. we use the poisson regression model Pr[Y = 1 | X] = exp{β0+β1I(X < T )}

with offset log(T ) and I(X < T ) implies only those who receive vaccine prior to symptom

onset are “vaccinated” and vaccine effectiveness is estimated as V̂ E = 1− exp(β̂1) as before.

3. time-varying cox - use a time-varying cox model λ(t|X) = λ0(t) exp{β1I(X ≥ t)} in which

follow up time is split for vaccinated participants at the time of vaccination. Prior to this their

person time is classified as unvaccinated and effectiveness is estimated as V̂ E = 1− exp(β̂1).

4. target trial - same as previous, except we estimate vaccine effectiveness as one minus the expo-

nentiated coefficient from the pooled logistic regression model rather than from standardized

cumulative incidence curves.

A.12.4 Target and estimation: comparing trial targets

In a final set of simulations, we consider the same data generation mechanism but targeting different

hypothetical trials to show the flexibility of our approach to answer different research questions.

Specifically, we consider:

• fixed-enrollment: a trial in which participants who are symptom free are enrolled within 7-

days postexposure and randomized to either receive a vaccine or no vaccine on the day of

enrollment. We emulate this in the simulated observational data as a sequence of nested daily
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trials as discussed in A.6.1. In each trial, we censor the unvaccinated when they become vac-

cinated and use inverse-probability of censoring weights to account for informative censoring.

These nested trials are combined and vaccine effectiveness is estimated using standardized

cumulative incidence curves from a pooled logistic regression with V E by day modeled using

flexible cubic splines and standard errors are estimated using cluster-robust variance estima-

tor.

• day-zero: a trial in which participants are randomized on the day that they were exposed

to vaccine or no vaccine and then also randomized a day between 0 and 6 to receive the

vaccine. We emulate this using the clone-censor-weight approach described in A.6.2. We

censor clones when they deviate from their assigned regime and use inverse-probability of

censoring weights to account for informative censoring. These nested trials are combined

and vaccine effectiveness is estimated using standardized cumulative incidence curves from a

pooled logistic regression with V E across delay regimes modeled using flexible cubic splines

and standard errors are estimated using cluster-robust variance estimator.

• grace period a trial in which participants are randomized on the day that they were exposed to

vaccine or no vaccine with those assigned to vaccine allowed a 7 day grace period in which to

receive a vaccine. We emulate this using the clone-censor-weight approach described in A.6.3.

We censor clones when they deviate from their assigned regime and use inverse-probability

of censoring weights to account for informative censoring. These nested trials are combined

and vaccine effectiveness is estimated using standardized cumulative incidence curves from

a pooled logistic regression and standard errors are estimated using cluster-robust variance

estimator.

Simulation results

In Figure A6 (and Table A5), we compare estimates of V E based on the cumulative incidence of

symptom onset to the truth for scenarios 1 and 2. Under the null, the näıve approaches are upwardly

biased due to immortal time bias (i.e. by definition vaccinated have to survive long enough to be

vaccinated while unvaccinated are at risk at all time points), while the target trial approaches

yield valid estimates. This persists in scenario 2 where V E = 31.6%, although the relative bias of
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the first approach is somewhat offset by the fact that those vaccinated after developing symptoms

are included with vaccinated. In scenario 3, where vaccine effectiveness varies with postexposure

timing, the näıve approaches still produce biased estimates, with larger bias for greater postexposure

delays. The target trial approach yields unbiased estimates of vaccine effectiveness at all time points

(Figure A7).

Another common approach to account for immortal time is to split follow up at the time of

vaccination among the vaccinated and use a time-varying specification of the Cox proportional

hazards model to estimate V E. In Figure A8 (and Table A6), we show this approach also yields

unbiased estimates of postexposure vaccine effectiveness when evaluated using one minus the hazard

ratio rather than cumulative incidence (the latter could, in theory at least, be obtained by combining

with a suitable estimator of the baseline hazard, but this is uncommon). However, in practice, this

method imposes restrictions on appropriate adjustment for time-varying confounding that is almost

certainly present in most real world applications. In contrast, the näıve methods based that estimate

the average hazard or incidence rate are biased, again due to immortal time bias.

To explore the extent to which the overlap between vaccination and symptom onset drives

our results, we also evaluated how performance varies with the degree of overlap. Specifically, we

repeated scenario 2 (V E = 31.6%) for VE based on the cumulative incidence and varied the mean

of the log-normal distribution used to generate the symptom onset times. Here, larger mean onset

times correspond to later symptom onset and thus less overlap. In Figure A9, we show that the bias

of the näıve approaches increases as the mean onset time gets shorter while both the target trial

and time-varying Cox approaches remain unbiased. This suggests that the target trial approach

may be particularly useful in settings with high overlap between vaccination and symptom onset

or those in which the majority of cases occur prior to vaccine being administered.

Finally, in Figure A10 we show the versatility of the target trial framework for targeting different

trial designs/strategies. Using the modified emulations discussed above and in section A.6, the

target trial approach produces unbiased estimates of a trial with a 7-day fixed enrollment period, a

trial where participants are cross-randomized on day zero postexposure to vaccination and a delay

of between 0 and 6 days, and a trial where participants are randomized to vaccine or no vaccine on

day zero postexposure but given a 7-day grace period in which to receive vaccination.

50

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.05.03.23289471doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.03.23289471
http://creativecommons.org/licenses/by/4.0/


Table A5: Simulation results for scenarios 1 and 2 when estimating VE using the risk ratio.

Estimator Mean Bias SD RMSE

Scenario 1: VE = 0%
naive, leave 0.090 0.090 0.059 0.108
naive, move 0.120 0.120 0.058 0.133
target trial -0.004 -0.004 0.067 0.067

Scenario 2: VE = 31.6%
naive, leave 0.377 0.060 0.050 0.078
naive, move 0.407 0.091 0.049 0.103
target trial 0.317 0.000 0.057 0.057

Table A6: Simulation results for scenarios 1 and 2 when estimating VE using hazard ratio

Estimator Mean Bias SD RMSE

Scenario 1: VE = 0%
naive, leave 0.146 0.146 0.072 0.163
naive, move 0.192 0.192 0.068 0.203
time-varying cox -0.007 -0.007 0.095 0.096
target trial -0.008 -0.008 0.098 0.099

Scenario 2: VE = 40%
naive, leave 0.456 0.056 0.052 0.077
naive, move 0.494 0.094 0.050 0.107
time-varying cox 0.395 -0.005 0.065 0.066
target trial 0.400 0.000 0.067 0.067
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Figure A5: Distribution of simulated vaccination times (X∗) among vaccinated and symptom onset
times (T ∗) among cases when V E = 0 over the 21 days of follow up showing the degree of overlap.
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Figure A6: Simulated V E estimates compared to the truth for the three estimation strategies
described in section 5. Based on 1000 monte carlo simulations. Dashed line shows true value in
each scenario.

53

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.05.03.23289471doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.03.23289471
http://creativecommons.org/licenses/by/4.0/


cox target trial

naive, leave naive, move

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0%

40%

80%

0%

40%

80%

Day

E
st

im
at

ed
 v

ac
ci

ne
 e

ffi
ca

cy

Figure A7: Comparison of estimators under when vaccine effectiveness varies by postexposure
administration time.
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Figure A8: Comparison of estimators when calculating vaccine effectiveness using the hazard ratio
instead of the risk ratio.
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Figure A9: Bias of näıve methods varies with degree of overlap between vaccination delays and
symptom onset times.
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Figure A10: Simulated V E estimates compared to the truth for four different target trial designs
described in section 5. Based on 1000 monte carlo simulations. Red dots shows true value in each
scenario.
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