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Abstract

Postexposure vaccination has the potential to prevent or modify the course of clinical dis-

ease among those exposed to a pathogen. However, due to logistical constraints, postexposure

vaccine trials have been difficult to implement in practice. In place of trials, investigators have

used observational data to estimate the efficacy or optimal timing window for postexposure

vaccines, but the relationship between these analyses and those that would be conducted in a

trial is often unclear. Here, we define several possible target trials for postexposure vaccination

and show how, under certain conditions, they can be emulated using observational data. We

emphasize the importance of the incubation period and the timing of vaccination in trial de-

sign and emulation. As an example, we specify a protocol for postexposure vaccination against

mpox and provide a step-by-step description of how to emulate it using data from a healthcare

database or contact tracing program. We further illustrate some of the benefits of the target

trial approach through simulation.
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1 Introduction

For a millenium or more humans have been inoculating healthy, unexposed individuals to prevent

the onset of future disease [1]. Today, this remains the dominant paradigm for the development and

mass administration of vaccines. By contrast, using vaccines to prevent clinical disease among those

already exposed to a pathogen, i.e. postexposure vaccination, remains an under-utilized strategy

despite its potential to curb outbreaks and prevent the worst sequelae of disease [2]. This is due,

in part, to the difficulty of running postexposure trials to establish vaccine efficacy, particularly

during a larger outbreak. In these trials investigators must identify, randomize, and vaccinate

participants all in the time window between exposure and symptom onset. Depending on the

pathogen, this window can be incredibly compressed —on the order of a few days to a week.

Furthermore, vaccine effectiveness may be highly dependent upon the the time since exposure.

Thus, even when trials are possible it can be difficult to compare effectiveness estimates across

trials with different distributions of vaccination times or to infer an optimal postexposure window

in which to vaccinate. Moreover, when there is other evidence to support effectiveness, for instance

from pre-exposure trials or immunogenecity studies, and when other treatments are unavailable, a

randomized postexposure trial may be considered unethical.

In absence of trial data, an alternative approach is to use observational data to emulate the

trial desired [3, 4] (called a ”target trial”), for instance by using electronic healthcare records from

a large healthcare system or other passive surveillance systems, or by using public health contact

tracing databases to define cohorts of individuals exposed to infection and comparing outcomes

among those who do and do not receive post-exposure vaccination. In this paper, we define several

target trials for assessing the effectiveness of postexposure vaccination depending on the causal

quantity of interest. We also discuss the conditions under which such a trial can be emulated from

observational data. We show how adopting a target trial framework can help clarify the causal

question and resolve common biases in the analysis of postexposure efficacy using observational

data through alignment of time zero, eligibility, and assignment as well as unambiguous definition

of the treatment strategies being contrasted. We provide an example protocol for emulating a trial

of a postexposure vaccine for mpox and illustrate some of the benefits of this approach through

simulation.
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2 Design challenges: incubation period and timing of vaccination

Both the design of postexposure trials and attempts to emulate them using observational data are

complicated by the interaction between the incubation period of the pathogen and the postexposure

timing of vaccination. To provide benefit postexposure, a vaccine must stimulate an immune re-

sponse faster, greater, or more specific than that provoked by natural infection alone. For example,

in the case of smallpox, a vaccine administered within 72 hours after exposure to variola virus (the

causative virus of smallpox) induces an antibody response 4 to 8 days earlier than the variola virus

itself, most likely because the vaccine response bypasses the initial stages of natural infection in the

respiratory tract, and thereby can prevent the onset of clinical disease [5, 6]. However, postexposure

delays in receiving the vaccine, within certain limits, are often outside the control of investigators,

as participants must first be notified of their exposure and present at a healthcare clinic prior to

receiving a vaccine.

The resulting overlap between the timing of vaccination and the timing of symptom onset

creates several design challenges (see Figure 1). First, the effectiveness of a vaccine may vary

substantially depending on how quickly participants can be vaccinated postexposure (top panel,

Figure 1). In a randomized trial, a trialist must strike a balance between specifying a realistic

protocol for vaccination timing that takes into account existing exposure identification, enrollment,

and care coordination systems with what is known about the biology governing the clinical course of

infection and the vaccine’s ability to pre-empt it. This can be difficult when the incubation period or

mechanism of action of a postexposure vaccine are not well established. Under these circumstances,

longer delays may be permitted with a secondary goal to infer the optimal postexposure window

to administer the vaccine. In an observational setting, by contrast, the protocol for vaccine timing

is often less clear or may even be absent, in which case the vaccination strategy being evaluated

may be ambiguous.

Second, when vaccination is delayed there is also the possibility that some participants may

have already developed symptoms prior to enrollment or vaccination, particularly when there is

substantial overlap between referral or administration times and the incubation period. In order

for a vaccine to fully prevent symptom onset, logically it should be administered prior to the devel-

opment of symptoms. However, when those who have symptoms at enrollment are excluded, this
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has implications for the population to which estimates can be generalized, as the design implicitly

conditions on those who survive symptom free. When they are included, they may attenuate esti-

mates of vaccine effectiveness relative to an ideally conducted trial as presumably vaccination post

symptom onset is ineffective at preventing illness.

Finally, a challenge specific to observational studies is the lack of an unambiguous assignment to

a treatment strategy at time zero [7]. In a trial, participants are explicitly assigned to either vaccine

or no vaccine (or placebo) at the time of enrollment and prospectively followed. By contrast, in

an observational study, exposure is often defined retrospectively by what participants do over the

follow up period (middle panel, Figure 1). Depending on how this is handled, the ambiguity in

assignment coupled with delay in receiving vaccines creates the possibility of bias due to immortal

time among the vaccinated as they have to survive symptom-free long enough to become vaccinated

[8], whereas the unvaccinated may be defined independently of their survival time. In this scenario,

the vaccinated are more likely to be lower risk contacts or those who may have failed to develop

symptoms in the absence of vaccination anyway.

In a trial, the challenges posed by overlapping delays in vaccination and symptom onset can

be addressed through careful design and a clear protocol, for instance by specifying a window in

which people can be vaccinated, by stratifying on enrollment date, and by clear eligibility criteria.

In an observational study, these fixes are often unavailable to investigators at the design stage.

However, we argue that, many challenges can still be resolved by specifying the target trial that

one would like to perform, but can’t, and attempting to emulate it using the observational data

(bottom panel, Figure 1).

3 Specifying the target trial

3.1 Set up and notation

We consider the emulation of a target trial designed to estimate the effect of postexposure vaccine

(PEV) therapy on the ∆-day risk of clinical disease. The time index t denotes days since exposure

to a case. We have available observational data O = (L0, A0, D1 . . . , L∆−1, A∆−1, D∆, X, T ) on

participants, where Lt includes set of time-varying covariates and L0 includes all covariates prior
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Figure 1: Illustration of the challenges of evaluating postexposure vaccination using observational
data. The top panel shows the distribution of symptom onset times among cases as well as vaccine
efficacy as a function of postexposure day of administration for a hypothetical pathogen. The middle
panel shows an observational study with 5 vaccinated (V) and 5 unvaccinated (C) individuals in
which there are delays in receiving vaccines. Dots show the time exposure status is first defined
and Xs show symptom onset. The dashed line represents possible immortal time among vaccinated
who have to survive symptom free long enough to be vaccinated. The bottom panel shows a nested
sequence of daily trials among the same individuals in which there is no immortal time bias because
the timing of enrollment and exposure assignment coincides in each trial.

4

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2023. ; https://doi.org/10.1101/2023.05.03.23289471doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.03.23289471
http://creativecommons.org/licenses/by/4.0/


to time zero (i.e. pre-exposure). We define the following variables:

X : day of vaccine administration, X = min(X∗,∆) where X∗ ∈ N+

T : day of clinical disease onset, T = min(T ∗,∆) where T ∗ ∈ N+

At : indicator of vaccination status on day t, At ∈ {0, 1}

Dt : indicator of clinical disease on day t, Dt ∈ {0, 1}

Note that under these definitions, when X < x then Ax = 1 and T < ∆ implies D∆ = 1. We

bin both vaccination time and symptom onset time into days since the initial exposure and censor

at ∆ days postexposure1. The trial outcome Y is the development of clinical disease within ∆

days postexposure, i.e. Y = D∆. For clarity, we make a few simplifying assumptions but discuss

relaxing some of them in the appendix. First, we assume that the vaccine itself does not cause

mild symptoms that can be mistaken for clinical disease. Second, we assume that the timing of

the primary exposure event is measured without error and unambiguously defined. Third, we

assume the goal of postexposure vaccination is the prevention of clinical disease in those exposed

rather than reduction in disease severity or risk of further transmission, although in both cases the

conceptualization of the target trial may be similar.

3.2 Possible trial designs

Under the theory that the earlier a vaccine is administered postexposure the better, the ideal causal

quantity of interest, in terms of maximizing efficacy, is likely

V E(0) = 1− Pr[Y x=0 = 1]

Pr[Y x>∆ = 1]

where Y x=0 is a counterfactual indicator of symptoms within ∆ days under immediate postexposure

vaccination on day 0 and Y x>∆ is the counterfactual outcome under no vaccination over follow

1i.e. those unvaccinated during follow up will have X = ∆ and those without clinical disease will have T = ∆
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up2. In a randomized controlled trial with perfect adherence, this quantity could be estimated by

recruiting eligible participants immediately postexposure, randomizing them to receive vaccine or

no vaccine, and comparing ∆-day incidence of symptoms in the two groups (We discuss estimating

vaccine efficacy based on the hazard ratio rather than cumulative incidence in section A.6 of the

Appendix).

Alternatively, if the goal was to estimate vaccine effectiveness by day, we could imagine a design

in which participants are still enrolled immediately postexposure and randomized to vaccine or no

vaccine, but then also randomly assigned a day that they are to receive a vaccine. In this case our

casual contrast of interest is the t-specific vaccine efficacy

V E(t) = 1− Pr[Y x=t = 1]

Pr[Y x>∆ = 1]
.

Such a design permits the estimation of the optimal day postexposure to administer a vaccine as

well as the window beyond which population efficacy falls below a minimum threshold. However,

several challenges prevent either of the trials mentioned above from being conducted in practice

data. Chief amongst these is the fact that the timing of enrollment and vaccine administration is

rarely within the control of the investigator due to delays in identifying those exposed, referring

them to care, and accessing a vaccine. Even if either were feasible in a controlled environment,

they would likely also be unreflective of how vaccines are actually administered in clinical practice

and therefore unhelpful in informing decisions about whether to vaccinate under delays.

When the timing of vaccination is not under the strict control of the investigator, a possible

design is to specify a fixed time window in which participants are eligible to be vaccinated and

randomize them on the postexposure day they present. Given that length of delay is likely a strong

determinant of effectiveness, we could improve efficiency by blocking eligible participants on the

postexposure day they present and performing permuted assignment to vaccine or no vaccine within

enrollment-day blocks. We could then target the t-specific vaccine efficacy among those presenting

2Using our definition of time-varying treatment At we could also write this as

V E = 1− Pr[Y a∆=1 = 1]

Pr[Y a∆=0 = 1]
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symptom-free, i.e.

V ET>t(t) = 1− Pr[Y x=t = 1 | X ≥ t, T > t]

Pr[Y x>∆ = 1 | X ≥ t, T > t]

by comparing vaccine and no vaccine groups within enrollment strata. Note that, in general, the t-

specific vaccine efficacies, V ET>t(t), targeted in this trial will not be the same as the V E(t) defined

previously as they are conditional on presentation time and being symptom-free at enrollment.

Because participants are allowed to present naturally rather than being assigned a time at day zero,

those that present earlier may be systematically different than those presenting later with respect

to their risk of developing clinical disease. Indeed, the efficacies V E(t) and V ET>t(t) will only

coincide when there is no effect modification by enrollment day or symptom onset time. Typically,

given that V E ≡ 0 when vaccine is administered after symptom onset, the latter condition will

not be met, as V E(t) will include individuals randomized to get vaccinated on a day that turns

out to be after their symptom onset, while V ET>t does not. Therefore, these two measures of VE

answer fundamentally different questions. The first, V E(t), answers the question: at the time of

exposure how effective would a vaccine be after a t-day delay, accounting for the fact that this may

be too late for some individuals, those who have already developed symptoms by t? The second,

V ET>t(t), answers the question: given that I am presenting symptom-free on day t, how effective

would receiving a vaccine now be versus not?

Another possibility is to allow participants a grace period [9], i.e. a fixed time window after time

zero in which vaccination can be initiated. For example, in a postexposure trial of a varicella vaccine

[10], the investigators stipulated that sibling contacts of a varicella case were “were identified by

their primary pediatrician and referred to our department within 72 hours of the appearance of

the first skin lesion” in the index case. We discuss designs that allow for a grace period further in

section A.3 of the Appendix.

3.3 Example protocol for a target trial of a postexposure Mpox vaccine

To illustrate the target trial approach, we outline the protocol for a target trial to evaluate the

effectiveness of the JYNNEOS vaccine as postexposure prophylaxis against development of symp-

tomatic mpox infection. We assume the timing of vaccination is not strictly controlled but rather

participants are allowed to present within some pre-specified window and therefore emulate a target
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trial with a fixed enrollment period in which participants are randomized on the postexposure day

they present.

The human mpox virus (MPXV) is an orthopox virus and related to the virus that causes

smallpox. In April 2022, an outbreak of mpox occurred in several countries prompting the World

Health Organization to declare a public health emergency of international concern [11]. A two-

dose live replicating vaccine for smallpox and mpox (MVA-BN), licensed under the trade name

JYNNEOSTM, was approved by the Food and Drug Administration (FDA) in 2019. In August

2022, the FDA authorized a low dose alternative administered intradermally under Emergency Use

Authorization [12]. During the outbreak, the vaccine was offered as postexposure prophylaxis to

contacts of confirmed mpox cases. In guidance documents, the U.S. Centers for Disease Control and

Prevention (CDC) recommended that unvaccinated people exposed to the mpox virus be vaccinated

with a first vaccine dose against mpox within 4 days of exposure for the greatest likelihood of

preventing disease [13], though also suggested there may still be benefit to vaccination within 14

days of exposure [14, 15]. Licensure of JYNNEOS was supported by animal studies [6, 16–18]

and immunogenicity studies [19] but to date no trial data on the postexposure effectiveness of the

vaccine against mpox exists. Therefore, an emulation of a postexposure trial using observational

data may provide useful evidence for setting policy.

Below we provide a brief description of each component of the protocol for a target trial designed

to estimate V ET>t(Table 1).

Eligibility

Individuals over 18 years of age who had an intermediate or high risk exposure to a person with

laboratory confirmed mpox case, no history of JYNNEOS vaccination, no positive PCR for mpox

or other orthopox virus at enrollment, and who were referred within δ days of exposure are eligible

for this study. We use the CDC definitions of high and intermediate risk exposures [20] for mpox

(Table 1).

Treatment strategies

For the fixed enrollment period design: 1) a single JYNNEOS vaccination dose (either the intra-

dermal or subcutaneous regimen) at enrollment and 2) no mpox vaccination dose over the 21-day

8
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follow up period.

Assignment procedures

Individuals are randomly assigned to one strategy within permuted assignment blocks defined by

day of presentation at the clinic and possibly other covariates of interest. Individuals are aware of

the strategy to which they have been designed (unblinded).

Outcomes

The primary outcome is PCR-confirmed mpox or orthopox infection within 21 days of exposure.

Secondary outcomes could include disease severity or safety endpoints.

Follow-up period

Follow-up begins at date of exposure to the index case and ends at either the occurrence of the

outcome, 21 days after exposure, or loss to follow-up, whichever occurs first.

Causal contrasts

Intent-to-treat and per protocol effects [21] of JYNNEOS vaccination.

Statistical analysis

In the intent-to-treat analysis, for each outcome, we compare the cumulative incidences in each

group defined by assignment and calculate the vaccine efficacy as V E = 1 − Pr[Y=1|Z=1]
Pr[Y=1|Z=0] where Z

is an indicator of random assignment to strategy (1) or (2). In the stratified design, we can either

calculate intent-to-treat effects for the t-specific vaccine efficacies separately or, under additional

assumptions, pool together into a δ-day average. Cumulative incidence curves can be estimated in

each arm via the Kaplan-Meier estimator or a pooled logistic model. We can adjust for selection

bias due to loss of follow-up under the assumption that the measured variables (in postexposure

trials often only baseline variables measured at time zero) include approximately all risk factors

that predict loss to follow-up.

The per-protocol analysis is the same as the intent-to-treat analysis except that individuals are

censored if they deviate from the protocol, e.g., by declining the vaccine if assigned to vaccine or
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obtaining it outside of the trial if assigned to no vaccine. We can adjust for selection bias due

to protocol deviation under the assumption that the measured variables include approximately

all risk factors that predict adherence. To adjust for selection bias due to loss to follow-up or

protocol deviation, we can use inverse probability weighting, standardization via the g-formula, or

g-estimation. When only baseline variables are measured, we can use methods like matching and

outcome regression. We can carry out subgroup analyses by postexposure day at enrollment and

by other characteristics of interest. 95% confidence intervals may be estimated via bootstrapping.

4 Emulating postexposure trials

Once the target trial is specified, we can attempt to emulate it using observational data. Emu-

lating a postexposure vaccination trial will generally require linking high quality case and contact

surveillance with clinical databases or registries recording vaccinations as well as intensive post

vaccination symptom monitoring. In this section, we outline how to emulate the main components

of the target trial as well as common challenges. We again use the JYNNEOS vaccine example to

help ground our discussion. However, additional details on the specific data manipulation steps to

emulate all designs discussed are available in Appendix section A.4.

Eligibility

Ideally, eligibility criteria in the emulation should match those in the target trial. In particular, this

means we cannot include restrictions based on post-baseline events (e.g. “exclude those vaccinated

more than 15 days after exposure or those vaccinated after symptoms”) as these may introduce bias

and would be unavailable at baseline in the target trial. Further challenges may arise due to the

absence of direct contact with participants at enrollment. Rather we often must rely on routinely

collected data which may not be fit-for-purpose in terms of accurately determining eligibility. For

instance, we may have to assume that those without a previous vaccination in the electronic medical

records database did not receive a vaccine from a different healthcare system.

More broadly, when emulating postexposure trials, determining eligibility requires knowing who

is actually at risk of infection. This means proper classification of those exposed to an index case

is needed as well as an accurate history of vaccination or previous infection and screening for

10
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Table 1: Example protocol for the specification and emulation of a target trial of postexposure
vaccination for prevention of mpox.

Protocol
component

Target trial specification Emulation

Eligibility Higha or intermediateb risk exposure to a
PCR-confirmed mpox case within the first 14
days postexposure AND negative PCR for mpox
or orthopox virus at enrollment AND no
symptoms AND no prior history of JYNNEOS
vaccination

same

Treatment
strategies

(1) JYNNEOS vaccination immediately upon
enrollment
(2) no JYNNEOS vaccination during 21 days
postexposure

same

Treatment
assignment

non-blinded 1:1 random assignment to either (1)
or (2) at enrollment

same but randomization is
emulated by conditioning on
covariates

Outcomes 21-day cumulative incidence of disease defined as
symptom onset and PCR-confirmed mpox or
orthopox

same

Follow up Start at exposure date and follow until clinical
disease onset, loss to follow up, or 21 days have
elapsed, whichever is first

same

Causal contrast Intention to treat (ITT)
Per protocol

observational analog of per
protocol effect

Statistical
analysis

ITT: compare cumulative incidence of clinical
disease under each strategy, adjusting for loss to
follow up and prognostic factors to increase
efficiency

Per protocol: Use IPW/g-formula/ g-estimation
to account for non-adherence.

same as per protocol

a High risk: direct mucosal or broken skin contact with lesions or bodily fluids OR any sexual or intimate
mucosal contact OR indirect mucosal or broken skin contact with lesions or bodily fluids via linens,
clothing, or other materials.

b Intermediate risk: unmasked exposure to respiratory droplets (within 6 ft for >3 hours) OR direct contact
between intact skin and lesions or bodily fluids OR indirect contact between intact skin and lesions or
bodily fluids via linens, clothing, or other materials OR indirect contact between exposed individual’s
clothing with linens or bodily fluids.
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symptoms or PCR-positivity at enrollment. Infection history may be spotty if it mostly consists

of prior recorded infections unless the pathogen is novel or invades a mostly naive population.

Vaccination history may come from medical records or vaccination registries. Ideally, contacts of

the index case would all be offered PCR testing upon notification of exposure and then enrolled

in active symptom tracking, such as through daily phone calls or text messages, as this would

prevent differential eligibility assessments of vaccinated and unvaccinated participants. However,

in practice, investigators may have to assume that the lack of a positive PCR test and/or no passive

symptom report constitutes no infection at time eligibility is assessed in the emulation.

Treatment strategies

The vaccination strategies to be emulated should also match those in the target trial. As partici-

pants in observational data sets will almost always be aware of their treatment strategy, the trial

emulated will typically be a pragmatic (unblinded) trial. To emulate our target trial, we identify

individuals in the database who meet all of the eligibility criteria. We then assign them to the trial

strategy or strategies that are consistent with their baseline data.

To properly “assign” participants to strategies in the emulation, accurate data on the postex-

posure timing of vaccination is necessary. This will also allow us to censor them when they deviate

from their assigned protocol. In order to identify the unvaccinated, we must inevitably assume that

those without vaccinations recorded in a registry or health records truly did not receive a vaccine

during follow up. This may be a problem if participants can receive care from sources not covered

by study data.

Another challenge is that to be able to properly define regimes, the exposure date we are count-

ing from should be accurate and unambiguously defined. The accuracy of exposure information

may depend on the salience of the event and the ability of index cases or their contacts to recall

the sequence of interactions. An unambiguous definition requires a detailed description of what

constitutes possibly infectious contact preferably informed by the underlying biology. In our mpox

example, this description comes from guidance published by the CDC, but may not be as clear for

other pathogens. Another source of ambiguity may arise when participants are exposed multiple

times or over an extended duration, in which case determining which time to set as the definitive

exposure date may be less clear. As a sensitivity analysis we might consider multiple alternative
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definitions.

Assignment procedures

In the emulation, allocation to treatment strategies is assumed to be random conditional on a

sufficient set of covariates to control confounding. For postexposure vaccination against mpox this

may include time since exposure, risk level of contact with index case, calendar week, geographic

region, age, sex, gender, coexisting conditions affecting immune system (e.g. HIV or STIs, obesity,

cancer, immune suppressing therapies), and proxies for healthcare utilization (e.g. flu vaccination,

outpatient visits, HIV-PrEP).

In practice, our ability to correctly estimate effects will depend on the conditional randomization

assumption, at least approximately, holding (equivalent to assuming that there is little residual

confounding). If those who access postexposure vaccines are those with higher risk exposures to

mpox or with weaker immune systems (along some dimension not captured by the covariates) then

we will likely underestimate the true effectiveness of the vaccine. On the other hand, if those who

access postexposure vaccines are healthier and more likely to engage in healthy behaviors more

broadly (again along dimensions not captured by the covariates), then we will likely overestimate

the true effectiveness of the vaccine. The availability of rich covariate information on participants

as well as deep subject matter knowledge about the determinants of both who gets vaccinated and

the clinical course of disease are essential.

While direct verification of this assumption is not possible, there are several design and analytic

strategies we could use to limit or quantify the bias that would result from any violations. One

strategy is to identify possible negative outcome controls [22, 23], that is outcomes where confound-

ing structure is expected to be similar but are plausibly unaffected by treatment. For instance, in

pre-exposure vaccination against SARS-CoV-2 it is well-established that vaccination is ineffective

against infection in the first 14 days after the first dose, so any difference between vaccinated and

unvaccinated during this period may indicate the presence of unmeasured confounding. Another

strategy is to conduct a sensitivity analysis to quantify the potential bias by evaluating change in

estimated effect across a plausible range of parameter values dictating the strength of unmeasured

confounding [24].
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Outcome

Outcome definitions and measurements should be as similar to those in the hypothetical target trial

as possible. In a postexposure vaccine trial, there would likely be a regular system for monitoring

of symptoms over the follow up period. In an observational emulation, this data may be passively

collected, leaving the opportunity for potential outcome missclassification, particularly when there

is a mild form of the disease which may go unnoticed or unreported or when participants may

seek care from providers not covered by study data sources. This may be less of a concern when

cases are reportable or the pathogen is novel. Existing symptom monitoring systems may be in

place as part of contact tracing and testing systems in which case they can be leveraged. Ideally,

ascertainment of symptoms would be blind to an individual’s vaccination status. If those who are

vaccinated are better surveilled or use passive systems more frequently this could introduce bias.

Causal contrast

In theory the contrasts will be the same as in the target trial, although in some instances a corollary

of the intention-to-treat effect may not be estimable from the observational data. Here we focus

on the per-protocol analysis of V ET>t.

Statistical analysis

Compared to the analyses in the target trial, the analyses in the emulation are complicated by

two factors. First, randomization is assumed to only hold conditional on covariates. Therefore our

analysis must include an appropriate method of adjustment such as outcome regression, standard-

ization, matching, inverse-probability weighting, or a combination thereof.

Second, unlike in a trial, in an emulation the assigned strategy at baseline is not known, rather

it must be inferred from the observed data. In particular, in a postexposure trial emulation we

do not have a particular date that a participant is assigned to vaccine or no vaccine. To avoid

immortal time bias, we need to choose a start of follow up in the emulation in a way that ensures

that the distribution of time since exposure is the same in both groups [25]. In the stratified design,

this can be accomplished via emulating nested daily sequential trials: starting from exposure date

to index case, each day we identify participants who are eligible to participate in a trial (e.g. no
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prior vaccination or mpox infection) and assign those receiving a vaccine on that day to the vaccine

strategy and those who do not receive a vaccine on that day to the no vaccine strategy. In this

setup, unvaccinated participants will be eligible to serve as controls in multiple trials until they

receive a vaccine or develop symptoms. To estimate per protocol effects we censor participants

when their data deviates from their “assigned” regime and then adjust for possible time-varying

selection bias using any g-method such as inverse-probability of censoring weights. Additionally,

because we are using the same participant in multiple nested trials our observations are no longer

independent. Therefore appropriate adjustment to our standard errors is necessary to account for

possible correlation across observations. Adjustment can be made either by using a cluster-robust

variance estimator or the bootstrap.

5 Simulation

To demonstrate the benefits of the target trial approach, we simulated data from hypothetical

observational study under a known data generation process in which there is an overlap between

vaccination timing and the timing of symptom onset. We used this setup to compare explicit

emulation of a target trial with a few common estimation strategies drawn from the literature.

We simulated postexposure vaccination times by drawing X∗ from a Poisson distribution with

a mean of 5 days and then drawing an “assignment” indicator Z from a Bernoulli distribution with

probability 0.5. This mimics a trial in which vaccination timing is not controlled by investigators,

but participants are randomized on the day they present. In the observational study, however we

only observe the vaccination times among the vaccinated, i.e. X = ZX∗. We simulated symptom

onset over the 21 days of follow up based on the discrete time hazard model

Pr[Dk = 1 | Dk−1 = 0, X] = expit{α0,k + log(1− V Eλ(X)) · I(X < k)}

for k in {0, . . . , 21} where Y = D21 and the baseline hazard α0,k was defined such that there is a

50% probability of symptoms given exposure among unvaccinated and onset times among cases had

a Log-Normal distribution with parameters chosen based on previous estimates of the incubation

period for mpox [26]. We assumed vaccination reduces probability of symptoms but does not affect
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Figure 2: Distribution of simulated vaccination times (X∗) among vaccinated and symptom onset
times (T ∗) among cases when V E = 0 over the 21 days of follow up showing the degree of overlap.

onset timing and only works if administered prior to onset. For those with simulated vaccination

times that occur after symptom onset we assumed 25% still receive the vaccine, while vaccination

time was censored for the remaining. We generated data under three scenarios for vaccine efficacy,

one under the null case that vaccination is completely ineffective, another in which vaccination

reduces hazard of symptom onset by a constant of 40% (corresponding to 21-day VE of 31.6%

based on cumulative incidence), and finally a more realistic scenario in which efficacy is a function

of postexposure timing V Eλ(x) = 0.8/[1 + exp{0.75(x − 4)}]. The full data generation process

and further details about the simulation setup are provided in Appendix A.9. Figure 2 shows the

overlap in the distribution of vaccination times and disease onset times when V E = 0. Note that

under this process, there is no structural source of confounding, i.e. vaccination status and timing

is random with respect to symptom onset. Rather bias comes from the true “assignment” being

unknown to the investigator.

In each simulation, we estimate vaccine efficacy using three different strategies:

1. naive, leave - a simple comparison of the “ever vaccinated” and “never vaccinated” using the

relative risk regression model Pr[Y = 1 | X] = exp{β0 + β1I(X < 21)} and vaccine efficacy is
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estimated as V̂ E = 1− exp(β̂1).

2. naive, move - those who receive vaccine after developing symptoms are re-classified as “unvac-

cinated”, i.e. we use the relative risk regression model Pr[Y = 1 | X] = exp{β0+β1I(X < T )}

where I(X < T ) implies only those who receive vaccine prior to symptom onset are “vacci-

nated” and vaccine efficacy is estimated as V̂ E = 1− exp(β̂1) as before.

3. target trial - we emulate a sequence of nested daily trials by taking those who are symptom free

and unvaccinated prior to start and compare those are vaccinated on that day to those who are

not. In each trial, we censor the unvaccinated when they become vaccinated and use inverse-

probability of censoring weights to account for informative censoring. These nested trials

are combined and vaccine effectiveness is estimated using standardized cumulative incidence

curves from a pooled logistic regression and standard errors are estimated using cluster-robust

variance estimator.

The first two are strategies that we have seen used in observational studies of post-exposure vacci-

nation and the last is the one proposed in this paper.

We drew datasets of size 1000, estimated the V E under each estimation strategy, and repeated

the process 1000 times to calculate the bias and efficiency. In Figure 3 we compare estimates

to the truth across the first two scenarios. Under the null, the naive approaches are upwardly

biased due to immortal time bias (i.e. by definition vaccinated have to survive long enough to be

vaccinated while unvaccinated are at risk at all time points), while the target trial approaches yield

valid estimates. This persists in scenario 2 where V E = 31.6%, although the relative bias of the

first approach is somewhat offset by the fact that those vaccinated after developing symptoms are

included with vaccinated. In scenario 3, where vaccine efficacy varies with postexposure timing, the

naive approaches still produce biased estimates, with larger bias for greater postexposure delays.

The target trial approach yields unbiased estimates of vaccine effectiveness at all time points (Figure

A4).

Another common approach to account for immortal time is to split follow up at the time of

vaccination among the vaccinated and use a time-varying specification of the Cox proportional

hazards model to estimate V E. In Figure A5 in the appendix, we show this approach also yields

unbiased estimates of postexposure vaccine efficacy when evaluated using one minus the hazard ratio

17

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2023. ; https://doi.org/10.1101/2023.05.03.23289471doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.03.23289471
http://creativecommons.org/licenses/by/4.0/


Scenario 1: VE = 0% Scenario 2: VE = 31.6%

naive,
leave

naive,
move

target
trial

naive,
leave

naive,
move

target
trial

−20%

0%

20%

40%

60%

E
st

im
at

ed
 v

ac
ci

ne
 e

ffi
ca

cy

Figure 3: Simulated V E estimates compared to the truth for the three estimation strategies de-
scribed in section 5. Based on 1000 monte carlo simulations. Dashed line shows true value in each
scenario.

rather than cumulative incidence (the latter could, in theory at least, be obtained by combining

with a suitable estimator of the baseline hazard, but this is uncommon). However, in practice,

this method imposes restrictions on appropriate adjustment for time-varying confounding that is

almost certainly present in most real world applications.

Finally, we also evaluated how performance varies with the degree of overlap between vaccination

and symptom onset. Specifically, we varied the mean of the log-normal distribution used to generate

the symptom onset times, with larger means corresponding to later symptom onset and thus less

overlap. In Figure A6, we show that the bias of the naive approaches increases as the mean onset

time gets shorter while both the target trial and time-varying Cox approaches remain unbiased.

This suggests that the target trial approach may be particularly useful in settings with high overlap

between vaccination and symptom onset or those in which the majority of cases occur prior to

vaccine being administered.
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6 Discussion

Accurate assessments of postexposure efficacy of vaccines against the onset of disease could be useful

for curbing the worst sequelae of many pathogens, but trials are often infeasible due to logistical,

regulatory, or financial constraints. Here, we specified target trials for postexposure vaccination and

describe how to emulate them using observational data. Using the example of mpox vaccines, we

discussed some of the unique challenges of emulating postexposure vaccination trials, including the

central role played by the distribution of vaccination times and the incubation period. Throughout

we emphasize the clarifying role of the target trial framework and conclude with simulations showing

how emulating the trial can help avoid several common biases in observational analyses.

Previous studies have emulated trials of pre-exposure vaccines, particularly during the COVID-

19 pandemic [27–30]. These studies filled gaps in the literature by emulating trials which were not

feasible to implement in practice such as head-to-head comparisons of vaccines [28], effectiveness

against new variants [29], effectiveness of boosters [30, 31], and effectiveness in important subgroups

such as children [29] and the immunocompromised. Observational emulations of post-exposure

vaccines could perform a similar function.

We have mostly considered postexposure trials where the goal of vaccination is to prevent the

onset of clinical disease. However, other goals such as reducing severity or transmission are also

possible. To emulate trials in which the goal is to reduce severity, one could simply replace onset

with an alternative outcome such as hospitalization or death in the trials outlined above.

Beyond estimating postexposure efficacy, a secondary goal of a postexposure trial could be to

determine the maximum vaccination delay before efficacy falls below a certain cost-benefit thresh-

old. This quantity is important both for policymakers communicating with high risk groups and the

broader public about what to do in the event of an exposure as well as to help practitioners deter-

mine whether vaccination is still indicated upon presentation. In section A.7 of the Appendix, we

develop a formal counterfactual framework for the maximum delay and provide additional details

on how to estimate it using data from an observational emulation.

As shown in our simulation, some issues related to immortal time bias could be resolved by

alternative estimation strategies, such as using a time-dependent Cox model [8]. However, emulating

a specific target trial helps clarify other ambiguities, provides a standard against which we can
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benchmark, and helps us understand when adjustment for time-varying confounding is necessary.
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A Appendix

A.1 Day zero randomization designs

In the main text, we discussed two trial designs starting on postexposure day zero. In the first,

participants are enrolled on postexposure day zero, randomized, and immediately administered

either vaccine or no vaccine with the goal of estimating the ∆-day vaccine efficacy in the ideal case

in which there is no delay between exposure and vaccination. Under perfect adherence this trial

targets the estimand

V E(0) = 1− Pr[Y x=0 = 1]

Pr[Y x>∆ = 1]

which is likely an upper bound on vaccine efficacy under more plausible scenarios of delay.

In the second design, participants are still enrolled and randomized on postexposure day zero,

but they are then further randomly assigned a postexposure date to receive the vaccine. Under

perfect adherence, the casual contrast of interest is now the t-specific vaccine efficacy

V E(t) = 1− Pr[Y x=t = 1]

Pr[Y x>∆ = 1]
.

which could be used, for instance, to determine the time window public health officials and policy-

makers should advise individuals at risk of exposure to seek vaccination within if they are exposed

(see Section A.7).

A.2 Fixed enrollment period designs

Also mentioned in the main text, when the timing of vaccination is not under the strict control of the

investigator, a possible design is to specify a fixed time window in which participants are eligible to

be vaccinated and randomize them on the postexposure day they present. Under perfect adherence,

this design could then target the t-specific vaccine efficacy among those presenting symptom-free,

i.e.

V ET>t(t) = 1− Pr[Y x=t = 1 | X ≥ t, T > t]

Pr[Y x>∆ = 1 | X ≥ t, T > t]

by comparing vaccine and no vaccine groups within enrollment strata. Note that, in general, the t-

specific vaccine efficacies, V ET>t(t), targeted in this trial will not be the same as the V E(t) defined
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previously as they are conditional on presentation time and being symptom-free at enrollment. More

often, in practice, the t-specific estimates V ET>t(t) are pooled together into a weighted average

efficacy over the enrollment period. However, we stress caution in interpreting pooled estimates.

Because participants are allowed to present naturally rather than being assigned a time at day zero,

those that present earlier may be systematically different than those presenting later with respect to

their risk of developing clinical disease. Therefore the pooled estimates are among a subpopulation

who survive symptom-free and may not generalize to other populations with different propensities

for delay.

A.3 Adding a grace period

An alternative to the day zero design which also allows for delays in vaccination but doesn’t require

consideration of each delay regime is to specify a grace period, i.e. a fixed time window after

randomization in which vaccination can be initiated. For example, in a postexposure trial of a

varicella vaccine, the investigators stipulated that sibling contacts of varicella case were “were

identified by their primary pediatrician and referred to our department within 72 hours of the

appearance of the first skin lesion” in the index case. Under this design, the causal target would

be the average vaccine effectiveness during the δ days of the grace period, i.e.

V Eδ = 1− Pr[Y g(X,δ) = 1]

Pr[Y x>∆ = 1]

where

g(X, δ) : get vaccinated within δ days of exposure under the expected vaccine

administration pattern f∗(X | Lt, X > t, T > t)

and where, for instance, in the varicella trial δ = 3. Although in theory randomization could

occur on any postexposure day followed by δ-day grace period, in practice grace periods starting

from randomization on day zero probably make the most sense. When effectiveness varies by

the time since exposure, as it most certainly does for most postexposure vaccines, a design with

as grace design estimates the average effectiveness under the “natural”/observed time course of
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vaccination, f∗(X | Lt, X > t, T > t) = f(X | Lt, X > t, T > t). This implies that two trials

identical in all respects except for the distribution of vaccinations over the grace period could

yield substantially different estimates. Therefore, a trialist pursuing this design has to strike a

balance when defining a grace period between ensuring the period is short enough that benefit is

immunologically possible and the trial is adequately powered, but also long enough that the regime

is clinically feasible under reasonable assumptions about how quickly patients are notified of their

exposure to a case and can access a vaccine in the real world. Properly conceived a grace period

design can provide evidence about average effectiveness of postexposure vaccination administered

within a certain window under real world conditions. As such it may be a more useful estimate

for population planning or modeling studies than those produced by the fixed enrollment period

design above. When there’s no effect modification by covariates, the average effectiveness is equal to

V E(t) standardized over the distribution of vaccine administration times during the grace period,

i.e.

V Eδ =

δ∑
t=1

V E(t)× f∗X(t | Lt, X > t, T > t).

A.4 Additional emulation details

Here, we demonstrate the data manipulation steps to emulate the three trial designs —day zero,

fixed enrollment period, and grace period— discussed above using observational data. These steps

are necessary for emulating the analysis that would have been conducted in the ideal trial. As in

all observational research, additional untestable assumptions, notably exchangeability, consistency,

and positivity, will also be required to ensure that the effect estimated from the observational data

is equivalent to that which would be estimated in a randomized trial (accounting for sampling

variability).

Two crucial differences between a randomized trial and an observational study are that 1) the

former has a well defined start of follow up, or time zero, from which study outcomes are assessed and

2) all participants are assigned a particular treatment strategy. By contrast observational studies

generally do not have a uniquely defined time zero and participants may have data consistent with

multiple treatment strategies. Therefore, when emulating a trial certain data manipulations are

often applied to the observational data to solve these issues.

When emulating a fixed enrollment period design, the problem is that participants in the obser-
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vational data often meet the eligibility criteria at multiple time points, that is there is no uniquely

defined time zero from which to start follow up. For instance, consider a postexposure vaccination

trial in which participants are eligible anytime in the first 5 days after exposure if they have no

previous vaccination history and no symptoms at presentation. In a real trial the participant would

be enrolled and randomized on a particular day and that will be their time zero. In the observa-

tional data, a participant may meet these criteria continuously, for instance between days 0 and 4.

The question is then when should their follow-up start? On day 0, 1, 2, 3, or 4? The choice has to

be applied equivalently to vaccinated and unvaccinated participants to avoid immortal time bias.

One possibility is to randomly choose a start time among the days they are eligible. However, a

more efficient choice is to use every eligible time by emulating a sequence of multiple nested target

trials each with a different start. A natural choice for postexposure vaccination for a pathogen

with a relatively short incubation period is to emulate a series of daily nested trials, i.e. on day

zero condition on those who meet the eligibility criteria and compare those who are vaccinated on

that day to those who are unvaccinated on that day, and then repeat on all days within the fixed

enrollment period (schematic Figure A1). Participants in the observational study can be enrolled

in trials starting on multiple days as long as they meet the eligibility criteria.

To demonstrate the required data manipulation steps, consider the six individuals shown in

Table A1 with vaccination and symptom onset times recorded during a hypothetical observational

study. To emulate a trial with a fixed five day enrollment period postexposure, we create one

copy of the dataset for each trial day. Then in each copy we apply the proper eligibility criteria

(e.g. individuals should be disease-free and not vaccinated on a previous day) and assign those

vaccinated on that trial day to be “vaccinated” and those who have not been vaccinated yet to

be “unvaccinated”. For example, individual 2 in Table A1 is vaccinated on on day 2 and doesn’t

develop symptoms, therefore in the emulation they will participate in 3 trials (i.e. those starting

on postexposure day 0, 1, and 2). In trials starting after postexposure day 2 they are no longer

eligible because they have already been vaccinated. In each trial, follow up time is adjusted to start

on the postexposure day of interest and end either at symptom onsent or at the maximum follow

up day which may be fixed from the index exposure day or be of fixed length from the trial day. In

intention-to-treat analyses, participants are “assigned” based on their baseline status in the nested

trial and followed throughout regardless of whether they later deviate. In per protocol analyses,
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Table A1: Enrollment of six hypothetical individuals in daily nested trials for 5-day vaccination
window based on observed data.

ID Vaccination
(1: yes, 0: no)

Day of
vaccination

Clinical disease
(1: yes, 0: no)

Day of
disease onset

No. of trials
enrolled

1 1 0 0 - 1 (0)
2 1 2 0 - 3 (0-2)
3 1 4 1 8 5 (0-4)
4 1 7 1 2 4 (0-3)
5 0 - 0 - 6 (0-5)
6 0 - 1 5 6 (0-5)

individuals in each nested trial are censored when they deviate from their baseline assignment in

that trial. For example, individual 3 in Table A1 is unvaccinated in trials starting on days 0 through

3, but in each of these trials is censored on day 4 in the per protocol analysis because they deviate

from their baseline assignment by becoming vaccinated.

Once we have completed the necessary data manipulation steps to emulate the nested sequence

of trials, analysis of both the intent-to-treat and per-protocol effects of postexposure vaccination

can be conducted as described in the main text. One approach would be to estimate the t-specific

V ET>t(t) separately in each nested trial. However, this assumes we observe sufficient numbers of

individuals receiving a vaccine on each day to obtain reliable estimates. In practice, we can increase

efficiency by pooling across trials and fitting a model such as

Pr[Dt+1 = 1 | Dt = 0, X, Z, Lt] = expit{ψ0λ(X + t) + ψ1Zf(X) + ψ2Lt} (A1)

where λ(X + t) is the unvaccinated odds of symptom onset, Z is an indicator of baseline “as-

signment” in the trial, X is the postexposure day that the trial starts, Lt is a vector of baseline

covariates sufficient to ensure exchangeability at baseline, t is follow up time counting from X,

and f(X) is a function of vaccination day. We can allow f(X) and λ(X + t) to be a member of a

class of flexible such as restricted cubic splines. The V̂ ET>t(t) curve can be estimated either from

the hazard ratios or from standardized cumulative incidence curves depending on effect measure of

interest. To estimate per protocol effects we censor participants when their data deviates from their

“assigned” regime and then adjust for possible time-varying selection bias using any g-method such

as inverse-probability of censoring weights. Additionally, because we are using the same participant
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in multiple nested trials our observations are no longer independent. Therefore appropriate adjust-

ment to our standard errors is necessary to account for possible correlation across observations.

Adjustment can be made either by using a cluster-robust variance estimator or the bootstrap.

When emulating a day zero trial in which participants are randomized to a particular delay,

the problem is instead that participants in the observational data will have data consistent with

multiple treatment regimes. Consider a trial where participants are randomized on day zero to

one of the following strategies: (1) receive vaccine on day zero, (2) receive vaccine on day one, (3)

receive vaccine on day two, (4) receive vaccine on day three, or (5) to receive no vaccine over the

follow up period (schematic Figure A2). In a real trial participants would be assigned to one of the

five regimes at the start. In the observational data, however, some individuals will get vaccinated

on day 0 and therefore only have data compatible with the first strategy, but others will not get

vaccinated on day zero and will have data compatible with multiple strategies at baseline. The

question is now which strategy should we assign them to? As in the sequential design, one option

is to pick a single strategy at random from the strategies their data is consistent with. However,

again the more efficient choice is to assign them to all possible strategies by creating exact copies

—often called clones— of each of these individuals in the dataset and assign each clone to a different

strategy.

To demonstrate the required data manipulation steps, let’s return to the six hypothetical in-

dividuals from Table A1, but now in Table A2 we will use their data to emulate a day zero trial

in which participants are randomized to strategies (1)-(5) in previous paragraph. Starting with

the first individual, they are vaccinated on day zero and therefore have data consistent only with

strategy (1), thus they are not cloned. The second individual, however, is not vaccinated until day

2 and therefore at time zero they have data consistent with any of the strategies (1)-(5), thus we

make five clones of the second individual by copying their data five times and assigning each obser-

vation to a different regime. We then follow each clone forward and censor them when they deviate

from their assigned regime. For instance, we know the second individual is vaccinated on day 2,

therefore on day 0 we censor the clone assigned to strategy (1) because they were not vaccinated

on that day. Likewise, on day 1 we censor the clone assigned to strategy (2) because they were

not vaccinated on that day either, then on day 2 we censor all the remaining clones except the one

assigned to strategy (3). Importantly, if the individual has symptoms before a clone is censored, as
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Table A2: Emulation of day zero trial with five vaccination delay strategies using data from six
hypothetical individuals.

ID Vaccination
(1: yes, 0: no)

Day of
vaccination

Clinical disease
(1: yes, 0: no)

Day of
disease onset

No. of regimes
followed

1 1 0 0 - 1 (1)
2 1 2 0 - 5 (1-5)
3 1 4 1 8 5 (1-5)
4 1 7 1 2 5 (1-5)
5 0 - 0 - 5 (1-5)
6 0 - 1 5 5 (1-5)

is the case for the strategy (3) and (4) clones for individual 4, then all clones will have symptoms

and therefore the case is assigned to all strategies. This multiple allocation of events prevents the

bias that could arise if events occurring during the delay period are systematically assigned to one

of the five strategies only.

To analyze the data from the emulated day zero trial, we could estimate the V E(t) separately

by comparing each delay strategy, e.g. (1)-(4), to the “never vaccinate” strategy (5). Once again,

however, we could increase efficiency by pooling across trials and fitting a model such as

Pr[Dt+1 = 1 | Dt = 0, Z, Lt] = expit{ψ0λ(t) + ψ1f(Z) + ψ2Lt} (A2)

where Z is now a discrete variable with levels for each delay regime (with 0 being the “never

vaccinate” strategy) and other variables are defined as previously. As previously, the V̂ E(t) curve

can be estimated either from the hazard ratios or from standardized cumulative incidence curves

depending on effect measure of interest. Adjustment for the nonindepence of the cloned observations

can be made either by using a cluster-robust variance estimator or the bootstrap.

Finally, when emulating the grace period design the challenges are similar to those in the

day zero trial in which participants are randomized to a delay strategy, i.e. some participants

in the observational study have data consistent with multiple regimes. Consider a trial where

participants are randomized at day zero to either (1) receive vaccine sometime within the first five

days postexposure or (2) to receive no vaccine over the follow up period (schematic Figure A3).

Once again, if the trial were actually conducted everyone would have an unambiguous assignment

at time zero. However, in the observational data individuals who receive vaccine after day zero have
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Table A3: Emulation of trial with five day grace period vaccination using data from six hypothetical
individuals.

ID Vaccination
(1: yes, 0: no)

Day of
vaccination

Clinical disease
(1: yes, 0: no)

Day of
disease onset

No. of regimes
followed

1 1 0 0 - 1 (1)
2 1 2 0 - 2 (1-2)
3 1 4 1 8 2 (1-2)
4 1 7 1 2 2 (1-2)
5 0 - 0 - 2 (1-2)
6 0 - 1 5 2 (1-2)

data consistent with both strategies in the period before receiving the vaccine. This is important

when considering some individuals may acquire symptoms prior to receiving vaccination during the

grace period, in which case to which strategy should they be assigned? The solution, as before, is

to create clones when individuals have data consistent with multiple regimes, assign each clone to

a regime, and then censor them if they deviate from their assigned regime.

To demonstrate the required data manipulation steps, we return again to the same six hypothet-

ical individuals, but now in Table A3 we will use their data to emulate a trial with a five day grace

period. Starting with the first individual, they are vaccinated on day zero and therefore have data

consistent only with strategy (1) and therefore they are not cloned. The second individual, however,

is not vaccinated until day 2 and therefore at time zero has data consistent both strategies (1) and

(2), thus we make two clones of the second individual by copying their data and assigning each

observation to one of the two regimes. We then follow each clone forward and censor them when

they deviate from their assigned regime. For instance, we know the second individual is vaccinated

on day 2, therefore on day 2 we censor the clone assigned to regime (2), i.e. receive no vaccine over

the follow up period. Again, if the individual has symptoms before any clone is censored, as is the

case for individual 4, then all clones will have symptoms and therefore the case is assigned to all

strategies strategies. This double allocation of events prevents the bias that could arise if events

occurring during the grace period are systematically assigned to one of the two strategies only.

To analyze the emulated grace period design, we can estimate the average vaccine effectiveness

over the grace period V Eδ by fitting the model

Pr[Dt+1 = 1 | Dt = 0, Z, Lt] = expit{ψ0λ(t) + ψ1Z + ψ2Lt}
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where Z is an indicator of the vaccination strategy and the other variables are defined as previously.

As previously, the V Eδ curve can be estimated either from the hazard ratios or from standardized

cumulative incidence curves depending on effect measure of interest. When analyzing designs

with grace periods, the intention-to-treat effect cannot be estimated because almost everyone will

contribute a clone to each of the treatment strategies. Because each individual is assigned to all

strategies at baseline, a contrast based on baseline assignment (i.e., an “intention-to-treat analysis”)

will compare groups with essentially identical outcomes. Therefore, analyses with grace period at

baseline are geared towards estimating some form of per-protocol effect. To estimate per protocol

effects, we again censor participants when their data deviates from their “assigned” regime and

then adjust for possible time-varying selection bias using any g-method such as inverse-probability

of censoring weights. Note that, to emulate a well-defined vaccination strategy the expected rate

of vaccination over the grace period f∗(X | Lt, X > t, T > t) should be specified and then the

per-protocol effect under this vaccination strategy can be emulated by multiplying the inverse

probability weights by a suitable factor. Finally, as with the day zero design adjustment for the

nonindepence of the cloned observations can be made either by using a cluster-robust variance

estimator or the bootstrap.
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Figure A1: Schematic of nested daily trial design, on each day participants are assigned to vaccine
or no vaccine, conditional on their history up to that day. Squares represent a pool of participants
eligible for randomization and get smaller to show that the size of the pool shrinks as the number
of eligible participants decreases due to symptom onset and previous vaccination; circles represent
the status of individuals who have been randomized. Time moves from left to right.

34

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2023. ; https://doi.org/10.1101/2023.05.03.23289471doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.03.23289471
http://creativecommons.org/licenses/by/4.0/


Y

Y

Y

Y

Y

1111

1110

1100

1000

0000

Figure A2: Schematic of a trial in which participants are randomized on day zero to a specific
vaccination delay strategy. In the figure, on day zero, participants are assigned to either (1) receive
vaccine on day 0, (2) receive vaccine on day 1, (3) receive vaccine on day 2, (4) receive vaccine
on day 3, or (5) do not receive vaccine during the follow up period, with assignment probabilities
allowed to vary between strategies. This could also be done by first randomizing participants to
vaccine or no vaccine and then randomizing the day of vaccination among those assigned vaccine.
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Figure A3: Schematic of trials with a grace period, participants are randomized to a strategy
starting on day zero and given a fixed length time window in which they can initiate and then
sustain thereafter.
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A.5 Adjusting trial outcomes based on biology

Sometimes there is strong biological theory or evidence about the postexposure window in which

vaccination is likely to be most successful, for instance, when data from postvaccination serological

assessments of antibody responses suggests meaningful change in immune responses occurs only

after 7 days. In this case, there may be interest in restricting the time frame in which events

count against vaccination. In a trial, this may be handled by re-defining the outcome such that

only cases which occur after 7 days are counted as events. Cases that occur prior to this are not

counted in either trial arm. This is how outcomes were defined, for instance, in many of the trials

of SARS-CoV-2 vaccines.

In observational emulations, we can similarly re-define vaccination outcomes based on biology,

however we have to be careful to ensure that the new definitions are applied fairly across vaccination

groups. In traditional analyses, bias can occur when all unvaccinated cases are counted from day

zero but vaccinated cases are counted from the day of vaccination. This is fixed when using either

the sequential daily trials or the clone-censor-weighting approaches described previously because

time zero is properly aligned in both groups.

A.6 Measures of vaccine efficacy

In the main text, we defined vaccine efficacy in terms of the cumulative incidence of symptoms or

disease over the follow up period, e.g.

V E(t) = 1− Pr[Y x=t = 1]

Pr[Y x>∆ = 1]

comparing vaccination regimes vaccinated on day t and never vaccinated over follow up. However,

it is also common in the literature to see vaccine efficacy defined instead in terms of hazards, e.g.

V Eλ(t) = 1− λx=t(t)

λx>∆(t)

where λ(t) is the (average) hazard rate over the follow up period. In the applied literature, these are

sometimes used interchangeably even though they will rarely coincide, e.g. they will not coincide

when hazard rates are nonconstant or heterogeneous or nonproportional. In the causal literature,
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there is a preference against causal hazard ratios particularly when they are time-varying (as they

almost certainly are in practice) as they condition on survival and therefore introduce possible

selection bias by construction.

However, in their seminal work, Smith et al showed that patterns in V E(t) and V Eλ(t) could, in

some circumstances, help elucidate the mechanism of action of a particular vaccine, for instance to

help distinguish whether a vaccine produces “all-or-none” or “leaky” protection against infection.

A.7 Determining maximum postexposure vaccination delay

When setting guidelines for postexposure vaccination, a common problem is determining the max-

imum vaccination delay before efficacy falls below a certain cost-benefit threshold. This quantity

is important both for policymakers communicating with high risk groups and the broader public

about what to do in the event of an exposure as well as to help practitioners determine whether vac-

cination is still indicated upon presentation. Absent clear biology or immune response data, it can

be difficult to determine empirically even when postexposure trials are possible as trial participants

are generally only assigned to vaccine or no vaccine/placebo not to a specific day to be vaccinated.

In this section, we suggest a methods for estimating the maximum delay based on a pre-specified

minimum efficacy bound. In principle, these methods could be applied either in a randomized trial

where the day of vaccination is not strictly controlled or in an observational emulation.

Suppose u(Y x, t) is a utility function quantifying the health benefits of vaccination on postex-

posure day x of a person who is symptom-free at time t. If V is a subset or possibly all of baseline

covariates L0 defining a subpopulation of interest, such as certain high risk exposure groups, then

the conditional mean

m(x, t, v) ≡ E[u(Y x, t) | V = v]

is the expected utility under a hypothetical policy in which everyone in the subpopulation receives

vaccination prior to x viewed from the perspective of time t. Comparing the expected utility

m(x, t, v) for different values of x quantifes the casual effect of interest. To determine the optimal

guidance regarding postexposure delays, we want to find the maximum value of x in which utility
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in the subpopulation of interest remains above some minimum viable threshold viewed from t, i.e.

xopt(v, t) ≡ argmaxx∈X {m(x, t, v) ≥ θmin}

A simple example ofm(x, t, v) is the vaccine efficacy if everyone were vaccinated on day x among

those with T > t in the full population, i.e. V E(x∗, t), where

V E(x∗, t) ≡ 1− Pr[Y x=x∗
= 1 | T > t]

Pr[Y x>∆ = 1 | T > t]

in which case we want to solve

xopt(t) = argmaxx∗∈X {V E(x∗, t) ≥ θmin}

Two interesting values of t to consider are:

1. V E(x∗, 0), that is the effectiveness after a delay of x∗ days viewed from the perspective of

everyone still at risk at time 0.

2. V E(x∗, x∗), that is the effectiveness of getting vaccinated today among those symptom-free

at time t = x∗.

Each answers a slightly different question and may be relevant under different circumstances. The

second is more relevant for practitioners counseling patients who present symptom-free on their

options after exposure, while the first is more relevant for public health guidance telling those

currently unexposed how quickly they need to get to a clinic after exposure.

To determine the maximum delay conditional on survival, one approach would be to use

the stratified estimates V̂ ET>t(t) from each of the nested daily trial emulations as V ET>t(t) =

V E(x∗, x∗) for t = x∗ and then determine the maximum value of t where V̂ ET>t(t) remains above

the threshold. However, this assumes we observe sufficient numbers of individuals being vaccinated

on each day to obtain reliable estimates. In practice, we might prefer to increase efficiency by

pooling across trials and fitting a model such as that in A.4. We can then estimate the V̂ ET>t(t)

curve either from estimated hazard ratios or from standardized cumulative incidence curves de-

pending on effect measure of interest and using inverse probability of censoring weights to adjust
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for nonadherence among unvaccinated where applicable.

To determine the maximum day zero delay, again one approach would be to calculate V̂ E(t)

separately by comparing each delay strategy to the “never vaccinate” strategy from the day zero

trial emulation with multiple strategies as V E(t) = V E(x∗, 0) and then determine the maximum

value of t where V̂ E(t) remains above the threshold. However, we can also increase efficiency by

pooling across trials and fitting a model such as that in A.4. Again, we can then estimate the

V̂ E(t) curve either from estimated hazard ratios or from standardized cumulative incidence curves

depending on effect measure of interest and using inverse probability of censoring weights to adjust

for nonadherence among unvaccinated where applicable.

A.8 Additional simulation details

As discussed in main text, we simulated postexposure vaccination times by drawing X∗ from a

Poisson distribution with a mean of 5 days and then drawing an “assignment” indicator Z from

a Bernoulli distribution with probability 0.5. This mimics a trial in which vaccination timing is

not controlled by investigators, but participants are randomized on the day they present. In the

observational study, however we only observe the vaccination times among the vaccinated, i.e.

X = ZX∗. We simulated symptom onset over the 21 days of follow up based on the discrete time

hazard model

Pr[Dk = 1 | Dk−1 = 0, X] = expit{α0,k + log(1− V Eλ(X)) · I(X < k)}

for k in {1, . . . , 21} where Y = D21, T = 21 −
∑K

k=0Dk, and the baseline hazard α0,k was de-

fined such that there is a 50% probability of symptoms given exposure among unvaccinated and

onset times among cases had a log-normal distribution with parameters chosen based on previous

estimates of the incubation period for mpox. Figure A6 shows the overlap in the distribution of

vaccination times and disease onset times. We censor both after 21 days. We assumed vaccination

reduces probability of symptoms but does not affect onset timing and only works if administered

prior to onset. For those with simulated vaccination times that occur after symptom onset we

assumed 25% still receive the vaccine, while vaccination time was censored for the remaining. The
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full data generation process may be written as:

X∗ ∼ Poisson(5)

Z ∼ Bernoulli(0.5)

W ∼ Bernoulli(0.25)

for k ∈ {1, . . . , 21} : Dk ∼ Bernoulli(expit{α0,k + log(1− V Eλ(X
∗)) · Z · I(X∗ < k)}})

T = 21−
21∑
k=1

Dk

X = Z ·X∗ · I(X∗ < T ) +W · Z ·X∗ · I(X∗ ≥ T )

Y = D21

where

α0,k = logit

[
0.25 · Φ(k)− Φ(k − 1)

1− Φ(k − 1)

]
and Φ is the cumulative distribution function for a log-normal distribution with log mean of 2.1

and log standard deviation of 0.59.

We generated data under three scenarios for vaccine efficacy:

• Scenario 1: the null case where postexposure vaccination is completely ineffective V Eλ(x) = 0.

• Scenario 2: vaccination reduces hazard of symptom onset by a constant of 40%, i.e. V Eλ(x) =

0.4 (corresponding to 21-day VE of 31.6% based on cumulative incidence).

• Scenario 3: a more realistic scenario in which efficacy is a function of postexposure timing

V Eλ(x) = 0.8/[1 + exp{0.75(x− 4)}]

In the main text, we estimated vaccine efficacy using three different strategies:

1. naive, leave - a simple comparison of the “ever vaccinated” and “never vaccinated” using the

relative risk regression model Pr[Y = 1 | X] = exp{β0 + β1I(X < 21)} and vaccine efficacy is

estimated as V̂ E = 1− exp(β̂1).

2. naive, move - those who receive vaccine after developing symptoms are re-classified as “unvac-

cinated”, i.e. we use the relative risk regression model Pr[Y = 1 | X] = exp{β0+β1I(X < T )}
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where I(X < T ) implies only those who receive vaccine prior to symptom onset are “vacci-

nated” and vaccine efficacy is estimated as V̂ E = 1− exp(β̂1) as before.

3. target trial - we emulate a sequence of nested daily trials by taking those who are symptom free

and unvaccinated prior to start and compare those are vaccinated on that day to those who are

not. In each trial, we censor the unvaccinated when they become vaccinated and use inverse-

probability of censoring weights to account for informative censoring. These nested trials

are combined and vaccine effectiveness is estimated using standardized cumulative incidence

curves from a pooled logistic regression and standard errors are estimated using cluster-robust

variance estimator.

The first two are strategies that we have seen used in observational studies of post-exposure vacci-

nation and the last is the one proposed in this paper.

In the appendix, we consider additional strategies for estimating vaccine efficacy based on the

hazard rather than the cumulative incidence of symptom onset, specifically:

1. naive, leave - similar to above however we estimate incidence rates rather than cumulative

incidence through poisson regression Pr[Y = 1 | X] = exp{β0 + β1I(X < 21)} with offset

log(T ) and vaccine efficacy is estimated as V̂ E = 1− exp(β̂1).

2. naive, move - those who receive vaccine after developing symptoms are re-classified as “un-

vaccinated”, i.e. we use the poisson regression model Pr[Y = 1 | X] = exp{β0+β1I(X < T )}

with offset log(T ) and I(X < T ) implies only those who receive vaccine prior to symptom

onset are “vaccinated” and vaccine efficacy is estimated as V̂ E = 1− exp(β̂1) as before.

3. time-varying cox - use a time-varying cox model λ(t|X) = λ0(t) exp{β1I(X ≥ t)} in which

follow up time is split for vaccinated participants at the time of vaccination. Prior to this

their person time is classified as unvaccinated and efficacy is estimated as V̂ E = 1− exp(β̂1).

4. target trial - same as previous, except we estimate vaccine efficacy as one minus the expo-

nentiated coefficient from the pooled logistic regression model rather than from standardized

cumulative incidence curves.

In each Monte Carlo simulation, we draw datasets of size 1000 from the process above under

each efficacy scenario, estimated the V E using the estimation strategies described, and repeated
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the process 1000 times. We calculate absolute and relative bias, mean squared error, and confidence

interval coverage.

A.9 Additional simulation results

In this section, we present additional results from our simulation of stratgies to estimate postexpo-

sure vaccine efficacy.

• Tables A4 and A5 show the full simulation results for scenarios 1 and 2 when the efficacy is

estimated using the risk ratio and the hazard ratio.

• Figure A4 shows the performance of the estimation strategies outlined in the previous section

when the vaccine efficacy varies with postexposure delay.

• Figure A5 compares performance of the estimation strategies when efficacy is based on the

hazard rather than the cumulative incidence of symptom onset.

• Figure A6 shows how performance varies with the degree of overlap between vaccination

and symptom onset. Specifically, we varied the mean of the log-normal distribution used to

generate the symptom onset times, with larger means corresponding to later symptom onset

and thus less overlap.
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Table A4: Simulation results for scenarios 1 and 2 when estimating VE using risk ratio

Estimator Mean Bias SD RMSE

Scenario 1: VE = 0%
naive, leave 0.090 0.090 0.059 0.108
naive, move 0.120 0.120 0.058 0.133
target trial -0.004 -0.004 0.067 0.067

Scenario 2: VE = 31.6%
naive, leave 0.377 0.060 0.050 0.078
naive, move 0.407 0.091 0.049 0.103
target trial 0.317 0.000 0.057 0.057

Table A5: Simulation results for scenarios 1 and 2 when estimating VE using hazard ratio

Estimator Mean Bias SD RMSE

Scenario 1: VE = 0%
naive, leave 0.146 0.146 0.072 0.163
naive, move 0.192 0.192 0.068 0.203
time-varying cox -0.007 -0.007 0.095 0.096
target trial -0.008 -0.008 0.098 0.099

Scenario 2: VE = 40%
naive, leave 0.456 0.056 0.052 0.077
naive, move 0.494 0.094 0.050 0.107
time-varying cox 0.395 -0.005 0.065 0.066
target trial 0.400 0.000 0.067 0.067
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Figure A4: Comparison of estimators under when vaccine efficacy varies by postexposure adminis-
tration time.
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Figure A5: Comparison of estimators when calculating vaccine efficacy using the hazard ratio
instead of the risk ratio.
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Figure A6: Bias of naive methods varies with degree of overlap between vaccination delays and
symptom onset times.
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