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Abstract

This study leverages electronic health record data in the National COVID Cohort Collaborative’s
(N3C) repository to investigate disparities in Paxlovid treatment and to emulate a target trial
assessing its effectiveness in reducing COVID-19 hospitalization rates. From an eligible population
of 632,822 COVID-19 patients seen at 33 clinical sites across the United States between December
23, 2021 and December 31, 2022, patients were matched across observed treatment groups, yielding
an analytical sample of 410,642 patients. We estimate a 65% reduced odds of hospitalization among
Paxlovid-treated patients within a 28-day follow-up period, and this effect did not vary by patient
vaccination status. Notably, we observe disparities in Paxlovid treatment, with lower rates among
Black and Hispanic or Latino patients, and within socially vulnerable communities. Ours is the
largest study of Paxlovid’s real-world effectiveness to date, and our primary findings are consistent
with previous randomized control trials and real-world studies.
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Introduction

The COVID-19 pandemic has had a profound global impact, with over 761 million cases and 6.8

million deaths as of 21 March, 2023.1 This crisis has been met with research and drug development

efforts at unprecedented speed, resulting in a number of new treatments aimed at lessening the

risk of progression to severe disease. One such treatment, nirmatrelvir/ritonavir (Paxlovid), is a

combination protease inhibitor that blocks the replication of SARS-CoV-2. In December 2021,5

the US Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for

Paxlovid, enabling its prescription to high-risk SARS-CoV-2-positive patients aged 12 and older.2

The EUA was based on the phase II-III EPIC-HR trial, which reported an 88.9% reduction in the

risk of COVID-19-related hospitalization or death among those who received Paxlovid compared

to those who received placebo.310

Since the EUA issuance, a few studies have assessed the effectiveness of Paxlovid using real-

world data. An electronic health record (EHR)-based study in the Kaiser Permanente Southern

California health system found that fewer than 1% of patients treated with Paxlovid (n = 5, 287)

were hospitalized or seen in the emergency department within 5-15 days of the drug being dis-

pensed, though this was not compared with a control group.4 Another study leveraging a large15

repository of Israeli health care data found a 46% reduction in risk of severe COVID-19 outcomes

in patients treated with Paxlovid (n = 4, 737) when compared with controls, showing a protec-

tive effect, but at a lower magnitude than the original EPIC-HR analysis.5 A retrospective cohort

study in Hong Kong also found that patients treated with Paxlovid (n = 4, 921) were at decreased

risk of hospitalization, with a weighted hazard ratio of 0.79.6 Although these studies offer valu-20

able preliminary evidence of Paxlovid’s real-world effectiveness, there remains a dearth of research

specifically aimed at understanding the causal effects of the drug on COVID-19 outcomes with

large, representative samples derived from real-world data.

A number of EHR studies have also used real-world data to uncover racial and social disparities

in the prescription of various COVID-19 treatments in the United States, including Paxlovid. Prior25

to Paxlovid’s authorization, multiple studies noted racial and social disparities among SARS-CoV-

2-positive patients in access to and treatment with monoclonal antibodies (mAb), with Black and

Hispanic or Latino patients less likely than White patients to receive treatment with mAb.7–9

A more recent large-scale study of EHR data revealed that those disparities have persisted with

Paxlovid; from April through July of 2022, the rate of Paxlovid treatment was 35.8% lower among30

Black adult patients than White adult patients.10
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Through the National Institute of Health’s (NIH) National COVID Cohort Collaborative

(N3C), we have the opportunity to replicate and expand on these and other recent analyses of

Paxlovid efficacy and treatment patterns. We use the target trial emulation (TTE) framework

and a large, geographically and demographically diverse cohort from N3C’s EHR data reposi-35

tory.11 Here, we characterize the population prescribed Paxlovid, assess potential disparities in

Paxlovid prescription, and estimate the causal effect of Paxlovid use on hospitalization among

SARS-CoV-2-positive adults in the United States.11

Results

The hypothesized target trial protocol is articulated in Table 1, and we emulate each component40

to define our base population within the N3C database (See Figure 1).

Patient Characteristics

In the unmatched cohort (within our defined study period), a total of 632,822 patients had a

valid COVID-19 index date during the study period, of which 111,443 (17.6%) were treated with

Paxlovid, and 698 (0.6%) were hospitalized. After applying the eligibility criteria to the patient45

population and study sites, a total of 33 of 76 study sites were retained. Patients were matched

across treatment groups by characteristics selected a priori associated with the treatment assign-

ment and outcome, yielding an effective sample size of 410,642 across 33 sites, balanced across all

covariates. The characteristics of all patients during the study period are presented in Table 2,

stratified by treatment group.50

Among the unmatched cohort, there were large, statistically significant differences in assignment

to Paxlovid treatment - 12.42% of Black, non-Hispanic patients and 14.31% of Hispanic patients

were treated with Paxlovid, compared to 19.63% of White, non-Hispanic patients, and 24.49% of

Asian, non-Hispanic patients (χ2
df=5 test of independence p-value < 0.001). When stratified by

patients’ residential areas, patients who lived in areas with higher Community Wellbeing Index55

(CWBI) values (and lower corresponding social vulnerability) were also more likely to be treated

with Paxlovid. (χ2
df=4 test of independence p-value < 0.001). (See Figure 2)

Effect of Paxlovid on Hospitalization

In the unmatched cohort, 698 (0.6%) patients treated with Paxlovid were hospitalized in the follow-

up period, compared to 10,673 (2.0%) patients in the untreated group. In the primary analysis60

using the matched cohort, patients treated with Paxlovid had lower unadjusted causal odds of
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hospitalization compared with patients not treated with Paxlovid (OR, 0.33; 95% CI, 0.24-0.45),

and this was consistent with the estimate adjusted for potential confounders (OR, 0.35; 95% CI,

0.29-0.42). (See Table 3)

The adjusted estimates in the primary analysis adjust for the effects of CWBI captured at65

the patient level, including patients that were categorized as “Missing” for any CWBI data, and

we assume that missingness was unrelated to unmeasured confounding or treatment assignment.

Results of our sensitivity analysis showed that the estimates for our primary analysis were robust

against missing CWBI data, both when sites were dropped (OR, 0.36; 95% CI, 0.29-0.44), or when

the covariate itself was dropped (OR, 0.37; 95% CI, 0.31-0.45). Additionally, sensitivity analysis70

aimed at identifying the potential effects of immortal time bias also showed that our estimates

were stable (OR, 0.38; 95% CI, 0.31-0.46). (Supplementary Table 1).

Effect adjusted by COVID-19 Vaccination Status

For our subgroup analysis estimating the effect of Paxlovid on hospitalization adjusting for the

effect of vaccination, individuals from nine sites with trusted vaccine data were included. A total75

of 170,063 individuals included in the base population were vaccinated, of which 45,929 (27.0%)

received Paxlovid, and 1,873 (1.1%) were hospitalized; 51,306 individuals were unvaccinated, of

which 6,633 (12.9%) received Paxlovid , and 1,152 (2.2%) were hospitalized. After CEM match-

ing (n = 136, 815), weighting, and adjusting for both the main effects and interaction effects of

vaccination status, this analysis was consistent with the primary results, and patients prescribed80

Paxlovid had lower adjusted causal odds of hospitalization (OR, 0.32; 95% CI, 0.24-0.42). Vacci-

nated patients also had lower adjusted causal odds of hospitalization (OR, 0.49; 95% CI, 0.41-0.58).

Additionally, there was no significant evidence of an interaction effect between the effect of Paxlovid

and vaccination on hospitalization at 28 days, suggesting no heterogeneity by vaccination status

in the effect of Paxlovid treatment (OR, 1.08; 95% CI, 0.73-1.61).85

Discussion

Despite the widespread use of nirmatrelvir/ritonavir (Paxlovid) for the treatment of COVID-19,

we are still in the early stages of understanding its protective effect at scale in real-world settings.

In this target trial emulation using the N3C database, one of the largest longitudinal observational

datasets on COVID-19 patients in the United States, individuals treated with Paxlovid within five90

days of a COVID-19 diagnosis or positive SARS-CoV-2 test had 65% lower odds of hospitaliza-

tion, compared with those never treated with Paxlovid. When accounting for vaccination status,
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individuals treated with Paxlovid had a 68% lower odds of hospitalization, and this effect did

not depend on an individual’s vaccination status. We also find significant differences in distribu-

tion of Paxlovid across race, ethnicity, and social vulnerability strata. Paxlovid is thus effective at95

lessening the risk of hospitalization, but is not equitably distributed.

We examined the distribution of Paxlovid treatment by race and ethnicity, along with a measure

corresponding to a patient’s residential ZIP Code-level community well being index (CWBI). We

found large differences in Paxlovid treatment rates by race/ethnicity and CWBI. Across race/eth-

nicity strata, Black and Hispanic/Latino patients were on average less likely to receive Paxlovid100

treatment, compared to White and Asian patients. Additionally, patients from communities with

higher levels of social vulnerability (lower CWBI values) were also less likely to receive Paxlovid

treatment. Our findings are consistent with prior research from December 2021- July 2022 that also

documented disparities in outpatient oral antiviral treatment by both ZIP Code-level social vul-

nerability and race/ethnicity, and showed that Black patients had 35.8% lower rates of treatment105

compared to White patients, and Hispanic patients had 29.9% lower rates of treatment compared

to non-Hispanic patients. These disparities in access to treatment are of particular concern due to

the growing evidence base that shows that individuals in these groups are more likely to experience

higher levels of COVID-19 exposure, discrimination in access to care, and severe COVID-19 health

outcomes.12–17 The reasons for these disparities are a complex constellation of factors including110

(and not limited to) a history of systemic discrimination and racism in treatment, lack of physical

and economic resources to facilitate equal access in vulnerable communities, lack of information

and knowledge about treatment options, and language barriers owing to a lack of culturally com-

petent care.10 Without attention, recognition, and remediation on the part of providers, public

health agencies, the health system, and communities, the disproportional burden of COVID-19115

will only further exacerbate existing health inequities in the United States.

Findings from our primary analysis were consistent with existing randomized control trial

results. The EPIC-HR randomized control trial (n = 2, 246) among symptomatic, non-hospitalized,

high-risk patients assessed the effect of Paxlovid on hospitalization or death through a 28-day

follow-up period, and found a 89.9% risk reduction.4 The lower magnitude of effect in our findings120

may be attributable to differences in study design (as noted by Najjar-Debbiny et. al): 1) differences

in dominant strains at the time of the study; 2) their inclusion of only symptomatic patients

versus our inclusion of all COVID-19 positive patients (inclusive of asymptomatic patients); 3)

their earlier treatment assignment within five days from symptom onset versus our treatment

assignment within five days of a COVID-19 diagnosis or a laboratory-confirmed SARS-CoV-2 test;125
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and 4) our intention-to-treat approach with no information on adherence to treatment, compared

to their clinical trial setting.5 We also adjusted for the effects of vaccination, and interestingly,

we found that the effects of treatment with Paxlovid were not heterogeneous across vaccinated

and unvaccinated individuals. This finding is of particular interest given the preliminary evidence

from the EPIC-SR trial that the impact of Paxlovid on vaccinated populations was uncertain.18130

Further research is needed on the effectiveness and cost-effectiveness of Paxlovid treatment in these

populations. It is also worth noting that the omission of vaccination status did not significantly

bias our estimates in our primary analysis.

Our findings are also consistent with other real-world analyses suggesting a protective effect of

Paxlovid. Najjar-Debbiny et. al applied Cox hazard models and found that treatment with Paxlovid135

resulted in a 46% reduced risk of severe COVID-19 and 80% reduced risk of mortality in Israel,

with no evidence for the interaction effect of Paxlovid and vaccination (n = 180, 351).5 While their

outcome of interest was severe COVID-19 or death, ours examined hospitalization, complementing

their findings and notably, expanding on their regression-adjusted approach by including a causal

inference framework through target trial emulation to estimate the causal effect of Paxlovid. Our140

estimates also support results from a retrospective cohort study in Hong Kong (n = 93, 833),

which estimated a propensity score-weighted 21% reduction in hospitalization risk among patients

treated with Paxlovid.6 However, while this analysis used population-level vaccination coverage as

an estimate for patient-level vaccination status, our sub-analysis matched patients on their health-

record documented vaccination information to provide a more precise estimate among vaccinated145

populations.

Strengths This study has several strengths that underscore the value of large-scale EHR

repositories for advancing comparative effectiveness research. In the absence of large-scale RCTs,

target trial emulations allow researchers to explore treatment effects in real-world settings and

identify the most effective treatments for a variety of health conditions. This study is one of a150

few studies that apply methods to emulate hypothetical target trials, accounting for the effect of

confounding.19–22 The estimated effects were also consistent across sensitivity analyses targeted

at addressing issues in both missingness and potential immortal time bias. Additionally, the anal-

yses were conducted using a large, comprehensive database of EHR data from 33 contributing

sites across the United States, increasing generalizability, and decreasing the potential for issues155

that typically arise from misclassification in administrative or claims data.23 The volume of data

contained in the N3C database allowed for coarsened exact matching while preserving statistical
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power, instead of weighting approaches that may be sensitive to model misspecification and the

potential for extreme weights leading to biased estimates.24;25

Limitations This study also has a few limitations. First, since the data did not include any160

further information on the dose received over the study period (Paxlovid is typically given orally

twice daily for five days), we assume complete adherence to treatment and no loss-to-follow-up,

such that the intention-to-treat effect is equal to the per-protocol effect. Second, the sub-analysis

on vaccinations did not include individuals with incomplete courses of vaccination (1 dose), nor

information on the timing of vaccination relative to COVID-19 infection, and therefore we were165

unable to shed light on whether the response to Paxlovid varied by additional strata of vaccination.

Third, the outcome of interest was a discrete measure of hospitalized/not hospitalized, and further

studies may benefit from taking a time-to-hospitalization approach and modeling the effectiveness

of Paxlovid using a Cox proportional hazards model, which may further inform smaller differences

in treatment-response. Due to the many possible patterns over time of COVID-19 index, Paxlovid170

treatment, and hospitalization, determining time zero (t0) in this study was not trivial. We opted

to treat hospitalization as a discrete outcome in our follow-up period to simplify the study’s

concept of time. Related to the difficulty in establishing t0, while our sensitivity analysis aimed to

demonstrate that our estimates would be consistent even in the presence of substantial immortal

time bias, further sensitivity analyses using a nested target trial emulation framework may be useful175

in substantiating this.26;27 Fourth, it is well-documented that EHRs are susceptible to missing data

when patients do not seek care, care is provided outside of the reporting facility, or a condition is

documented outside of the structured EHR (e.g., in clinical notes), and it is likely that our estimates

may be biased if missingness was related to any residual unobserved confounding.28–30 We took

several steps to mitigate the risk of missing data – all individuals in our cohort have established180

care at the partner facility both before and after their acute COVID-19 event, as evidenced by

documented healthcare encounters, and our vaccination sub-analysis is limited to facilities with

a high recorded vaccine ratio to reduce the number of individuals misclassified as unvaccinated.

Fifth, our inclusion criteria of Paxlovid treatment within five days of COVID-19 index differs from

the indication of treatment within five days of symptom onset. However, we note that within our185

base cohort, 95.70% of treated patients were treated within one day of COVID-19 index. Finally,

our study is subject to the assumptions of all causal inference studies: consistency, positivity, and

exchangeability. In particular, the assumption of exchangeability rests on the assumption that

there are no unmeasured confounders.
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Conclusion190

Among patients with COVID-19 in our study period, the odds of hospitalization within a 28-day

follow-up period was 65% lower in patients treated with Paxlovid within five days of COVID-19

index, compared with patients who were never treated with Paxlovid. Although there remains the

potential for unmeasured confounding, the results of our large-scale study using EHR data are

consistent with the evidence base of smaller-scale RCTs and smaller real-world data studies across195

other geographies. Our results demonstrate the potential for further research using the target

trial emulation framework with observational data to supplement clinical trials. We also found

disparities in the rates of Paxlovid treatment. Black patients, Hispanic or Latino patients, and

patients living in more vulnerable communities were treated with Paxlovid at a significantly lower

rate than others. Taking action to remediate these disparities will equalize the opportunity for all200

high-risk patients to prevent severe COVID-19 outcomes.
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Tables and Figures

Table 1 Protocol of a Target Trial to Estimate the Effect of Paxlovid on the rate of hospitalization in the
28-days following a positive SARS-CoV-2 test

Protocol Component Description under Target Trial
Conditions

Method of Target Trial Emulation
in this study

Eligibility criteria Persons aged 18 and older who have one
or more risk factors for severe COVID-
19 as per CDC guidelines and who have
had an COVID-19 infection during the
study period.31

Persons aged 18 and older who have one
or more risk factors for severe COVID-
19 as per CDC guidelines and who have
had either a documented COVID-19
diagnosis, or laboratory confirmed posi-
tive SARS-CoV-2 test during the study
period.31

Treatment strategies Complete course of treatment with
Paxlovid within five days of symptom
onset.

Complete course of treatment with
Paxlovid within five days of the date of
laboratory-confirmed SARS-CoV-2 test,
or COVID-19 diagnosis.

Assignment procedures Participants will be randomly assigned
to treatment or control at baseline and
will be aware of their treatment assign-
ment.

Coarsened exact matching on pre-
treatment covariates to ensure
exchangeability of treatment and control
groups and emulate random assignment.

Follow-up period 28 days following a positive SARS-CoV-
2 test

28 days following either positive SARS-
CoV-2 test, or COVID-19 diagnosis

Outcome Hospitalization within follow-up period Hospitalization within follow-up period

Causal contrasts Intention-to-treat effect Intention-to-treat effect

Analysis plan Intention-to-treat effect estimated
via comparison of hospitalization
rates among individuals assigned to
each treatment arm, adjusting for
pre-treatment covariates. Additional
analyses to include the main and inter-
action effects of vaccination.

Coarsened exact matching on pre-
treatment covariates; Intention-to-treat
effect estimated via comparison of hos-
pitalization rates among individuals
in each treatment arm in the matched
cohort, adjusting for pre-treatment
covariates. Additional analyses to
include the main and interaction effects
of vaccination.
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Table 2 Baseline Population Characteristics Before and After Matching

Before Matching After Matching

No Paxlovid Paxlovid No Paxlovid Paxlovid

Characteristic (N= 521,379) (N=111,443) (N=306,132) (N=104,510)

Hospitalization1

No 510,706 (98.0%) 110,745 (99.4%) 300,583 (98.2%) 103,882 (99.4%)

Yes 10,673 (2.0%) 698 (0.6%) 5,549 (1.8%) 628 (0.6%)

Sex

Female 315,078 (60.4%) 67,597 (60.7%) 189,642 (61.9%) 63,914 (61.2%)

Male 206,198 (39.5%) 43,829 (39.3%) 116,490 (38.1%) 40,596 (38.8%)

Missing 103 (0.0%) <20 (0.0%) - -

Age (in years)

18-24 15,963 (3.1%) 1,429 (1.3%) 3,757 (1.2%) 1,018 (1.0%)

25-34 35,194 (6.8%) 4,538 (4.1%) 11,921 (3.9%) 3,657 (3.5%)

35-49 70,172 (13.5%) 12,716 (11.4%) 34,950 (11.4%) 11,172 (10.7%)

50-64 215,304 (41.3%) 42,112 (37.8%) 127,144 (41.5%) 40,101 (38.4%)

65+ 184,746 (35.4%) 50,648 (45.5%) 128,360 (41.9%) 49,562 (47.4%)

Missing - - - -

Race/Ethnicity2

Asian (NH) 11,082 (2.1%) 3,594 (3.2%) 3,393 (1.1%) 2,544 (2.4%)

Black or African American (NH) 74,907 (14.4%) 10,627 (9.5%) 27,638 (9.0%) 9,457 (9.0%)

Hispanic or Latino (Any Race) 49,908 (9.6%) 8,332 (7.5%) 18,638 (6.1%) 7,021 (6.7%)

White (NH) 335,385 (64.3%) 81,891 (73.5%) 235,601 (77.0%) 80,081 (76.6%)

Other (NH) 5,716 (1.1%) 920 (0.8%) 978 (0.3%) 502 (0.5%)

Unknown 44,381 (8.5%) 6,079 (5.5%) 19,884 (6.5%) 4,905 (4.7%)

Charlson Comorbidity Index

0 194,689 (37.3%) 46,596 (41.8%) 126,679 (41.4%) 44,822 (42.9%)

1-2 188,703 (36.2%) 42,488 (38.1%) 119,336 (39.0%) 40,479 (38.7%)

3-4 54,101 (10.4%) 11,228 (10.1%) 29,086 (9.5%) 9,914 (9.5%)

5-10 32,788 (6.3%) 5,513 (4.9%) 15,113 (4.9%) 4,648 (4.4%)

11+ 3,644 (0.7%) 523 (0.5%) 638 (0.2%) 296 (0.3%)

Missing 47,454 (9.1%) 5,095 (4.6%) 15,280 (5.0%) 4,351 (4.2%)

Community Wellbeing Index3

0-45 2,646 (0.5%) 275 (0.2%) 327 (0.1%) 157 (0.2%)

46-55 152,670 (29.3%) 26,978 (24.2%) 91,926 (30.0%) 25,470 (24.4%)

56-65 193,631 (37.1%) 46,639 (41.9%) 106,456 (34.8%) 43,891 (42.0%)

66-100 26,644 (5.1%) 9,961 (8.9%) 13,750 (4.5%) 8,879 (8.5%)

Missing 145,788 (28.0%) 27,590 (24.8%) 93,673 (30.6%) 26,113 (25.0%)

Month of COVID-19 diagnosis

December 2021 39,670 (7.6%) 77 (0.1%) - -

January 2022 166,565 (31.9%) 1,544 (1.4%) 902 (0.3%) 64 (0.1%)

February 2022 37,600 (7.2%) 931 (0.8%) 69,739 (22.8%) 1,495 (1.4%)

March 2022 11,775 (2.3%) 845 (0.8%) 16,468 (5.4%) 865 (0.8%)

April 2022 16,902 (3.2%) 3,805 (3.4%) 4,226 (1.4%) 725 (0.7%)

May 2022 38,567 (7.4%) 12,984 (11.7%) 10,782 (3.5%) 3,420 (3.3%)

June 2022 39,959 (7.7%) 14,950 (13.4%) 31,292 (10.2%) 12,227 (11.7%)

July 2022 45,957 (8.8%) 19,455 (17.5%) 32,867 (10.7%) 14,135 (13.5%)

August 2022 39,646 (7.6%) 16,128 (14.5%) 39,158 (12.8%) 18,580 (17.8%)

September 2022 26,454 (5.1%) 11,101 (10.0%) 32,965 (10.8%) 15,303 (14.6%)

October 2022 20,185 (3.9%) 8,386 (7.5%) 20,819 (6.8%) 10,338 (9.9%)

November 2022 18,149 (3.5%) 9,131 (8.2%) 15,889 (5.2%) 7,766 (7.4%)

December 2022 19,950 (3.8%) 12,106 (10.9%) 14,412 (4.7%) 8,275 (7.9%)

1Any hospital admission in the 28-days following a positive SARS-CoV-2 test result

2abbrev. NH = Non-Hispanic.

3Community Wellbeing Index (CWBI) is a measure of five inter-related community-level domains, with higher CWBI

values corresponding to a higher level of protective community-level social determinants of health.32
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Table 3 Odds of hospitalization in Paxlovid-treated vs. Non-Paxlovid-treated patients

Dependent variable: Hospitalization

Unadjusted (1) Adjusted (2) Vaccine-adjusted (3)

OR (95% CI) OR (95% CI) OR (95% CI)

Paxlovid Treatment

No (control) ref ref ref

Yes (treatment) 0.33 (0.24-0.45)*** 0.35 (0.29-0.42)*** 0.32 (0.24-0.42)***

Vaccination Status1

Unvaccinated - - ref

Vaccinated - - 0.49 (0.41-0.58)***

Vaccination∗Paxlovid2 - - 1.08 (0.71-1.64)

Observations 410,642 410,642 136,815

Log Likelihood -31590.1 -25466.1 -6551.1

Akaike Inf. Crit. 63184.0 51000.2 13172.3

1Unvaccinated refers to patients who received 0 doses at index, Vaccinated refers to patients who recieved atleast 2 doses
at least 14 days prior to index.
2Interaction term

Note: Model (2) adjusts for sex, age, race and ethnicity, Charlson Comorbidity Index, Community-well being index, data
partners, and month of COVID-19 Index date. Model (3) additionally adjusts for the main and interaction of Vaccina-
tion.
p < .05*, p < .01**, p < .001***
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Fig. 1 Study Cohort and Flow of Emulated Trial
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Fig. 2 Proportion of individuals in base population stratified by Race/Ethnicity, and ZIP Code-level Commu-
nity Wellbeing Index (CWBI)
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Methods310

We performed a target trial emulation to assess the effect of Paxlovid treatment within five days

of COVID-19 index on the risk of hospitalization within 28 days of COVID-19 index (see Eli-

gibility Criteria). We followed a two-step process for emulating target trials with observational

data: first, we articulated the causal question of interest in the form of a hypothetical randomized

trial protocol, specifying eligibility criteria, treatment strategies, treatment assignment, the study315

period for follow-up, the outcome of interest, causal contrasts, and the analysis plan to estimate

effects.33 Second, we emulated each component of this protocol using patient-level data inside the

NIH-hosted N3C Secure Data Enclave, which integrates EHR data for 18 million patients across

76 participating sites across the United States. N3C’s methods for patient data acquisition, inges-

tion, and harmonization have been reported in detail elsewhere.34–36 All analyses and results as320

part of this study are reported in adherence with the Strengthening the Reporting of Observational

Studies in Epidemiology (STROBE) reporting guidelines.37

Eligibility Criteria

We defined our study period as December 23, 2021, the day after FDA authorization of Paxlovid,

to December 31, 2022. To meet the eligibility criteria for the study as per the target trial protocol,325

we specified the following inclusion criteria: 1) having a documented COVID-19 index date within

the study period (with index date defined as the earliest date of either (a) a COVID-19 diagnosis or

(b) a positive SARS-CoV-2 test result), 2) being ≥ 18 years of age as of the COVID-19 index date,

3) having one or more risk factors for severe COVID-19 as per CDC guidelines, including age ≥ 50

years old, or the presence of underlying medical conditions associated with a conclusive higher risk330

of severe COVID-19.31 We excluded all patients < 18 due to the potential for differences in both

clinical characteristics and prescription practices among pediatric and adult patients prescribed

Paxlovid.38;39

Additionally, since we were interested in quantifying the causal effect of Paxlovid treatment on

the outcome of hospitalization, we applied three exclusion criteria to exclude: 1) patients who were335

hospitalized on or before the COVID-19 index date or date of treatment with Paxlovid (outcome

precluding treatment), 2) patients who received Paxlovid before their COVID-19 index date, and

3) patients who received Paxlovid after the recommended five days following their COVID-19

index date. In order to ensure that data were captured from sites with high fidelity and adequate

coverage, we only included data from sites with at least 1% of eligible patients, and a minimum of340

100 patients, treated with Paxlovid during the study period.
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Defining Treatment and Outcome

Eligible patients were categorized by their treatment exposure, defined as having been treated with

Paxlovid within five days of their COVID-19 index date, with controls defined as patients never

treated with Paxlovid. We selected an eligibility window of five days in adherence with recom-345

mended clinical guidelines, and to minimize heterogeneity and potential for indication bias. For

patients who were never treated with Paxlovid, we used the date of their earliest indication of

COVID-19 (diagnosis or positive lab result) within the study period as the index date. For those

in the treatment group, we used their earliest indication of COVID-19 within five days of their first

Paxlovid treatment date in the study period. As per our exclusion criteria, we excluded patients350

that received Paxlovid after the 5-day eligibility period. Within the N3C enclave, the “Paxlovid

or nirmatrelvir” concept set was used to identify drug exposures that correspond to Paxlovid (10

Observational Medical Outcomes Partnership [OMOP] concepts).40 We followed patients for a

28-day period following their COVID-19 index date. Our primary outcome of interest was hospi-

talization at any point in time during the 28-day follow-up period, specified as a discrete measure355

corresponding to any hospitalization (Y = 1) or no hospitalization (Y = 0). For the purposes of

this analysis, we did not consider time-to-hospitalization, severity at the time of admission, or any

downstream outcomes such as in-hospital death or discharge.

Statistical Analysis

Overview360

First, we applied a two-sided Chi-squared test to examine the distribution of Paxlovid treatment

across two covariates: 1) patient race/ethnicity, and 2) a ZIP Code-level Community Wellbeing

Index (hereafter referred to as CWBI). The CWBI measure is a composite index of social deter-

minants of health available within the N3C database, with higher CWBI values corresponding to

a higher level of protective community-level social determinants of health. The index methodology365

was developed by Sharecare and the Boston University School of Public Health. CWBI values are

derived from the patient’s residential ZIP Code-level data across five key inter-related community-

level domains: healthcare access (ratios of healthcare providers to population), resource access

(libraries and religious institutions, employment, and grocery stores), food access (access to gro-

cery stores and produce), housing and transportation (home values, ratio of home value to income,370

and public transit use), and economic security (rates of employment, labor force participation,

health insurance coverage rate, and household income above the poverty level).32
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Next, we used a potential outcomes framework to compare the rate of hospitalization among

patients who received Paxlovid during the five days following a positive SARS-CoV-2 test to those

who did not. To adjust for confounding and emulate random assignment in the context of the375

target trial, we matched individuals in the treatment and control cohorts on a set of pre-treatment

variables: sex, age (binned), race and ethnicity, Charlson Comorbidity Index (CCI) value (as a

proxy for all underlying medical conditions; binned), CWBI (binned), month of COVID-19 onset,

and site of care provision, including all data present in their electronic health record as of their

positive SARS-CoV-2 test. Due to the prevalence of literature suggesting disparity in treatment380

assignment and outcomes by race, ethnicity, and other social determinants of health, we include

these measures as potential confounders.7–10 Sex, age, and comorbidities are known to affect both

care seeking for and the outcome of COVID-19. The index month was included because Paxlovid

treatment rates, viral variants, and infection rates changed during the study period. CCI was coded

as missing when no condition exposures were present in N3C prior to index. CWBI was coded as385

missing when patient ZIP Code was not reported.

We matched patients in the treatment and control groups using coarsened exact matching

(CEM) and weighted observations by their CEM weights. CEM weights were defined as:

W =


1 for treated units(

mC

mT

)
Ws for control units

where mC and mT are the numbers of control units and treated units in the sample, ms
T and ms

C

are the number of control units and treated units in stratum s, and Ws =
ms

T

ms
C
.

CEM offers several advantages over other matching methods.41 Furthermore, when the likeli-

hood of treatment is heavily determined by the covariates (as in this study), weighting methods390

like inverse probability of treatment weighting tend to assign extreme weights to treated patients

for whom treatment was very unlikely (and vice versa). CEM avoids this issue. Bins used to coarsen

covariates were based on subject matter knowledge of the measurement scale of each variable (e.g.,

age groups based on strata with known differences in COVID-19 outcomes). We examined the

results of the specified coarsened exact matching to ensure that it yielded a balanced cohort with395

a sufficiently large effective sample size.
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Estimation

Our primary analysis aims to estimate the total effect of receiving treatment with Paxlovid within

five days of COVID-19 index date (treatment), compared to not receiving Paxlovid (control), on

the discrete outcome of hospitalization.400

The unadjusted average treatment effect on the treated (ATT) was first estimated using a

difference-in-means estimator:

Ê[τi] =
1

n1

∑
i:Ti=1

Yi −
1

n0

∑
i:Ti=1

Yi

The unadjusted causal odds ratio among the matched population was then estimated as:

τOR =
τtreated
τcontrol

The adjusted treatment effect was calculated using a CEM-weighted mixed-effects logistic

regression model with a discrete response variable corresponding to hospitalization (Y = 1, Y = 0),

controlled for independent pre-treatment variables. We include site-specific random intercepts to

account for within-cluster homogeneity in outcomes and to estimate the influence of the cluster on

the outcomes of the individuals within the cluster. We assume that the fixed effects are invariant405

across clusters and therefore do not include random slopes in the model.

The final CEM-weighted mixed-effects logistic regression model is specified as:

g(P (Yij = 1) = γ0 +XijγX + ZjγZ + U0j

where γ0 is the intercept, γX are the effects of the covariates at the individual level, γZ are the

effects of the observed covariates at the cluster level, and g denotes the logit link function. The

cluster-level random intercepts U0j are assumed to have and are uncorrelated with the included

covariates; these induce a data-partner-specific interpretation desired for odds ratios.42410

Vaccination-adjusted Subanalysis

Using the same method applied to the primary analysis described above, we also conducted a sub-

analysis with COVID-19 vaccination status included as a covariate. We considered this important

for two reasons. First, we hypothesized that vaccination status may be a confounder of Paxlovid

treatment and hospitalization, largely through the latent variable of infection severity. If so, our415
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primary analysis would violate the assumption of no unmeasured confounding. Second, we hypoth-

esized that Paxlovid treatment may be less effective among vaccinated patients. There is mixed

evidence for this dynamic. Pfizer’s EPIC-SR trial found no significant treatment effect among vac-

cinated patients with one risk factor for severe COVID-19.43 A large health system found that

Paxlovid treatment further reduced the likelihood of hospitalization and death among vaccinated420

patients, but that the treatment effect was smaller among fully vaccinated patients.18

For this subanalysis, we used a modified cohort of patients from sites with reliable information

on patient vaccination status. Vaccination status in N3C is subject to misclassification, particularly

among patients who were vaccinated outside of data partner systems. We determined the subset of

sites with reliable patient-level vaccination records by the ratio of two statistics: (1) the proportion425

of individuals who are documented as vaccinated in their EHR and (2) the proportion of individuals

who are truly vaccinated. We calculated the first statistic from the EHR data for each site. We

estimated the second statistic using CDC-reported vaccination rates for the counties served by each

partner facility.44 CDC vaccination rates by county are included as a data asset in N3C. Patient

counties were inferred using a county-ZIP crosswalk. Each patient’s likelihood of vaccination was430

drawn from their county’s vaccination rate and the overall expected vaccination rate for a partner

facility was computed as the mean of their patients’ vaccination likelihood. We defined a facility’s

recorded vaccine ratio as the ratio of these two statistics and limited the vaccination sub-analysis

to individuals from facilities with a ratio of at least 0.66.45

Accordingly, we categorized patients by their vaccination status prior to their COVID-19 index435

date, defined as having completed a full course of vaccination at least 14 days prior to index.

Partially vaccinated patients and patients who were fully vaccinated fewer than 14 days prior to

index were excluded from the analysis. With treatment, follow-up period, and outcomes consistent

with the specification of the primary analysis, we re-estimated the treatment effect of Paxlovid

on hospitalization using the previously specified mixed-effects logistic regression model, this time440

with the additional adjustment for the independent effect of vaccination status, and the interaction

effect of vaccination and treatment with Paxlovid.

Sensitivity Analysis

We conducted two sensitivity analyses with regard to our primary analysis. First, we assessed

the sensitivity of our estimated treatment effects to the CWBI as a matching variable, as well445

as the potential impact of missing CWBI data on treatment effect estimates (if the missingness

was related to unmeasured confounders or treatment assignment). CWBI was the only covariate

with an overall missing rate (27.40%) higher than 10 percent. CWBI missingness was largely
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determined by site. Six sites do not report patient ZIP Code data to N3C. An additional four sites

had missing ZIP Code data for more than 10 percent of patients. To test for sensitivity to this, we450

removed data from all sites with a 10% or higher missingness rate for the CWBI covariate, then

repeated the matching process and re-estimated the treatment effects on the outcome. In addition,

we also repeated the analysis by excluding the CWBI variable entirely from both the matching

and estimation processes and reported the resulting adjusted effect estimates. Second, we aimed

to understand the potential immortal time bias that may be present in our primary analysis. In455

our primary analysis, we define time zero (t0) as the date of a patient’s COVID-19 index date. We

excluded all patients who received Paxlovid before t0, and those who were hospitalized between

t0 and time of treatment assignment (tA) (prescription of Paxlovid). This period, a patient’s

“immortal time”, may bias estimates in favor of a lower risk in the treatment group, even in the

absence of a true effect.26 To quantify the bias due to the presence of immortal time, in this460

sensitivity analysis we included treated patients who were hospitalized on or between t0 and tA.

This represents a “worst-case scenario”, and provides a conservative estimate of the treatment

effect taking into account the potential immortal time bias.
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Supplementary Tables and Figures

Fig. 1 Proportion of individuals in base population stratified by Race/Ethnicity, and ZIP Code-level Commu-
nity Wellbeing Index (CWBI)
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Table 1 Sensitivity analysis examining the effects of immortal time bias, and missingness in the ZIP Code-level
Community Wellbeing Index (CWBI)

Dependent variable: Hospitalization

Not accounting for
Immortal Time Bias

Dropping CWBI
covariate

Dropping sites with
missing CWBI

OR (95% CI) OR (95% CI) OR (95% CI)

Paxlovid Treatment

No (control) ref ref ref

Yes (treatment) 0.38 (0.31-0.46)*** 0.37 (0.31-0.45)*** 0.37 (0.29-0.47)***

Observations 410,716 455,504 272,133

Log Likelihood -29151.5 -29618.4 -20744.2

Akaike Inf. Crit. 58376.9 59296.7 41562.4

Note: p < .05*, p < .01**, p < .001***
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