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Abstract—Retinoblastoma (RB) is a treatable ocular melanoma
that is diagnosed early and subsequently cured in the United
States but has a poor prognosis in low- and middle-income
countries (LMICs). This study outlines an approach to aid health-
care professionals in identifying RB in LMICs. Transfer learning
methods were utilized for detection from fundus imaging. One
hundred and forty RB+ and 140 RB- images were acquired from
a previous deep-learning study. Next, five models were tested:
VGG16, VGG19, Xception, Inception v3, and ResNet50, which
were trained on the two-hundred-and-eighty image dataset. To
evaluate these models, the Dice Similarity Coefficient (DSC)
and Intersection-over-Union (IoU) were used. Explainable AI
techniques such as SHAP and LIME were implemented into
the best-performing models to increase the transparency of their
decision-making frameworks, which is critical for the use of AI
in medicine. We present that VGG16 is the best at identifying
RB, though the other models achieved great levels of prediction.
Transfer learning methods were effective at identifying RB, and
explainable AI increased viability in clinical settings.

Index Terms—Retinoblastoma, LMICs, VGG16, VGG19, Xcep-
tion, Inception v3, Xception, DSC, IoU, SHAP, LIME

I. EXORDIUM

Retinoblastoma (RB) is a treatable ocular melanoma and
is considered an orphan disease (impacts less than 200,000
people nationwide) caused by a mutation in both RB1 genes
within a cell (The American Cancer Society Medical and
Editorial content team, 2018). RB typically occurs under 2
years of age and is diagnosed early and subsequently cured
in the United States but disproportionately impacts low- and
middle-income countries (LMICs). In a study where 4064
patients with RB participated, 642 (15.8%) were from high-
income countries, 1151 (28.3%) were from upper-middle-
income countries, 1791 (44.1%) from lower-middle-income
countries, and 480 (11.8%) from low-income countries (Fabian
et al., 2022). When going from high- to low-income countries,
the percentage of mortality significantly increases. This differ-
ence in death percentages can be most directly attributed to
the lack of specialized treatment centers and equipment needed
to identify RB early on, leading to the further spread of RB
outside of the eye.

A. Engineering Goals

Current machine learning work on the topic of Retinoblas-
toma has reasonable accuracy. However, in clinical settings,

TABLE I
RB MORTALITY RATE BY INCOME CLASS; INFO FROM (FABIAN ET AL.)

Income Numerical Data
Class Number of People # of Deaths Percent of Death
High 642 5 0.8%

Upper-Middle 1151 92 8%
Lower-Middle 1791 276 15.4%

Low 480 146 30.4%
Totals 4064 519 X

accuracy is never sufficient until perfect. This project wishes to
advance RB diagnostic accuracy by utilizing transfer learning
techniques. Explainable AI (XAI) is also an unexplored sector
of RB research; this project also wishes to use XAI to increase
the informational applications of the models to help doctors
identify unique tumor features, alongside making the CNN
model’s process as transparent as possible to maximize its
applications in clinical settings.

II. TRANSFER LEARNING

Transfer learning is a powerful tool that utilizes a pre-trained
model on a new problem; this approach is accommodating
when obtaining a large dataset is not possible. In this analysis,
the pre-trained models VGG16, VGG19, ResNet50, Inception
v3, and Xception are compared. These models were originally
trained with the ImageNet dataset but were later trained on our
280-image dataset. A biomedical segmentation CNN such as
U-net was considered, but there exists a lack of transparency;
U-net provides the diagnosis and area of impact but does not
provide sufficient detail. With U-net, it is difficult to explore
novel diagnostic tumor features due to the generality of the
segmentation model, but with XAI techniques, it is possible
to find specific, and often minute details of the fundus image
that inform the model of a benign/malignant diagnosis.

A. Data Analysis

Fundus imaging data that pictures RB is scarce online.
However, utilizing a previous deep learning study, 140 RB-
positive fundus images were obtained (Jeba 2023). To find 140
RB-negative fundus images, research papers were scraped to
find healthy benign images. Although this may be a source
of error due to differences in how the fundus images were
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Fig. 1. VGG16 architecture; info taken from (Blauch et al., 2021)

taken, this was the best dataset that could be acquired. Since
all models were run with the same dataset, we believe that this
did not cause drastic change in which architecture performed
the best. Data-manipulating such as data augmentation was
considered, but was ultimately decided against as medical
imaging is more high-stakes than other image classification
tasks. If the data augmentation causes any slight resolution
issues, it can dramatically impact the accuracy of predictions.
The RB-positive images were captured using a Retcam pedi-
atric camera with patients between the ages 12 to 20 years.
The RB-negative images may not have all been taken in the
same manner. All images were resized to the proper input size
during image and label preprocessing. Although the tumor can
be easily distinguished when looking at figures 2 and 3, in
other cases, it isn’t as easy.

Fig. 2. RB-positive image from the dataset

Fig. 3. RB-negative image from the dataset

B. Preliminary Testing

Scikit-learn’s tool Grid Search CV was considered to find
the best hyperparameters but was not since it is less feasible
with neural networks like the ones used. Though accuracy
was not the final metric used, it was utilized for preliminary
testing. The concern of overfitting arose since high accuracy

rates were obtained. Since all five models returned a similar
testing/validation accuracy/loss, it was deduced that overfitting
was not a major concern. Early stopping was still implemented
to account for overfitting, and the test dataset was used to
confirm the absence of overfitting. Since the test received
similar results as both training & validation, we concluded
that overfitting was not a major issue. For all of the mod-
els, the validation split was 0.4 and the patience for early
stopping was 5, with validation accuracy being monitored.
Epochs were typically 50 (though the model stopped short
due to early stopping), with ResNet50 having 4 epochs due
to overfitting occurring particularly early. Pre-trained image
processing models often take a long time to run, so the epoch
count was lowered in preliminary testing. It was later increased
when further testing was done.

Fig. 4. Results with preliminary VGG16 testing

Fig. 5. Results with preliminary VGG19 testing

Fig. 6. Results with preliminary ResNet50 testing

C. Metrics

For efficient transfer learning model comparisons, a good
way to compare the models is needed. Some metrics that
were considered were accuracy, specificity, and ROC AUC.
Accuracy isn’t the best indicator, as in a sample of 100
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Fig. 7. Results with preliminary Inception v3 testing

Fig. 8. Results with preliminary VGG16 testing

patients, marking all patients as having benign growths if
there were 10 patients with cancer would yield a misleading
0.9 accuracy rate. After careful review, it was decided to
use Dice Similarity Metric (DSC, also known as F-score)
and Intersection-over-Union (IoU), which are considered state-
of-the-art metrics for medical image classification. DSC is
calculated from a harmonic mean of the precision and recall
of a prediction. IoU, also known as the Jaccard index, is
another metric that is recently discovered to have very good
potential in evaluating a model for its efficacy, with respect to
the detection of diseases. IoU typically penalizes under and
over-segmentation more than DSC. As the name suggests,
IoU is calculated by taking the intersection, and union, and
dividing them. In both DSC and IoU, it is noticed that a bigger
weightage is placed on true positives; the more true positives
and fewer false negatives that a model gives, the higher its
Jaccard index and resultant plausibility in clinical applications
is.

DSC =
2|X ∩ Y |
|X|+ |Y |

(1)

(1) DSC formula; info from (”Sørensen–Dice coefficient”,
2023)

DSC =
2TP

2TP + FP + FN
(2)

(2) DSC formula for binary classification

IoU =
|A ∩B|
|A ∪B|

(3)

(3) IoU formula; info from (”Jaccard index”, 2023)

IoU =
TP

TP + FP + FN
(4)

(4) IoU formula for binary classification
Utilizing PyTorch’s Jaccard function, the Jaccard index/IoU

of every model was taken. The average type was set to
micro (calculates metrics globally, across all samples and
classes) and converted the parameters to meet the parameter
specifications needed to input in the y true and y pred. For
y pred, a plethora of functions was run in order to receive the
values in a format that was rendered usable by the model.

Fig. 9. Confusion matrix for VGG16

Fig. 10. Confusion matrix for VGG19

TABLE II
RESULTS WITH METRICS

Transfer Learning Results
Architecture Testing Accuracy/Loss DSC IoU

VGG16 0.9892/0.0394 0.9890 0.9787
VGG19 0.9570/0.2687 0.9885 0.9786

ResNet50 0.8280/0.7493 0.8400 0.7052
Inception v3 0.9892/0.2349 0.9663 0.9374

Xception 0.9677/0.8432 0.9647 0.9371
aAccuracy, DSC, and IoU are maximized, while Loss is minimized.

With VGG16, VGG19, and ResNet50, the largest concern
was overfitting. Often, after just a few epochs, perfect accuracy
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Fig. 11. Confusion matrix for ResNet50

Fig. 12. Confusion matrix for Inception v3

Fig. 13. Confusion matrix for Xception

was achieved, and that provided uncertainty about the validity
of these results. Since the validation and training results for
accuracy and loss were both similar, clarification was needed
about whether or not the models were faced with a situation of
overfitting; one of the most common deep learning problems.
This issue was mitigated with early stopping, a mechanism
that monitors a metric, which in this case was validation
accuracy, and stops the training early if it notices a trend
of overfitting. In the ResNet model, the model was stopped
at 4 epochs, before the early stopping mechanism, since it
was noticed that the ResNet50 model progressively declined
past 4 epochs. However, in VGG16 and VGG19, the early
stopping mechanism was enough to stop the model at a very
high accuracy. In addition, to validate the results given by the
validation accuracy and loss, a testing dataset was separated at
the beginning of running each model and utilized to receive an
accuracy and loss value; in all models, these came out similar
to the results of the training and validation, giving us reason to
believe that there was no overfitting after the measures taken.
As VGG16 and VGG19 are state-of-the-art image-processing
models, it is reasonable to see high-accuracy results in binary
classification tasks such as these. The second concern was the
long time to run these models; since there were many layers
to get through, often, running these models would take a very
long time. This was mitigated by either reducing epochs if the
current stage was preliminary testing or the model training
was run in the background while other aspects of the project
were completed.

It was noticed that the Inception v3 model had a relatively
good Jaccard index and DSC but had an unfathomably high
loss amount. It is believed that the lack of a lot of training data
caused the model to pick up on noise that wasn’t necessarily
significant. It is believed that the Inception v3 model has good
feasibility for usage in healthcare if the data input were to
increase so that the variety of layers in the model wouldn’t
catch noise as easily.

Input size drastically affected the results of models.
ResNet50 takes an input size of 224x224, but at first, 64x64
was selected by accident. This drastically affected the re-
sults since the benign images were resized to much smaller
dimensions. In addition, for ResNet50, this means that the
malignant images were scaled down rather than scaled up.
These contributed to the initial better results for ResNet50,
which are attached. For ResNet50 specifically, although early
stopping measures had already been in place, a force stop at 4
epochs occurred due to overfitting happening extremely early
on. With this extra measure, decent results were achieved.

TABLE III
INITIAL RESULTS FOR MAIN RESNET50 TESTING DUE TO INPUT SIZE

Transfer Learning Results
Architecture Testing Accuracy/Loss DSC IoU

ResNet50 0.8817/0.8578 0.8866 0.7881
aAccuracy, DSC, and IoU are maximized, while Loss is minimized.

In summary, there were various factors that led up to the
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Fig. 14. Initial results for preliminary ResNet50 testing due to input size

Fig. 15. Initial confusion matrix for ResNet50 testing due to input size

results that were received. Most notably overfitting and model
complexity, but regardless it is deduced that the VGG16 model
is the fittest model for RB detection. VGG19 was a very
close runner-up to VGG16. Although the VGG19 model has a
possibility to have pushed over the tiny margin it missed with
more data, the same could be argued for all the models.

III. INTERPRETABLE ARTIFICIAL INTELLIGENCE

This project wishes to maximize the clinical applications of
the architecture that was discovered to be most effective in
RB detection. However, in medicine, after accuracy is trans-
parency, a significant factor that influences a lot of decisions.
Often AI is not trusted due to the black-box setup that is forced
upon doctors when they attempt to utilize AI in healthcare
applications. One solution to this is the usage of the novel
explainable AI techniques of SHapley Additive Explanations
(SHAP) and Local Interpretable Model Agnostic Explanations
(LIME) come in handy. They help provide insight into which
part of the image informed the model of the presence of RB.
LIME wants to minimize the locality-aware loss L(f,g,Πx)
while keeping the model complexity denoted low. SHAP was
the result of the VGG16 model during preliminary testing and
was used to predict a single malignant image. First, the image
was segmented so each pixel didn’t need to be explained.
Then, the top prediction was retrieved. After visualizing the

explanations, an image with SHAP values on it was obtained.
The SHAP value talks about how much each value contributed
toward the final outcome. A negative SHAP value for a feature
means that the feature contributed more toward the listed
diagnosis, and a positive SHAP value for a feature means that
the feature contributed more away from the listed diagnosis.

ϕi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i} − v(S)))

(5)
(5) SHAP formula; info from (Cotra, 2019)

ε(x) = argmax
g∈G

ι(f, g,Π) + Ω(g) (6)

(6) LIME formula; info from (Sharma, 2018)
When going about getting visualizations, the input image is

segmented first. This aids in not having to explain every pixel.

Fig. 16. Segmented image (VGG16)

Afterward, the top prediction for the inputted image is
received. In this case, it was malignant. Finally, the visual-
izations are produced.

Fig. 17. Top prediction for the inputted image (VGG16)

Fig. 18. SHAP visualizations for VGG16 (performed during preliminary
testing stage)

IV. CONCLUSION

In this project, multiple transfer learning architectures were
analyzed: VGG16, VGG19, ResNet50, Inception v3, and
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Fig. 19. SHAP visualizations for VGG19

Fig. 20. LIME visualizations for VGG19

ResNet50. VGG19 is an extension of VGG16. VGG19 con-
tains 19 layers (16 of which are convolutional layers), and
VGG16 contains 16 layers (13 of which are convolutional).
With regards to Inceptionv3 and Xception, Xception is an
extension of Inception v3 but with depthwise separable con-
volutions. Inception v4 was considered but was disregarded
due to the high-loss results of Inception v3. Accuracy and
loss were used as metrics to measure if there was overfitting
in models and/or any major flaws, but DsC and IoU were
the indicators of the feasibility of each model to be used
for RB detection. ResNet50 had the largest concerns for
overfitting after VGG16 and VGG19. Concerns of overfitting
were mitigated by utilizing separate, unseen testing datasets
and early stopping.

It was deduced that VGG16 has the best viability in diag-
nosing RB with a 0.9890 DSC and 0.9787 IoU value. VGG19
was a close runner-up with a 0.9885 DSC and a 0.9786 IoU
value. Inception v3 had a 0.9663 DSC and 0.9374 IoU value,
with Xception being a close runner-up to that model with DSC
and IoU values of 0.9647 and 0.9371, respectively. Finally,
ResNet50 performed the worst with a 0.8400 DSC and 0.7052
IoU value.

SHAP was applied to VGG16 and were able to gain better
insight into which contours of the image caused the diagnosis
that the model gave for a single image. Since VGG19 was a
close runner-up, SHAP and LIME were also run on the results
of that model for a single image and the model was able to
produce interesting visuals making it easier to understand how
the model viewed the image that was inputted.

Through the use of metrics such as DSC and IoU, which
are specifically designed for medical image classification, and

by comparing popular pre-trained image processing architec-
tures, the effectiveness of these models can be evaluated in
identifying tumor features. Additionally, by employing XAI
techniques such as SHAP and LIME, the transparency of the
decision-making process of these models can be enhanced and
promote trust in AI among clinicians. These combined efforts
can improve the clinical applicability of deep learning models
and assist doctors in possibly identifying novel tumor features.

V. FUTURE RESEARCH

Artificial intelligence in medicine often faces one common
challenge; accurate data to develop effective models. One way
to improve the architectures’ accuracy is by acquiring data
from previous deep-learning studies on RB. By using this data
to feed the models larger datasets, it can be ensured that the
models are trained with large, high-quality datasets. To acquire
this data, it will be ensured that research ethics guidelines are
followed and the necessary licensing is obtained. A correspon-
dence was already made to a previous deep-learning study that
utilizes 36,623 images (Zhang et al., 2022). By incorporating
the aforementioned data into the models, it is possible to
improve the accuracy of the models, resultantly increasing
the clinical viability of this AI solution for diagnosing RB
in LMICs.

One hanging end of this project is creating a cost-effective
device to collect fundus imaging and data for biomarkers,
alongside connecting fundus imaging and biomarker data.
Fundus imaging is an expensive technique utilized to diagnose
ocular diseases and is not very accessible. By finding a way
to train the models with iPhone images, which MDEyeCare
has explored the feasibility of, this goal can be achieved.
In addition, inexpensive methods to collect HIPAA-compliant
data are discovered, algorithmic efficiency is maximized to
decrease operating costs, and the model is trained with images
and possibly biomarkers; it is possible to create a multimodal
approach to maximize this solution’s applicability to LMICs.

Overall, by incorporating data from existing studies, creat-
ing cost-effective data-collecting devices, exploring the use of
biomarkers, and following HIPAA compliance guidelines, it is
possible to increase the affordability and efficiency of medical
models. These efforts can ultimately improve patient outcomes
in LMICs and decrease the disparity in access to high-quality
medical care.
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