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Abstract 
Accurate predic8ons of hospital discharge events could help improve pa8ent flow through 
hospitals and the efficiency of care delivery. However, the poten8al of integra8ng machine 
learning with diverse electronic health records (EHR) data for this task has not been fully 
explored. We used EHR data from 01 February 2017 to 31 January 2020 in Oxfordshire, UK to 
predict hospital discharges in the next 24 hours. We fijed separate extreme gradient 
boos8ng models for elec8ve and emergency admissions, trained using the first two years of 
data and tested using the final year of data. We examined individual-level and hospital-level 
model performance and evaluated the impact of training data size and recency, predic8on 
8me of day, and performance in different subgroups. Our individual pa8ent level models for 
elec8ve and emergency admissions achieved AUCs of 0.87 and 0.86, AUPRCs of 0.66 and 
0.64 and F1 scores of 0.61 and 0.59, respec8vely, substan8ally bejer than a baseline logis8c 
regression model. Aggrega8ng individual probabili8es, the total daily number of hospital 
discharges could also be accurately es8mated, with mean absolute errors of 8.9% (elec8ve 
admissions) and 4.9% (emergency admissions). The most informa8ve predictors included 
an8bio8c prescrip8ons, other medica8ons, and hospital capacity factors. Performance was 
generally robust across pa8ent subgroups and different training strategies, but lower in 
pa8ents with longer lengths of stay and those who eventually died in hospital. Our findings 
highlight the poten8al of machine learning in op8mising hospital pa8ent flow and facilita8ng 
pa8ent care and recovery. 
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Introduc.on 
Increasing demand for healthcare, driven by changing popula8on demographics, a rise in the 
prevalence of chronic diseases, societal changes, and technological advances, places 
significant strain on hospital resources1. In the United Kingdom (UK), the Na8onal Health 
Service (NHS) has faced escala8ng demand pressures in recent years, with an increasing 
number of admissions, prolonged wai8ng 8mes in Emergency Departments, and financial 
challenges2,3. This has been exacerbated by the COVID-19 pandemic, resul8ng in substan8al 
backlogs in both urgent and rou8ne care4. With healthcare resources being inherently 
limited, there is a pressing need to enhance the efficiency of healthcare services and 
improve hospital capacity management. A cri8cal component is pa8ent flow within 
hospitals, referring to the movement of pa8ents from admission to discharge while ensuring 
they receive appropriate care and resources5. Op8mising this could improve pa8ent 
experiences, avoid delays in treatment, improve health outcomes, and reduce costs6.  
 
Accurately predic8ng when pa8ents will be discharged from the hospital could improve 
pa8ent flow, e.g. promp8ng clinicians when pa8ents are approaching readiness for 
discharge, facilita8ng booking transport home, enabling 8mely prepara8on of discharge 
medica8on and documenta8on, and pre-emp8vely arranging room cleaning. Currently, 
discharge predic8ons are made in most hospitals at the individual pa8ent level by clinical 
teams based on the pa8ent's diagnosis and status and are updated throughout their hospital 
stay. However, these assessments can be subjec8ve and variable and may not always be 
captured in electronic healthcare record (EHR) systems, posing challenges to efficient 
opera8onal management. Therefore, there is growing interest in leveraging automated 
predic8on models to forecast the length of stay (LOS) and discharge 8ming, both individually 
and hospital-wide.  
 
Discharge predic8on has therefore become a key target for clinical machine learning 
researchers. Several previous studies have ajempted to predict discharge within a fixed 8me 
window (Table 1), with studies typically predic8ng discharge within the next 24, 48, or 72 
hours. Some of these studies have focused on specific pa8ent popula8ons, e.g. surgical 
pa8ents7,8 or those with cardiovascular disease9, while others predict discharge for whole 
hospitals10–14. A range of different classical machine learning approaches have been 
evaluated, including random forests, gradient boosted trees, and mul8layer perceptron 
neural networks. Input features being considered typically include details rela8ng to the 
index date the predic8on is being made on, past medical history, prior length of stay, 
demographics, current vital signs and laboratory markers, diagnoses, procedures, and 
medica8ons. Performance is typically modest in most models, although some perform 
bejer, with area under the receiver opera8ng curve (AUC) values ranging from 0.70-0.86 in 
whole hospital models. One notable excep8on is a model that also included data on EHR-
user interac8ons10, such as the frequency of clinical notes being updated, viewed, or printed, 
which achieved an AUC of 0.92 for predic8ng discharge within 24 hours. However, this study 
only included the first admission for each pa8ent, poten8ally under-represen8ng complex 
pa8ents who may be frequently re-admijed. It also excluded pa8ents who died during 
hospitalisa8on. Addi8onally, in most previous studies several key areas relevant to 
implementa8on were not fully explored, including the impact of training data size and 
recency, the 8me of day or day during the week a predic8on is made, and performance 
rela8ve to length of stay and specific pa8ent subgroups, including those affected by health 
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inequali8es. Most studies either evaluated individual-level discharge predic8on performance 
or hospital-wide predic8ons, but did not combine the two in a single approach. 
 
In this study, we used diverse EHR-derived features and data from a large UK teaching 
hospital group to develop machine learning models to predict individual pa8ent-level 
hospital discharge within the next 24 hours. By aggrega8ng individual predic8ons, our 
models were also successful in predic8ng the total hospital-wide number of discharges 
expected. 
 
 
Methods 
Data and se)ng 
We used data from the Infec8ons in Oxfordshire Research Database (IORD) which contains 
deiden8fied electronic healthcare records from Oxford University Hospitals (OUH) NHS 
Founda8on Trust. OUH consists of four teaching hospitals in Oxfordshire, United Kingdom, 
with a total of ~1100 beds, serving a popula8on of ~755,000 people and providing specialist 
services to the surrounding region. 
 
We extracted data for all adult inpa8ents (≥16 years) from 01 February 2017 to 31 January 
2020 who had an ordinary admission (i.e., excluding day case, regular day admission, and 
regular night admissions). We excluded pa8ents whose admission specialty was obstetrics or 
paediatrics, as these special8es used a different EHR system and/or discharge pathway. We 
grouped admissions into elec8ve admissions (those scheduled in advance) and emergency 
admissions (those who entered hospital through the Emergency Department or other 
emergency admissions units) based on admission method codes (Figure S1).  
 
Model features 
Domain knowledge and prior literature were used to determine which features within the 
dataset were poten8ally informa8ve for predic8ng pa8ent discharge. Input features included 
index-date related features, pa8ent demographics, comorbidi8es, current admission 
features, previous length of stay for pa8ents on the same ward, current diagnosis, recent 
procedures, an8bio8c prescrip8ons, other medica8ons, microbiology results, radiology 
inves8ga8ons, prior hospital stays and readmissions in the last year, hospital factors, vital 
signs measurements, and laboratory test results (Table S1, Supplementary methods). 
 
Predic4on task 
We predicted hospital discharge events within 24 hours of an index date and 8me for all 
pa8ents currently in the hospital (individual-level predic8ons). Model predic8on 
probabili8es were also aggregated to predict the total number of pa8ents currently in 
hospital who would be discharged within the next 24 hours following the index date 8me 
(hospital-level predic8ons). We used a pragma8c and opera8onally relevant endpoint, 
predic8ng discharges from hospital with any outcome (discharged alive, transferred to 
another hospital, or died). 
 
Each pa8ent contributed once to the dataset per day during their hospital admission. 
Separate models were built for emergency and elec8ve admissions as predic8ve features 
may be different depending on the reason for admission. For the main analyses, predic8ons 
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were made at 12 pm for both the training and test data, and the probability of a pa8ent 
being discharged by 12 pm on the following day was obtained. However, in real-world use 
model predic8ons are likely to be applied throughout the day as new pa8ents are admijed 
and others discharged. We therefore performed three sets of sensi8vity analyses: 1) train 
and predict discharge at other 8mes of day (midnight, 6 am, 6 pm); 2) train the model and 
predict discharge using data drawn randomly throughout the day, using data available at 2 
hourly intervals, i.e., midnight, 2 am, 4 am, …, 10 pm; 3) train and predict discharge at 
different 8mes of day (e.g. train at 12 pm, test at 6 am). 
 
We used extreme gradient boos8ng (XGB) models to predict discharge within the next 24 
hours from an index date. Models were trained using data from the first two years of the 
study (01 February 2017 to 31 January 2019) and evaluated using data from the final year of 
the study (01 February 2019 to 31 January 2020). To examine whether the trained model 
could be used to predict hospital discharge following the COVID-19 pandemic, we also used 
data from 01 February 2021 to 31 January 2022 as an addi8onal held-out test dataset.  
 
We randomly split the training data, using 80% of the data for the main model training. 
Within this, a Bayesian op8misa8on for hyperparameters was performed by employing Tree-
based Parzen es8mators (TPE) to search through a wide poten8al hyperparameter space, 
maximising the AUC during 5-fold cross-valida8on. Details of model tuning are provided in 
the Supplementary methods. We used the built-in scale_pos_weight in XGB classifier to 
account for class imbalance, i.e. the fact there are more non-discharge events than 
discharges. No imputa8on of missing data was performed, as XGB can handle missing data 
by design. We used the remaining 20% of the training data as valida8on data for feature 
selec8on, calibra8ng the predicted probability from XGB models using isotonic 
regression15,16 and determining the best threshold for predic8ng a discharge event by 
op8mising the F1 score (jointly maximising precision and recall). Ini8ally, all 1,152 features 
were used to fit each model. Models were then re-fijed with progressively fewer features, 
retaining the top-ranked features from each full model. Performance in the valida8on data 
and training 8me was used to select the op8mal number and list of input features for the 
main analyses. The model pipeline is shown in Figure 1. Model performance was compared 
to a baseline logis8c regression with fewer selected features (age, sex, day of the week, 
hours since admission), for benchmarking against a rela8vely simple model.   
 
Performance assessment 
Individual-level model performance was evaluated using sensi8vity (recall), specificity, 
balanced accuracy (arithme8c mean of sensi8vity and specificity), posi8ve predic8ve value 
(PPV, precision), nega8ve predic8ve value (NPV), F1 score (harmonic mean of precision and 
recall), AUC, and area under the precision-recall curve (AUPRC). PPV and NPV provide 
interpretable real-world metrics rela8ng to actual discharge decision making and predic8on 
performance. Although they depend on the prevalence of discharge events, our es8mates 
are likely to apply to hospitals with similar daily discharge rates. F1 scores and AUPRC are 
also impacted by prevalence, and for a given sensi8vity and specificity will be lower as 
prevalence falls, which should be considered when comparing subgroups with different 
discharge prevalence. 
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For hospital-level predic8on, we summarised the accuracy of predic8ons of the total number 
of pa8ents discharged using normalised mean absolute error (MAE, %), i.e. the mean of the 
differences in predicted and actual discharges each day (over the 365 predic8ons in the test 
dataset) divided by the mean number of discharges per day.  
 
We calculated the SHapley Addi8ve exPlana8ons (SHAP) values17 for each feature in the 
training dataset to determine feature importance.  
 
We examined the model performance in different subgroups by age, sex, ethnicity, index of 
mul8ple depriva8on score, weekday of the index date, admission specialty, comorbidity 
score, source of admission, days since admission, and discharge outcome (alive or died). We 
also used equalised odds differences to compare model fairness, by checking if either the 
per subgroup true posi8ve rate or true nega8ve rate differed from the overall rate by greater 
than an illustra8ve threshold of 0.118.  
 
We also evaluated model performance using the same test data, but with different lengths 
of training data from 1 to 24 months, and the impact of training data recency using 12 
months of training data at varying 8me intervals before the fixed test dataset.  
 
 
 
Results  
From 01 February 2017 to 31 January 2020, 52,590 elec8ve admissions and 202,633 
emergency admissions were recorded. Using 12 pm as the predic8on 8me, 63,909 (25.0%) 
short admissions were excluded from the main analyses because these admissions did not 
include 8me in hospital at 12 pm (Figure S1), i.e. some admissions started aCer 12 pm and 
these pa8ents were discharged before 12 pm the following day. All other admissions <24h 
but spanning 12pm were included. This resulted in a total of 48,039 elec8ve admissions 
(38,627 pa8ents) and 143,275 emergency admissions (86,059 pa8ents) included in the 
analyses. The median (IQR) age at admission was 65 (47-79) years, 97,869 (51.2%) pa8ents 
were female, and 148,060 (77.4%) were recorded as being of white ethnicity (ethnicity 
missing in 33,626, 17.6%). The median (IQR) length of hospital stay was 2.2 (1.2, 5.0) days for 
elec8ve admissions and 2.1 (0.8, 6.0) days for emergency admissions. The distribu8on of 
demographic characteris8cs was similar between the training and test datasets (Table 2).  
 
Model performance for individual-level predic4on 
Predic8ng discharge at 12 pm, 237,672 and 809,279 pa8ent days for elec8ve and emergency 
admissions were included in the analyses. 47,177 (19.8%) and 141,531 (17.5%) discharge 
events within 24 hours of the index date were observed, respec8vely. The propor8on of 
pa8ents discharged from the hospital within the next 24 hours decreased as the prior length 
of stay in the current admission increased, and varied between emergency and elec8ve 
admissions, and the day of the week of the index date (Figure 1). 
 
Using the valida8on dataset, we evaluated model performance with varying numbers of 
features, ranging from 10 to all 1,152 features. Model performance ini8ally improved as 
more features were included, but then plateaued with ≥200 features (and for some metrics 
even slightly declined) (Figure S2). As expected, training 8me increased with the number of 
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features (Figure S2). We therefore used the top 200 ranked emergency and elec8ve model 
features in all subsequent emergency and elec8ve models. 
 
For elec8ve admissions, the AUC for predic8ng discharge within 24 hours was 0.871, and the 
AUPRC was 0.658 (Figure S3). Using a probability threshold that op8mised F1 score in the 
valida8on dataset, the PPV was 0.555, NPV 0.911, and F1 score 0.609 (Table 3). The 
performance for emergency admissions was slightly lower than elec8ve admissions, with an 
AUC of 0.860, AUPRC 0.644 (Figure S3), PPV 0.571, NPV 0.912, and F1 score 0.593 (Table 3). 
Predicted probabili8es reflected the real probabili8es of discharge aCer calibra8on, with 
calibra8on errors of 0.003 and 0.001 for elec8ve and emergency admissions, respec8vely 
(Figure S4). Performance in training, valida8on, and test data is shown in Table S2. 
 
The XGB models showed substan8ally bejer performance than the baseline logis8c 
regression model, which had AUCs of 0.629, 0.708, AUPRCs of 0.269, 0.349, and F1 scores of 
0.385, 0.409 for elec8ve and emergency admissions, respec8vely (Table 3). When combining 
elec8ve and emergency admissions into a single XGB model, performance was similar to that 
of the XGB model for emergency admissions, with an AUC of 0.859, AUPRC 0.634, PPV 0.561, 
NPV 0.909, and F1 score 0.587. 
 
When using the trained model to predict discharge in the post-COVID test data (01 February 
2021 to 31 January 2022), performance remained similar for elec8ve admissions, with an 
AUC of 0.864 and AUPRC of 0.614, but was lower for emergency admissions, with an AUC of 
0.820 and AUPRC of 0.543 (Table 3).  
 
Model performance for hospital-level predic4on 
We calculated the total number of discharges expected in the next 24 hours across all 
elec8ve or emergency admissions in the hospital by summing the individual-level predicted 
discharge probabili8es. The predicted number of discharges accurately reflected daily 
fluctua8ons in discharge numbers during the week for elec8ve and emergency pa8ents, and 
the performance was similar across the whole test data period (Figure 2). The MAE was 8.9% 
(MAE=3.7 discharges, mean total discharges = 41) for elec8ve admissions, lower than the 
10.7% (MAE=4.4/41) obtained using baseline logis8c regression models, and was 4.9% 
(MAE= 7.2/146) for emergency admissions using XGB compared with 5.8% (MAE=8.6/146) 
using the baseline models (Table 3). MAEs were higher in post-COVID test data, being 11.6% 
(MAE= 3.9/34) for elec8ve (higher in percentage terms in part because of lower total 
discharge numbers), and 10.0% (MAE= 15.0/150) for emergency (Table 3, Figure S5).  
 
Subgroup performance and model fairness 
Using balanced accuracy to jointly summarise sensi8vity and specificity, model performance 
was broadly similar by sex, ethnicity, and depriva8on score, but some varia8ons existed in 
other subgroups. For elec8ve admissions, predic8ons made on Monday and Sunday, and for 
pa8ents admijed to trauma and orthopaedics or acute medicine had lower balanced 
accuracy. For emergency admissions, balanced accuracy was lower on Sundays, and for 
pa8ents admijed to trauma and orthopaedics and medical subspecial8es. For both elec8ve 
and emergency admissions, balanced accuracy was lower in those >80 years, those with high 
comorbidity scores, with increasing days since admission, and in admissions from other 
hospital providers. Balanced accuracy was also substan8ally lower in those who died in 
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hospital than those who were discharged alive (with lower AUCs, AUC= 0.712 vs 0.870, 0.762 
vs 0.862 for elec8ve and emergency admissions, respec8vely). In addi8on to lower accuracy, 
lower discharge rates in some subgroups including with increasing prior length of stay, also 
contributed to lower in PPV in those groups, albeit with linked increases in NPV (Figure 3, 
see Figure S6 for F1 scores, AUC and AUPRC). Most subgroups met an equalised odds 
difference threshold of 0.1 (Figure S6). Within elec8ve admissions, excep8ons included 
predic8ons made on Sunday, pa8ents admijed from other hospital providers, with ≥10 days 
prior length of stay, and those who died in hospital. Predic8ons made on the day of 
admission had bejer than average performance. For emergency admissions, excep8ons 
included pa8ents >80 years, those admijed to trauma and orthopaedics or from other 
hospital providers, with ≥4 days since admission, and those who died in hospital. 
 
Sensi4vity analyses by predic4on 4me 
Pa8ents were more likely to be discharged between 10 am and 8 pm, and the observed 
propor8on of pa8ents discharged within the next 24 hours slightly varied by predic8on 8me 
chosen (Figure S7). Using models trained at 12 pm, performance varied with different 
predic8on 8mes (12 am, 6 am, 12 pm, 6 pm, randomly throughout the day), with the best 
performance at 12 pm (AUC=0.871, 0.860 for elec8ve and emergency admissions, 
respec8vely), followed by 6 am for elec8ve admissions (AUC=0.861) and 6 pm for emergency 
admissions (AUC=0.812). Performance was lowest predic8ng discharges over the next 24h at 
6 pm for elec8ve admissions (AUC=0.817) and 12 am for emergency admissions (AUC=0.789) 
(Figure 4).   
 
Compared to models trained and tested at 12 pm, the performance was slightly worse when 
the model was trained and predic8ons were made using 8mes drawn randomly throughout 
the day, with AUC of 0.858 and 0.849 for elec8ve and emergency admissions, respec8vely 
(Figure 4, Figure S8). However, this performance exceeded that observed for most models 
trained at a specific 8me but tested at different 8mes. 
 
When training and predic8ng at the same 8me of day, the performance was slightly bejer at 
12 am and 6 am for elec8ve admissions, with AUC of 0.874 and 0.876, respec8vely (vs. 
0.871). However, the performance was lower in emergency admissions, with AUC of 0.816 
and 0.819, respec8vely (vs. 0.860). The performance was slightly lower at 6 pm for both 
elec8ve and emergency admissions compared to 12 pm (AUC=0.847 and 0.826) (Figure 4, 
Figure S8). 
 
Training dataset size and recency impact predic4on performance 
Fixing the test dataset to the 12 months from 01 February 2019, we evaluated the 
performance of models trained with data from the preceding 1-24 months, i.e., ranging from 
only 01 January 2019 to 31 January 2019 to the en8re period from 01 February 2017 to 31 
January 2019. Individual pa8ent-level and hospital-wide performance all improved as the 
number of months of training data increased, but largely plateaued aCer 12 months (Figure 
5a). This satura8on effect suggested that the 24 months of training data used in the main 
analysis was more than sufficient to achieve op8mal performance. The rela8ve percentage 
change in AUC for 1 vs 24 months, and 12 vs 24 months of training data was 8% and 0.9% for 
elec8ve admissions, 5% and 0.6% for emergency admissions, and in AUPRC 24% and 2.1%, 
and 10% and 1.6% for elec8ve and emergency admissions, respec8vely. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2024. ; https://doi.org/10.1101/2023.05.02.23289403doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.02.23289403
http://creativecommons.org/licenses/by-nc/4.0/


 9 

 
Mimicking real-world implementa8on, we also considered the impact of decreasing the 
recency of training data (Figure 5b). We used the same fixed test dataset, but only 12 
months of training data varying with an interval of 0 to 12 months between the end of the 
training period and the start of the tes8ng period. Performance was generally consistent, 
with the most recent training data performing only slightly bejer. The rela8ve percentage 
change for 0 vs 12-month intervals in AUC was only 1% and 1%, and AUPRC was only 5% and 
2% for elec8ve and emergency admissions, respec8vely. 
 
Feature importance  
The top five most important features for predic8ng discharge in elec8ve admissions were 
number of oral medica8ons received in the last 24 hours, the standard devia8on of historic 
length of stay for other pa8ents on the current ward, if the pa8ent completed a course of 
an8bio8cs in the last 24 hours, receipt of intravenous an8bio8cs in the last 24 hours, and the 
number of procedures the pa8ent underwent in the last 24 hours. For emergency 
admissions, the five most important features were number of oral medica8ons in the last 24 
hours, comple8on of an8bio8cs in the last 24 hours, hours since admission, the standard 
devia8on of historic length of stay for other pa8ents on the current ward, and receipt of 
intravenous an8bio8cs in the last 24 hours. The top 20 most predic8ve features are shown in 
Figure 6. We also grouped individual features by feature category and summarised the mean 
importance of the top five most important features within each feature category. The most 
important feature categories were (non-an8bio8c) medica8ons, an8bio8cs, hospital capacity 
factors, procedures, and lab tests in elec8ve admissions, and (non-an8bio8c) medica8ons, 
an8bio8cs, hospital capacity factors, demographics, and current admission factors in 
emergency admissions (Figure 6). Combining elec8ve and emergency admissions into a 
single model, the most important feature categories were (non-an8bio8c) medica8ons, 
an8bio8cs, hospital capacity factors, current admission factors, and ward stay features 
(Figure S9).  
 
 
Discussion 
Machine learning underpinned by large-scale EHR data has the poten8al to transform how 
healthcare is delivered, but applica8ons to the opera8onal management of hospitals are 
largely unexplored19. By exploi8ng a wide range of features in EHR, we can accurately predict 
pa8ent discharge events within the next 24 hours across hospitals. We predicted the total 
number of discharges each day following an elec8ve admission with an MAE of 8.9% and 
4.9% following an emergency admission. We also achieved accurate predic8ons for 
individual pa8ents with an AUC of 0.871 and 0.858 for elec8ve and emergency admissions, 
respec8vely. PPV and NPV were 0.555 and 0.911 following an elec8ve admission, and 0.571 
and 0.912 following an emergency admission. We achieved substan8ally bejer performance 
at predic8ng individual discharge than the baseline logis8c regression model, with a 0.18-
0.22 absolute improvement in F1 score, 0.15-0.24 improvement in AUC, and 0.30-0.39 
improvement in AUPRC. 
 
We built on prior studies and included a wide range of features, selected and curated by 
experienced clinicians, sta8s8cians, and machine learning experts. We accounted for 
individual pa8ent factors, both immediate and longer-term, and considered hospital-wide 
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factors including historical length of stay for specific condi8ons. Our model performance is 
amongst the best reported for this task, while also pragma8cally accoun8ng for pa8ents 
admijed more than once and those who died, in contrast to the best-performing reported 
model which excluded both these pa8ent groups10. While alterna8ve model architectures, 
including those that allow en8re 8me series as inputs, might enhance performance, they 
may likely also need improved data quality to achieve significant performance gains at the 
cost of computa8onal resources and training 8me. Although the model performance 
achieved by our study and others could translate to opera8onal benefits, further studies 
comparing model performance to clinician predic8ons and of trial implementa8ons are 
required.  
 
We aggregated pa8ent-level probabili8es into precise predic8ons of daily discharge numbers 
at the hospital level, in contrast to other approaches modelling total discharges for the 
en8re popula8on20 or combining binary pa8ent-level predic8ons (e.g., admission/discharge 
yes/no)21. Splizng data by calendar 8me rather than randomly splizng data into training 
and tes8ng, we showed that hospital data in previous years could accurately predict 
discharges in future years. Also, our model was generally robust in predic8ng discharges 
following the start of the COVID-19 pandemic, with the performance for elec8ve pa8ents 
remaining essen8ally unchanged. However, performance was lower in emergency 
admissions, likely in part reflec8ng changes in reasons for admission, hospital capacity22 and 
the availability of community support following discharge. 
 
Our model performance was consistent across different popula8on subgroups by sex, 
ethnicity, and depriva8on, but was lower in longer admissions, older pa8ents, and those 
who were admijed from other hospital providers. We achieved best performance for short-
stay pa8ents, where factors related to their ac8ve treatment and response were important 
in discharge decisions and were rela8vely well captured by the data we used. In contrast, for 
longer-stay and older pa8ents, par8cularly aCer an emergency admission, gaps in available 
data led to less accurate predic8ons. This highlights the importance of extending the data 
types available to improve performance, e.g., assessments of func8onal state which is oCen 
documented only as free text and were not available in the data we used, and external 
factors such as the availability of social care and typical wai8ng 8mes for social care 
packages or residen8al care. Performance was much lower in pa8ents who died in hospital, 
poten8ally because the model training favoured features that predicted recovery rather than 
deteriora8on when predic8ng discharge. Fizng a mul8class model, e.g. predic8ng discharge 
alive in 24 hours, death before discharge, and discharge alive aCer 24 hours, could address 
this, since these different outcomes are likely to have different predictors. This might 
substan8ally improve individual-level predic8ons whilst having less impact on overall 
accuracy based on summing individual-level predicted probabili8es of discharge alive and 
death across the popula8on.  
 
Model performance was bejer with increasing training data size, with satura8on at around 
12 months’ training data, and was slightly bejer using more recent than distant data, 
sugges8ng that training could be undertaken without using excessive historical data and 
could simply be updated two or three 8mes a year in a real-world applica8on. Addi8onally, 
differences between the 8me of day that models were trained and tested on had a rela8vely 
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modest impact, however where computa8onal resources allow, op8mal performance could 
be achieved by using models tuned to specific 8mes of day. 
 
We found that non-an8bio8c medica8ons, an8bio8cs, and hospital capacity factors were the 
most predic8ve feature categories for both emergency and elec8ve admissions. Switching to 
oral medica8ons or comple8ng an8bio8c courses usually indicates clinical improvement, and 
hospital capacity factors such as the length of stay of current inpa8ents and the number of 
pa8ents in the current ward reflect the crowdedness/pressure on hospital beds. On the 
contrary, discharge planning (physiotherapy contacts), microbiology tests, and previous 
lengths of stay and readmissions played a rela8vely minor role in discharge predic8on. 
Sequen8ally including more of the most predic8ve features increased model performance, 
but plateaued aCer including the top 200 features, and the computa8onal 8me was 
substan8ally reduced to only 20% vs when all 1152 features were used, sugges8ng that 
including more features does not necessarily improve performance. Hospitals may need to 
pay more ajen8on to the data collec8on quality of the key features that are most predic8ve 
to achieve accurate and efficient predic8ons.  
 
Ensuring the availability of beds and 8mely pa8ent discharge is pivotal in managing pa8ent 
flow within healthcare systems23, but exis8ng interven8ons oCen adopt sta8c procedures 
such as ‘discharge by noon’, or respond only to cri8cal levels of pa8ent demand24, therefore 
failing to address the broader complexi8es of pa8ent flow dynamics. Moreover, the 
integra8on of automated discharge predic8on models into clinical prac8ce remains limited25. 
We envision our approach could be deployed in several ways. For example, within each 
hospital ward, a dashboard of discharge tasks (follow up plan, discharge lejers, discharge 
medica8on, transport, social care readiness, etc) and binary predic8ons of discharge within 
the next 24 hours, could be used by healthcare workers to flag pa8ents likely to be 
discharged but with outstanding tasks. Discharge probabili8es could also be used to rank the 
pa8ents most likely to go home to ensure their discharge prepara8ons were priori8sed. 
Where the total number of planned or expected admissions within the next 24 hours 
exceeded the predicted number of discharges, prepara8ons for redeploying staff and 
resources could be made by opera8onal teams. On-going oversight of input data 
quality/completeness and the accuracy of predic8ons by specialist data science teams would 
be required at a hospital level. Taken together, our models have the poten8al to be applied 
to improve the efficiency of pa8ent flow across hospital sezngs, leading to accelerated care 
delivery and pa8ent recovery, and op8mal use of healthcare resources. Although our study 
was based on data from hospitals in Oxfordshire, this framework could poten8ally also apply 
to hospitals in other regions within the UK and interna8onally with similar sezngs, offering 
a prospect for mi8ga8ng the pressure of overcrowding on NHS and other healthcare 
systems, thus improving healthcare delivery efficacy and resource management on a 
na8onal scale. 
 
Limita8ons of our study include our focus on a rela8vely short predic8on horizon of 24 
hours, limi8ng the scope of planning and interven8ons that could follow the same 8mescale. 
However, our approach could be adapted to make longer-range predic8ons too. We used 
diagnosis categories derived from ICD-10 codes for training and tes8ng, which were only 
recorded at discharge, however in reality the primary working diagnosis is known in real-
8me to clinicians and could be used if documented electronically. We did not incorporate 
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hospital features such as the percentage of occupied beds, as the number of available beds 
in each hospital was not available in our dataset. Addi8onally, we did not evaluate how 
model performance varied with the degree of opera8onal pressure experienced by 
hospitals, which could be considered in the future as accurate predic8ons are par8cularly 
beneficial when resources are most constrained. We adopted a rela8vely simple, pragma8c 
approach to feature engineering, using summaries of 8me series data including blood tests 
and vital sign measurements. Performance could poten8ally be improved by bejer 
represen8ng these dynamic data in future work, and by inves8ga8ng the benefits of 
dimensionality reduc8on and more complex feature representa8ons such as 𝑡-SNE26 or 
autoencoders27. Moreover, we used temporal data from the same hospital for valida8on and 
tes8ng, rather than data from a completely different hospital group. Future work should 
incorporate valida8on with data from diverse sezngs to further strengthen the validity and 
generalisability of our findings, as well as studies of the impact of deploying similar models.  
 
We only used structured EHR data for predic8ng imminent hospital discharge and did not 
consider other data types such as unstructured free text, which could poten8ally improve 
predic8on further, par8cularly for pa8ents with prolonged hospital stays. We used the 
XGBoost algorithm, which is a widely employed method recognised for its superior 
performance compared to other tradi8onal machine learning models, but other advanced 
architectures including deep learning models have the poten8al for improving performance 
and accommoda8ng flexible updates, such as incorpora8ng new data over 8me or across 
different sezngs. In recent years, there has been an increasing interest in using natural 
language processing and deep learning models for hospital management tasks such as 
length of stay predic8on and u8lising more complex data including free text medical 
records28–30. For example, a recent study demonstrated the efficacy of large language 
models trained on unstructured clinical notes for predic8ng hospital length of stay, 
outperforming tradi8onal models31. Future studies should explore similar approaches and 
make use of unstructured data to enhance predic8ve capabili8es for healthcare 
management. 
 
In conclusion, our study shows the feasibility of integra8ng machine learning modelling 
approaches with EHR data to facilitate real-8me opera8onal management in hospitals, with 
realis8c requirements for training data and model upda8ng. Our models achieve a good 
performance for both individual-level and hospital-level discharge predic8ons, 
demonstra8ng the poten8al to be deployed to improve the efficiency of hospital 
management, pa8ent flow dynamics, and expedite pa8ents’ recovery and discharge 
processes. 
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Publica(on/Year Popula(on Outcome Model Features Performance, AUC 
where available 

Ahn et al. 2021 Inpa/ents with 
cardiovascular diseases 
admi:ed to Asan 
Medical Centre in Korea 
between 2000 to 2016; 
669,667 records 

Discharge within 
the next 72 hours 
(predic/ons not 
made on the day 
of discharge) 

Extreme gradient 
boos/ng (XGB) 

Index date-related features, 
diagnosis, opera/ons, 
medica/ons, procedures, 
laboratory tests, past 
medical history (last 3 years) 

AUC 0.87 

Zhang et al. 2021 Adult pa/ents admi:ed 
to Vanderbilt University 
Medical Centre in 2019; 
26,283 pa/ents 

Discharge within 
24 hours 

Light gradient 
boos/ng machine 
(LGBM) 

Age, race, gender, 
insurance, user-EHR 
interac/ons (e.g. 
view/modify/export EHR 
entries), past medical 
history (Phecodes), 
discharge units, length of 
stay, discharge /me, 
discharge day of week 
 

 

AUC 0.92 with user-
EHR interac/ons 
 
AUC 0.86 without 
user-EHR interac/ons.  

Barnes et al. 2016 Pa/ents admi:ed to a 
mid-Atlan/c academic 
medical centre from 
2011-2013; 8,852 
pa/ent visits and 20,243 
individual pa/ent days 

Discharge within 7 
and 17 hours 
(from 7 am). 

Logis/c regression 
(LR); Random Forest 
(RF) 

Gender, ethnicity, age, 
insurance, reason for visit, 
observa/on status, 
discharge loca/on, pa/ent 
census, day of week, 
elapsed length of stay  

 

Sensi/vity:  LR: 65.9; 
RF: 60.0 
 
Specificity: LR: 52.8; 
RF: 66.0 

Levin et al. 2021 Adult pa/ents admi:ed 
to a community hospital 
in Maryland, USA 
between April 2016 and 
August 2019; 120,780 

Discharge on the 
same day, by the 
next day, within 
the next 2 days 

RF Demographic, 
administra/ve, temporal, 
medica/on, other 
interven/ons, diagnos/cs, 
monitoring, rehabilita/on, 

AUC 0.80 (same day) 
AUC 0.70 (next day) 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2024. ; https://doi.org/10.1101/2023.05.02.23289403doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.02.23289403
http://creativecommons.org/licenses/by-nc/4.0/


 20 

discharge for 12,470 
pa/ents 

consults, diet and more 
complex clinical markers 
(pain management, 
substance abuse, sepsis, 
cardiac arrest, acute kidney 
injury) 

Bertsimas et al. 2021 Inpa/ents admi:ed at 
Beth Israel Deaconess 
Medical Centre between 
January 2017 and 
August 2018; 63,432 
unique admissions 
(41,726 unique pa/ents) 

Discharge within 1 
day, discharge 
within 2 days 

LR, CART decision 
trees, Op/mal trees, 
RF, Gradient boosted 
trees 

Diagnosis, medica/ons, 
laboratory results, body 
mass index, type of diet, 
level of ac/vity and 
autonomy, socioeconomic 
factors, opera/ons, 
laboratory results, and vitals 

Discharge within 1 
day, AUC 0.84 
 
Discharge within 2 
days, AUC 0.82 

Safavi et al. 2019 Adult pa/ents 
discharged from 
inpa/ent surgical care in 
the US from May 1, 
2016, to August 31, 
2017; 15,201 hospital 
discharges 

Discharge within 
24 hours 

Mul/layer 
perceptron neural 
network  

Demographics, surgery 
informa/on, clinician 
orders, clinical test results, 
bedside assessments, 
clinical recommenda/ons, 
medica/on administra/on, 
catheter informa/on, care 
team notes 

AUC 0.84 

Lazar et al. 2020 Adult surgical pa/ents 
discharged from 
inpa/ent care between 
July 2018 and February 
2020; 10,904 pa/ents 
during 12,493 inpa/ent 
visits 

Discharge within 
48 hours 

RF  Age, sex, admission source, 
laboratory measurements, 
and vitals 

AUC 0.81 

Ward et al. 2021 Pa/ent encounters from 
14 different Kaiser 
Permanente facili/es in 
northern California from 
November 1, 2015 to 

Discharge within 1 
day 

LR, Lasso, RF, GBM Age, gender, admit type, 
admission and hourly LAPS2 
and COPS2 scores, 
diagnoses, hourly number 
of orders, medica/ons, /me 

GBM, AUC 0.73 
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Table 1. Previous studies predicFng discharge within a fixed Fme window. We searched Google Scholar and PubMed for studies up to 30 April 
2024, using the search terms 'machine learning’ AND (‘hospital discharge predic8on’, OR ‘pa8ent flow’).

December 31, 2017; 
910,366 pa/ent-days 
across 243,696 pa/ents 
hospitalisa/ons 

since admission, do-not-
resuscitate or comfort care 
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Table 2. Baseline characterisFcs of 48,039 elecFve and 143,275 emergency admissions between 01 February 2017 to 31 January 2020 used in 
training and tesFng discharge predicFon models. IMD: index of mul8ple depriva8on (higher scores indicate greater depriva8on, range 0-73.5. 

 Elec&ve (N= 48039) Emergency (N= 143275) Total (N= 191314) 
 Training (N= 32832) Test (N= 15207) Training (N= 92611) Test (N=50664)  

Age (years)      

   Median (Q1, Q3) 62.0 (48.0, 73.0) 62.0 (48.0, 73.0) 67.0 (47.0, 81.0) 66.0 (46.0, 81.0) 65.0 (47.0, 79.0) 
Sex      
   Female 16409 (50.0%) 7603 (50.0%) 47790 (51.6%) 26067 (51.5%) 97869 (51.2%) 
   Male 16423 (50.0%) 7604 (50.0%) 44821 (48.4%) 24597 (48.5%) 93445 (48.8%) 
Ethnicity       
   White 23977 (73.0%) 10961 (72.1%) 73611 (79.5%) 39511 (78.0%) 148060 (77.4%) 
   Mixed 173 (0.5%) 92 (0.6%) 627 (0.7%) 390 (0.8%) 1282 (0.7%) 
   Asian 712 (2.2%) 402 (2.6%) 2198 (2.4%) 1264 (2.5%) 4576 (2.4%) 
   Black 355 (1.1%) 185 (1.2%) 1040 (1.1%) 566 (1.1%) 2146 (1.1%) 
   Other 271 (0.8%) 155 (1.0%) 792 (0.9%) 406 (0.8%) 1624 (0.8%) 
   Unknown 7344 (22.4%) 3412 (22.4%) 14343 (15.5%) 8527 (16.8%) 33626 (17.6%) 
IMD deprivation score      
   Median (Q1, Q3) 9.8 (5.9, 15.5) 9.9 (6.2, 15.8) 10.5 (6.2, 16.5) 10.3 (6.5, 16.3) 10.2 (6.2, 16.1) 
   Missing 525 212 1122 555 2414 
Admission source      
   Usual place of residence 32232 (98.2%) 14959 (98.5%) 87493 (94.6%) 48212 (95.4%) 182896 (95.7%) 
   Other hospital provider 487 (1.5%) 196 (1.3%) 4210 (4.6%) 2023 (4.0%) 6916 (3.6%) 
   Other 92 (0.3%) 36 (0.2%) 758 (0.8%) 324 (0.6%) 1210 (0.6%) 
   Missing 21 16 150 105 292 
Length of stay (days)      
   Median (Q1, Q3) 2.2 (1.2, 5.1) 2.2 (1.2, 4.9) 2.1 (0.9, 6.1) 2.0 (0.8, 5.7) 2.1 (1.0, 5.6) 
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Table 3. Model performance of the extreme gradient boosFng (XGB) model and baseline logisFc regression (LR) model predicFng 24-hour 
discharge in the test dataset (01 February 2019 to 31 January 2020) and an addiFonal test dataset post-COVID (01 February 2021 to 31 
January 2022). The LR model only included age, sex, day of the week, and hours since admission as baseline comparator. PPV: posi8ve 
predic8ve value; NPV: nega8ve predic8ve value; AUC: area under the receiver opera8ng curve; AUPRC: area under the precision-recall curve; 
MAE: normalised mean absolute error (mean difference in predicted and actual discharges per day divided by the mean number of discharges 
per day). 
 
 
 

Admission type Model Accuracy Balanced 
accuracy 

Sensitivity/Recall Specificity PPV/Precision NPV F1-score AUC AUPRC MAE (%) 

Test data: 01/02/2019 to 31/01/2020         

Elective XGB 0.823 0.767 0.673 0.861 0.555 0.911 0.609 0.871 0.658 8.9 

Elective LR 0.464 0.596 0.820 0.372 0.252 0.889 0.385 0.629 0.269 10.7 

Emergency XGB 0.844 0.756 0.616 0.896 0.571 0.912 0.593 0.860 0.644 4.9 

Emergency LR 0.637 0.654 0.682 0.626 0.292 0.897 0.409 0.708 0.349 5.8 

Overall XGB 0.837 0.752 0.615 0.888 0.561 0.909 0.587 0.859 0.634 4.6 

Overall LR 0.589 0.642 0.726 0.558 0.276 0.898 0.400 0.694 0.327 5.4 

Test data: 01/02/2021 to 31/01/2022          

Elective XGB 0.825 0.753 0.638 0.869 0.532 0.911 0.580 0.864 0.614 11.6 

Emergency XGB 0.835 0.703 0.501 0.906 0.528 0.896 0.514 0.820 0.543 10.0 
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Figure 1.  Overview of model development. a) The propor8on of pa8ents discharged from hospital within the next 24 hours in elec8ve and 
emergency admissions by number of days since admission. b) The propor8on of pa8ents discharged from hospital within the next 24 hours in 
elec8ve and emergency admissions by day of week of the index date. c) Diagram of the predic8on problem. The binary predic8on problem was 
defined by classifying the outcome as ‘posi8ve’ (discharge occurred within the next 24 h) or ‘nega8ve’ (discharge did not occur within the next 
24h) separately for elec8ve and emergency admissions. Predic8ons were made at 12 pm. d) Analysis pipeline for the predic8on of hospital 
discharge within the next 24 hours. Extreme gradient boos8ng (XGB) models were trained on the extracted labels and features from admissions 
between 01 February 2017 to 31 January 2019, and was tested on admissions between 01 February 2019 and 31 January 2020. Five-fold cross 
valida8on was used for hyperparameter tuning, and 20% randomly selected valida8on data was used for feature selec8on, probability 
calibra8on, and threshold sezng. The best model was used to predict hospital discharges in the test data, and model performance was 
examined.  
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Figure 2. Predicted and actual number of discharges within 24 hours by calendar Fme in the test dataset (01 February 2019 to 31 January 
2020). a) Elec8ve admissions using extreme gradient boos8ng (XGB) model. b) Elec8ve admissions using baseline logis8c regression (LR) model.  
c) Emergency admissions using XGB model. b) Emergency admissions using baseline LR model.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2024. ; https://doi.org/10.1101/2023.05.02.23289403doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.02.23289403
http://creativecommons.org/licenses/by-nc/4.0/


 28 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2024. ; https://doi.org/10.1101/2023.05.02.23289403doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.02.23289403
http://creativecommons.org/licenses/by-nc/4.0/


 29 

Figure 3. Model performance by subgroups in the test dataset (01 February 2019 to 31 January 2020). Balanced accuracy (a), posi8ve 
predic8ve value (PPV) (b), and nega8ve predic8ve value (NPV) (c) were compared. IMD=index of mul8ple depriva8on score (higher scores 
indicate greater depriva8on). ‘Weekday’ refers to the day of the week of the index date. Comorbidity was calculated using Charlson 
comorbidity score. ‘Source’ refers to the source of admission. Overall performance is shown by the dashed line in each plot. 95% confidence 
intervals were calculated using bootstrap. F1 score, area under the receiver opera8ng curve (AUC), and area under the precision-recall curve 
(AUPRC) are shown in Figure S6.  
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Figure 4. Model performance using different predicFon Fmes of day for training and test 
data. a) Posi8ve predic8ve value. b) Nega8ve predic8ve value. c) F1 score. d) Area under the 
receiver opera8ng curve (AUC). e) Area under the precision-recall curve (AUPRC). f) 
Normalised mean absolute error (MAE) (mean difference in predicted and actual discharges 
per day divided by the mean number of discharges per day). 
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Figure 5. Impact of training dataset size and recency on discharge predicFon performance 
in the test dataset (01 February 2019 to 31 January 2020). a) By increasing training data 
size. b) By decreasing recency of same-size training data. 95% confidence intervals were 
calculated using bootstrapping. PPV: posi8ve predic8ve value; NPV: nega8ve predic8ve 
value; MAE: normalised mean absolute error (mean difference in predicted and actual 
discharges per day divided by the mean number of discharges per day). 
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Figure 6. Feature importance from extreme gradient boosFng models using SHAP values for elecFve admissions (a, b) and emergency 
admissions (c, d). The top 20 most predic8ve features are shown in the order of predic8veness in panel a and c. Feature importance grouped 
by feature category is shown in the order of predic8veness in panel b and d. The mean importance of the top 5 most important features within 
each category is plojed. Numbers shown in parenthesis are number of features within the top 200 most predic8ve features in each category. 
No microbiology features were selected for elec8ve admissions, and no discharge planning features were selected for both admission types. 
The complete list of features is summarised in Table S1. SHAP: SHapley Addi8ve exPlana8ons. SD: standard devia8on; Current admission: 
admission 8me/source/specialty; diagnosis: length of stay characteris8cs of diagnos8c categories; Previous admissions: previous length of stay 
and readmission; Discharge: discharge planning.  
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