1 Serendipitous detection of Anopheles stephensi in Kisumu, Kenya in June 2022

2

22

2	
3	Bryson Alberto Ndenga, Sammy Wambua, Kevin Omondi Owuor, Rodney Omukuti, Salome
4	Chemutai, Daniel Arabu, Irene Miringu, Carren Bosire, Kavinya Mwendwa, Christabel Achieng
5	Winter, Francis Maluki Mutuku, Donal Bisanzio, Angelle Desiree LaBeaud, Keli Nicole Gerken
6	
7	Author affiliations: Kenya Medical Research Institute, Kisumu, Kenya (B.A. Ndenga, K.O.
8	Owuor, C.A. Winter); Pwani University, Kilifi, Kenya; Research and Conservation Support
9	Sciences, Kilifi, Kenya; and University of Glasgow, Glasgow, UK (S. Wambua); Pwani
10	University, Kilifi, Kenya, and Research and Conservation Support Sciences, Kilifi, Kenya (R.
11	Omukuti, S. Chemutai, D. Arabu, I. Miringu); Technical University of Mombasa, Mombasa,
12	Kenya (C. Bosire, K. Mwendwa, F.M. Mutuku); RTI International, Washington, DC, USA (D.
13	Bisanzio); Stanford University School of Medicine, Stanford, California, USA (A.D. LaBeaud,
14	K.N. Gerken).
15	
16	Abstract
17	In June 2022, a pool of five mosquitoes that were morphologically classified as Anopheles
18	gambiae and caught in Kisumu (Kenya) were tested for blood-meal analysis. Of the 19.6%
19	(11/56) amplicon sequence variants assigned to mosquito species using basic local alignment
20	search tool (BLAST), one had 15 hits matching Anopheles stephensi.
21	Research letter

23 Peninsula. It is capable of transmitting both *Plasmodium falciparum* and *P. vivax* and is

Anopheles stephensi is a native urban malaria vector in south Asia and the Arabian

24	projected to expand further as urbanization increases, especially in Africa (1). It was first
25	reported in Africa in Djibouti in 2012 (2) then in Ethiopia in 2019 (3), Sudan in 2018 (4),
26	Somali-land in 2020 (5), Nigeria in 2020 (6) and for the first time in Marsabit County in northern
27	Kenya in December 2022 (7). This demonstrates a clear and rapid expansion of its geographical
28	range within the continent.
29	During a One Health study on livestock and vector dynamics at urban slaughterhouses,
30	we carried out mosquito collections using ovitraps, larval/pupae sampling, Prokopack aspirator
31	and Biogents (BG)-trap baited with CO2. This study was titled "Urban Rift Valley Fever Virus as
32	a New Ecological Niche: Continuous Introduction from Animal Products" and performed at the
33	Mamboleo Slaughterhouse (0° 3' 25.4" N, 34° 47' 10.9" E, Figure) in Kisumu City, Kenya, and
34	was approved by Stanford University (61386), Kenya Medical Research Institute Scientific and
35	Ethics Review Unit (KEMRI/SERU/CGHR/03-07-390/4293) and obtained research license from
36	the National Commission for Science, Technology & Innovation (NACOSTI/P/21/13557).
37	Adult mosquitoes resting indoors and outdoors were sampled using a Prokopack aspirator
38	from May 16 th 2022 to July 1 st 2022. Sampling lasted one hour and was conducted between
39	08:45 HRS and 01:30 HRS. Subsequent samplings were completed biweekly. Collected
40	mosquitoes were killed using a pyrethrum aerosol spray before morphological identification in a
41	field station and recorded on a data form. Female mosquitoes were further sorted according to
42	their blood-feeding stages as unfed, blood-fed, half-gravid or gravid. Mosquitoes were preserved
43	in silica gel self-indicating 6-20mesh (Blue) - 500gm (Loba Chemie Pvt. Ltd, Jehangir Villa,
44	107, Wodehouse Road, Colaba, Mumbai 400 005, India) with the intention for further blood
45	meal testing.

46	A total of 2,891 mosquitoes were collected: 66.2% (1,782) indoors and 33.8% (765)
47	outdoors; 50.7% (1,465) males and 49.3% (1,426) females. Species identified morphologically
48	were: 0.3% (9) Aedes aegypti; 6.3% (182) Anopheles coustani; 0.3% (8) An. funestus; 10.9%
49	(315) An. gambiae, and 82.2% (2,377) Culex spp. Over a half, 61.6% (194/315), of the An.
50	gambiae were collected outdoors and 38.4% (121) indoors; 46.3% (146) were males; 19.0% (60)
51	un-blood-fed; 25.1% (79) blood-fed; 6.0% (19) half-gravid and 3.5% (11) gravid. A sample of
52	the blood-fed mosquitoes were transported on dry ice to Pwani University Biosciences Research
53	Centre (PUBReC) in Kilifi, Kenya, for determination of blood meal sources.
54	Genomic DNA was extracted from the mosquito abdomens using the TIANamp Genomic
55	DNA Kit (Tiangen, Beijing, China). Quality and quantity of DNA was analyzed by NanoDrop
56	2000C spectrophotometer (Thermo Scientific Inc, USA) and verified on 1% agarose gel
57	electrophoresis. To identify blood meal sources, we PCR-amplified ~300 base pair (bp) of the
58	cytochrome b barcode (8) which was high-throughput-sequenced, at Macrogen Inc., Seoul
59	Korea, using the Illumina 300×2 bp platform (Illumina, USA). The amplicon sequence data
60	were analyzed with the DADA2 (version 1.21.0) bioinformatics pipeline (Callahan et al., 2016)
61	implemented in the R programming language (version 4.1.1). After quality preprocessing, high
62	quality reads were denoised and clustered into unique sequences i.e., amplicon sequence variants
63	(ASVs). We assigned taxonomy to the ASVs using two approaches. We assigned taxonomy,
64	first, by exact ASV matching against DADA2-trained MIDORI2 reference database (version
65	GB254) which includes eukaryotic mitochondrial sequences (9). ASVs that were not assigned by
66	this approach were compared against the NCBI database using BLAST (10). Raw sequences are
67	available in SRA database of NCBI under project accession number PRJNA966766.

68	In all, 248 ASVs were inferred, 192 of which were classified to 14 vertebrate species					
69	(Mammalia and Aves) by exact matching against MIDORI2 reference database. Other than					
70	vertebrates, 19.6% (11/56) of the ASVs assigned using BLAST matched to mosquito species of					
71	of which was An. stephensi with a total of 15 hits (89-93% identity, 67-85% coverage, E-value <					
72	1e-46 (Table). The reads matching An. stephensi were tracked to a pool of five (5) mosquitoes					
73	that had been morphologically classified as An. gambiae in the field. These mosquitoes were					
74	collected from Mamboleo Slaughterhouse in Kisumu City, Kenya in June 2022.					
75	Our findings report the first detection of An. stephensi south of the Equator. Furthermore,					
76	this detection represents the presence of an invasive vector in an urban area that is malaria					
77	endemic. Our study suggests that the detections of An. stephensi within Africa (1-5, 7) could be					
78	dramatically underreported. The initial false identification of this vector also indicates that to					
79	fully capture this vector's boundary, molecular methods and confirmatory testing may be					
80	required. The presence of a malaria vector adapted to breeding in open water containers					
81	prevalent in urban areas is particularly concerning. Anopheles stephensi can effectively transmit					
82	P. falciparum and P. vivax and entry into malaria endemic zones could shift malaria transmission					
83	dynamics considerably.					

84

85 Acknowledgements

We thank Charles Otieno Adipo for sampling the vectors, the management of Mamboleo
Slaughterhouse for allowing us to sample mosquitoes in the premises and our colleagues in
KEMRI and Stanford University for their support to approve this research study. This study was
funded by the Stanford University Center for Innovations in Global Health Seed Grant 2021 and

90	the Robert E Shope ASTMH (American Society of Tropical Medicine and Hygiene) to Dr. Keli						
91	Nicole Gerken.						
92							
93	About the Author						
94	Bryson Alberto Ndenga, PhD is a Senior Research Scientist in Kenya Medical Research						
95	Institute, Centre for Global Health Research. His primary interest is in the biology, ecology and						
96	control of mosquitoes that transmit malaria, dengue, chikungunya and Rift Valley fever.						
97							
98	Financial interest						
99	The authors declare that they have no financial interests.						
100							
101	Conflicts of interest						
102	The authors declare that they have no conflicts of interests.						
103							
104	References						
105	1. Sinka M, Pironon S, Massey N, Longbottom J, Hemingway J, Moyes C, et al. A new						
106	malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and						
107	identifying the urban populations at risk. PNAS. 2020;117.						
108	2. Faulde M, Rueda L, Khaireh B. First record of the Asian malaria vector <i>Anopheles</i>						
109	stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa.						
110	Acta Trop. 2014;139:39-43.						

111	3.	Tadesse F, Ashine T, Teka H, Esayas E, Messenger L, Chali W, et al. Anopheles
112		stephensi mosquitoes as vectors of Plasmodium vivax and P. falciparum, horn of Africa,
113		2019. Emerg Infect Dis. 2021;27.
114	4.	Ahmed A, Khogali R, Elnour M, Nakao R, Salim B. Emergence of the invasive malaria
115		vector Anopheles stephensi in Khartoum State, Central Sudan. Parasit Vectors. 2021;14.
116	5.	Ali S, Samake J, Spear J, Carter T. Morphological identification and genetic
117		characterization of Anopheles stephensi in Somaliland. Parasit Vectors. 2022;15.
118	6.	World Health Organization initiative to stop the spread of Anopheles stephensi in Africa.
119		Geneva: WHO; 2022.
120	7.	Ochomo E, Milanoi S, Abong'o B, Onyango B, Muchoki M, Omoke D, et al. Molecular
121		surveillance leads to the first detection of Anopheles stephensi in Kenya. Res Square. In
122		press 2023.
123	8.	Hadj-Henni L, De-Meulemeester T, Depaquit J, Noël P, Germain A, Helder R, et al.
124		Comparison of vertebrate cytochrome b and prepronociceptin for blood meal analyses in
125		Culicoides. Front Vet Sci. 2015;2.
126	9.	Leray M, Knowlton N, Machida R. MIDORI2: A collection of quality controlled,
127		preformatted, and regularly updated reference databases for taxonomic assignment of
128		eukaryotic mitochondrial sequences. Environ DNA. 2022;4:894-907.
129	10.	Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment search tool. J
130		Mol Bio. 1990;215:403–410.

131

- 132 Address for correspondence: Dr. Bryson Alberto Ndenga, Kenya Medical Research Institute,
- 133 Centre for Global Health Research, P.O. Box 1578 Code 40100 Kisumu City, Kenya, email:
- 134 <u>bndenga@yahoo.com</u>, phone number: +254 722 932 350.

135

triangle) was collected in June 2022 and other sites in Africa where it has been reported (Source:

138 *Anopheles stephensi* reports (red points): <u>https://apps.who.int/malaria/maps/threats/</u>). Suitability

139 map created using data obtained from Sinka et al. 2020^1 .

- 141 **Table 1.** Summary of coverage and identity values for each of the top ten (10) hits in the BLAST
- 142 search matching *Anopheles stephensi*.
- 143

Description	Maximum	Query	E value	Identity	Accession
	score	coverage			
Anopheles stephensi strain Indian chromosome 2L	326	84%	2.00E-84	92.51%	CP032300.1

Anopheles stephensi strain Indian	320	85%	8.00E-83	92.07%	CP032302.1
chromosome 3L					
Anopheles stephensi strain Indian	320	82%	8.00E-83	92.07%	CP032301.1
chromosome 3R					
Anopheles stephensi strain Indian	315	81%	4.00E-81	91.63%	CP032299.1
chromosome 2R					
Anopheles stephensi strain SDA-500	315	83%	4.00E-81	91.63%	CP032234.1
chromosome 3R					
Anopheles stephensi strain SDA-500	309	81%	2.00E-79	91.19%	CP032232.1
chromosome 2R					
Anopheles stephensi strain SDA-500	303	84%	9.00E-78	90.75%	CP032233.1
chromosome 2L					
Anopheles stephensi strain SDA-500	298	88%	4.00E-76	90.31%	CP032235.1
chromosome 3L					
Anopheles ziemanni genome	291	83%	7.00E-74	89.52%	OX030919.2
assembly, chromosome: 2					

144