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Abstract 16 

In June 2022, a pool of five mosquitoes that were morphologically classified as Anopheles 17 

gambiae and caught in Kisumu (Kenya) were tested for blood-meal analysis. Of the 19.6% 18 

(11/56) amplicon sequence variants assigned to mosquito species using basic local alignment 19 

search tool (BLAST), one had 15 hits matching Anopheles stephensi.    20 

Research letter     21 

 Anopheles stephensi is a native urban malaria vector in south Asia and the Arabian 22 

Peninsula. It is capable of transmitting both Plasmodium falciparum and P. vivax and is      23 
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projected to expand further as urbanization increases, especially in Africa (1). It was first 24 

reported in Africa in Djibouti in 2012 (2) then in Ethiopia in 2019 (3), Sudan in 2018 (4), 25 

Somali-land in 2020 (5), Nigeria in 2020 (6) and for the first time in Marsabit County in northern 26 

Kenya in December 2022 (7). This demonstrates a clear and rapid expansion of its geographical 27 

range within the continent.   28 

 During a One Health study on livestock and vector dynamics at urban slaughterhouses, 29 

we carried out mosquito collections using ovitraps, larval/pupae sampling, Prokopack aspirator 30 

and Biogents (BG)-trap baited with CO2. This study was titled “Urban Rift Valley Fever Virus as 31 

a New Ecological Niche: Continuous Introduction from Animal Products” and performed at the 32 

Mamboleo Slaughterhouse (0° 3' 25.4'' N, 34° 47' 10.9'' E, Figure) in Kisumu City, Kenya, and 33 

was approved by Stanford University (61386), Kenya Medical Research Institute Scientific and 34 

Ethics Review Unit (KEMRI/SERU/CGHR/03-07-390/4293) and obtained research license from 35 

the National Commission for Science, Technology & Innovation (NACOSTI/P/21/13557).       36 

Adult mosquitoes resting indoors and outdoors were sampled using a Prokopack aspirator      37 

from May 16th 2022 to July 1st 2022. Sampling lasted one hour and was conducted between 38 

08:45 HRS and 01:30 HRS. Subsequent samplings were completed biweekly. Collected 39 

mosquitoes were killed using a pyrethrum aerosol spray before morphological identification in a 40 

field station and recorded on a data form. Female mosquitoes were further sorted according to 41 

their blood-feeding stages as unfed, blood-fed, half-gravid or gravid. Mosquitoes were preserved 42 

in silica gel self-indicating 6-20mesh (Blue) - 500gm (Loba Chemie Pvt. Ltd, Jehangir Villa, 43 

107, Wodehouse Road, Colaba, Mumbai 400 005, India) with the intention for further blood 44 

meal testing.  45 
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 A total of 2,891 mosquitoes were collected: 66.2% (1,782) indoors and 33.8% (765) 46 

outdoors; 50.7% (1,465) males and 49.3% (1,426) females. Species identified morphologically 47 

were: 0.3% (9) Aedes aegypti; 6.3% (182) Anopheles coustani; 0.3% (8) An. funestus; 10.9% 48 

(315) An. gambiae, and 82.2% (2,377) Culex spp. Over a half, 61.6% (194/315), of the An. 49 

gambiae were collected outdoors and 38.4% (121) indoors; 46.3% (146) were males; 19.0% (60) 50 

un-blood-fed; 25.1% (79) blood-fed; 6.0% (19) half-gravid and 3.5% (11) gravid.  A sample of 51 

the blood-fed mosquitoes were transported on dry ice to Pwani University Biosciences Research 52 

Centre (PUBReC) in Kilifi, Kenya, for determination of blood meal sources. 53 

Genomic DNA was extracted from the mosquito abdomens using the TIANamp Genomic 54 

DNA Kit (Tiangen, Beijing, China). Quality and quantity of DNA was analyzed by NanoDrop 55 

2000C spectrophotometer (Thermo Scientific Inc, USA) and verified on 1% agarose gel 56 

electrophoresis. To identify blood meal sources, we PCR-amplified ~300 base pair (bp) of the 57 

cytochrome b barcode (8) which was high-throughput-sequenced, at Macrogen Inc., Seoul 58 

Korea, using the Illumina 300 × 2 bp platform (Illumina, USA). The amplicon sequence data 59 

were analyzed with the DADA2 (version 1.21.0) bioinformatics pipeline (Callahan et al., 2016) 60 

implemented in the R programming language (version 4.1.1). After quality preprocessing, high 61 

quality reads were denoised and clustered into unique sequences i.e., amplicon sequence variants 62 

(ASVs). We assigned taxonomy to the ASVs using two approaches. We assigned taxonomy, 63 

first, by exact ASV matching against DADA2-trained MIDORI2 reference database (version 64 

GB254) which includes eukaryotic mitochondrial sequences (9). ASVs that were not assigned by 65 

this approach were compared against the NCBI database using BLAST (10). Raw sequences are 66 

available in SRA database of NCBI under project accession number PRJNA966766. 67 
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In all, 248 ASVs were inferred, 192 of which were classified to 14 vertebrate species 68 

(Mammalia and Aves) by exact matching against MIDORI2 reference database. Other than 69 

vertebrates, 19.6% (11/56) of the ASVs assigned using BLAST matched to mosquito species one 70 

of which was An. stephensi with a total of 15 hits (89-93% identity, 67-85% coverage, E-value < 71 

1e-46 (Table). The reads matching An. stephensi were tracked to a pool of five (5) mosquitoes 72 

that had been morphologically classified as An. gambiae in the field. These mosquitoes were 73 

collected from Mamboleo Slaughterhouse in Kisumu City, Kenya in June 2022. 74 

 Our findings report the first detection of An. stephensi south of the Equator. Furthermore, 75 

this detection represents the presence of an invasive vector in an urban area that is malaria 76 

endemic. Our study suggests that the detections of An. stephensi within Africa (1-5, 7) could be 77 

dramatically underreported. The initial false identification of this vector also indicates that to 78 

fully capture this vector’s boundary, molecular methods and confirmatory testing may be 79 

required. The presence of a malaria vector adapted to breeding in open water containers 80 

prevalent in urban areas is particularly concerning. Anopheles stephensi can effectively transmit 81 

P. falciparum and P. vivax and entry into malaria endemic zones could shift malaria transmission 82 

dynamics considerably.  83 
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 135 

Figure 1. Map showing the location in Kisumu, Kenya where Anopheles stephensi (green 136 

triangle) was collected in June 2022 and other sites in Africa where it has been reported (Source: 137 

Anopheles stephensi reports (red points): https://apps.who.int/malaria/maps/threats/). Suitability 138 

map created using data obtained from Sinka et al. 20201. 139 

 140 

Table 1. Summary of coverage and identity values for each of the top ten (10) hits in the BLAST 141 

search matching Anopheles stephensi.  142 

 143 

Description Maximum 

score 

Query 

coverage 

E value Identity Accession 

Anopheles stephensi strain Indian 

chromosome 2L 

326 84% 2.00E-84 92.51% CP032300.1 
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Anopheles stephensi strain Indian 

chromosome 3L 

320 85% 8.00E-83 92.07% CP032302.1 

Anopheles stephensi strain Indian 

chromosome 3R 

320 82% 8.00E-83 92.07% CP032301.1 

Anopheles stephensi strain Indian 

chromosome 2R 

315 81% 4.00E-81 91.63% CP032299.1 

Anopheles stephensi strain SDA-500 

chromosome 3R 

315 83% 4.00E-81 91.63% CP032234.1 

Anopheles stephensi strain SDA-500 

chromosome 2R 

309 81% 2.00E-79 91.19% CP032232.1 

Anopheles stephensi strain SDA-500 

chromosome 2L 

303 84% 9.00E-78 90.75% CP032233.1 

Anopheles stephensi strain SDA-500 

chromosome 3L 

298 88% 4.00E-76 90.31% CP032235.1 

Anopheles ziemanni genome 

assembly, chromosome: 2 

291 83% 7.00E-74 89.52% OX030919.2 

 144 

 145 
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