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ABSTRACT 1 

 2 
Background: Alzheimer's disease (AD) exhibits considerable phenotypic heterogeneity, 3 

suggesting the potential existence of subtypes. AD is under substantial genetic influence, thus 4 

identifying systematic variation in genetic risk may provide insights into disease origins. 5 

Objective: We investigated genetic heterogeneity in AD risk through a multi-step analysis. 6 

Methods: We performed principal component analysis (PCA) on AD-associated variants in the 7 

UK Biobank (AD cases=2,739, controls=5,478) to assess structured genetic heterogeneity. 8 

Subsequently, a biclustering algorithm searched for distinct disease-specific genetic signatures 9 

among subsets of cases. Replication tests were conducted using the Alzheimer's Disease 10 

Neuroimaging Initiative (ADNI) dataset (AD cases=500, controls=470). We categorized a 11 

separate set of ADNI individuals with mild cognitive impairment (MCI; n=399) into genetic 12 

subtypes and examined cognitive, amyloid, and tau trajectories. 13 

Results: PCA revealed three distinct clusters ("constellations") driven primarily by different 14 

correlation patterns in a region of strong LD surrounding the MAPT locus. Constellations 15 

contained a mixture of cases and controls, reflecting disease-relevant but not disease-specific 16 

structure. We found two disease-specific biclusters among AD cases. Pathway analysis linked 17 

bicluster-associated variants to neuron morphogenesis and outgrowth. Disease-relevant and 18 

disease-specific structure replicated in ADNI, and bicluster 2 exhibited increased CSF p-tau and 19 

cognitive decline over time. 20 

Conclusions: This study unveils a hierarchical structure of AD genetic risk. Disease-relevant 21 

constellations may represent haplotype structure that does not increase risk directly but may 22 

alter the relative importance of other genetic risk factors. Biclusters may represent distinct AD 23 

genetic subtypes. This structure is replicable and relates to differential pathological 24 

accumulation and cognitive decline over time. 25 

 26 
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BACKGROUND 28 

 Alzheimer’s disease (AD) diagnostic criteria have evolved over the years, but typically 29 

diagnosis has been characterized by predominant amnestic impairment that progressively 30 

impacts other cognitive domains and everyday functioning. However, clinical presentation is 31 

heterogeneous, and non-amnestic predominant variants of AD, often termed “atypical AD”, were 32 

specifically acknowledged in a 2011 update to AD diagnostic criteria and guidelines [1]. 33 

Pathological spread and neurodegeneration also tend to proceed in a stereotypical pattern, but 34 

mirroring the clinical diversity of AD, AD neuropathological exams and imaging studies have 35 

identified marked heterogeneity as well [2-8].  Despite this variability, AD is considered a distinct 36 

entity due to the overarching clinicopathologic characteristics observed across individuals even 37 

though the etiological basis of AD remains unclear. That is, it may have a unitary origin with 38 

diverse presentation, a highly heterogenous etiology that converges on a common disease 39 

phenotype, or it may be consistent with some intermediate scenario.   40 

  Sporadic AD is under considerable genetic influence, with an estimated heritability of 41 

60-80% [9]. Thus, examining the genetic architecture of AD risk and the myriad ways in which 42 

combinations of variants associate with AD provides a useful foundation to understand its 43 

complex etiology. Although APOE represents the single largest source of genetic risk for the 44 

disease [10] recent GWAS have identified upwards of 75 different risk loci [11-15]. Considering 45 

variants that do not reach the level of genome-wide-significance but still suggest an association 46 

with AD could provide additional insight above and beyond APOE [16] and genome-wide 47 

significant variants. The highly oligo or polygenic nature of AD risk could reflect underlying 48 

etiological heterogeneity across individuals. The evolving definition of AD and subsequent 49 

debate over its origins further highlights the complex nature of the disease [17-19]. Given this 50 

genetic complexity yet commonality among aspects of AD clinical presentations, there is little 51 

reason to expect that phenotype-based classifications of sporadic AD (and its subtypes) will 52 
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cleanly delineate homogeneous subgroups of genetic risk, providing motivation for a using 53 

“genotype-first” approach to identifying subtypes [20-22].  54 

 Identifying genetic subtypes or heterogeneity typically involves cluster analysis of some 55 

sort. There are many clustering algorithms one can exploit, and these techniques can be 56 

applied to various sources of data, including gene expression, GWAS summary statistics, and 57 

individual genotype data [23-25]. However, clustering approaches to identify genetic subtypes of 58 

disease face several difficulties (see Dahl et al. [26] for detailed discussion). First, a 59 

fundamental aspect of most clustering algorithms is that they will tend to identify clusters, even if 60 

no true clusters are present (i.e., false positive clusters). Second, a common approach is to 61 

search for clusters of genes or variants within a group of cases and consider them disease-62 

related when this might not be the case, as it is often unknown whether these same clusters 63 

would be found in controls, which could reflect pathways or structures unrelated to disease 64 

status. The biclustering method described in Rangan et al. [27] addresses both issues. First, the 65 

biclustering method does not assume that a bicluster exists in the data, but rather tests the null 66 

hypothesis that one does not exist.  Second, the technique searches for subsets of SNPs that 67 

express correlations within the cases that are not similarly expressed within the controls, 68 

providing evidence for disease-specificity.  69 

Here we investigated genetic heterogeneity of Alzheimer’s disease using a combination 70 

of approaches. We first applied a principal component analysis to AD cases and controls from 71 

the UK Biobank to identify potential clusters among AD-associated SNPs that may indicate 72 

disease-relevant vulnerability across all individuals, regardless of disease status.  We then 73 

applied a biclustering method to each of these likely vulnerability clusters to search for subsets 74 

of cases that harbor distinct genetic signatures that significantly increase AD risk. To validate 75 

our findings, we investigate whether the same clusters or patterns of heterogeneity also appear 76 

in an independent group of cases and controls from the Alzheimer’s Disease Neuroimaging 77 
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Initiative (ADNI). Taken together, we find a hierarchical structure to an underlying heterogeneity 78 

of AD genetic risk, providing further insight into the complex etiology of the disease.  79 

METHODS 80 

Participant characteristics 81 

 We used imputed genotyping data from the UK Biobank (UKB) as the discovery dataset 82 

(Table 1). The UKB is a large-scale biomedical database and research resource containing 83 

genetic, lifestyle and health information from half a million UK participants [28, 29]. Data from 84 

2,739 Alzheimer’s disease cases [30] and 5,478 age- and sex-matched controls with White 85 

British ancestry as determined by PCA [29] were included in these analyses. 86 

A replication dataset was obtained from the Alzheimer’s Disease Neuroimaging Initiative 87 

(ADNI) database (adni.loni.usc.edu; Table 2). The ADNI was launched in 2003 as a public-88 

private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 89 

ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 90 

tomography (PET), other biological markers, and clinical and neuropsychological assessment 91 

can be combined to measure the progression of MCI and early AD. Our biclustering analyses 92 

included genotyping data from 500 individuals with Alzheimer’s disease cases and 470 controls 93 

from the ADNI-1 (n=520), ADNI-GO/2 (n=225), and ADNI-3 (n=225). Case-control status was 94 

based on the ADNI diagnosis given at each participant’s last visit available. An additional 399 95 

individuals (ADNI-1=166, ADNI-GO/2=175, ADNI-3=58) diagnosed with MCI at their latest visit 96 

diagnosed with MCI at their latest visit were included for examination of cognitive and biomarker 97 

change.  Participants were restricted to those with primarily European ancestry (>80%) as 98 

determined by SNPweights [31]. 99 

Genotyping data and quality control 100 

Genotyping data imputed to the Haplotype Reference Consortium plus UK10K reference 101 

haplotype resource were downloaded from the UKB database along with genetic principal 102 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 3, 2024. ; https://doi.org/10.1101/2023.05.02.23289347doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.02.23289347
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

components (hereafter referred to as “genome-wide” principal components). Sample QC 103 

information provided by the UKB were used to apply exclusionary criteria. Individuals with 104 

excess relatedness were removed. This was defined by the UK Biobank as samples with more 105 

than 10 putative third-degree relatives (KING coefficient between 0.0442 and 0.0884).  Imputed 106 

data used in these analyses included only samples with <10% missingness and biallelic SNPs 107 

with >1% minor allele frequency.  108 

Individuals in the ADNI cohorts were genotyped using the following chips: Illumina 109 

Human610-Quad BeadChip (ADNI-1), Illumina HumanOmniExpress BeadChip (ADNI-GO/2), 110 

and Illumina Infinium Global Screening Array v2 (ADNI-3). Genetic principal components 111 

(hereafter referred to as “genome-wide” principal components) were calculated from linkage 112 

disequilibrium (LD)-pruned variants in combination with 1000 Genomes data [32] for use as 113 

covariates in later analyses.  Following standard genotyping QC, imputation was performed on 114 

the Michigan Imputation Server (https://imputationserver.sph.umich.edu/) [33] using the 1000 115 

Genomes phase 3 EUR reference panel. Imputed data from all phases were then merged. 116 

Imputed data used in this analysis included only samples with <10% missingness and biallelic 117 

SNPs with >1% minor allele frequency. 118 

Note that, at this stage we retain all the SNPs for our primary analysis, regardless of the 119 

linkage disequilibrium (LD) relationships that might exist between them. The reason we retain all 120 

the SNPs is that our heterogeneity analysis (described below) will specifically search for 121 

combinations of SNPs that preferentially exhibit correlations across the case-subjects in 122 

contrast to the controls. These correlations drive the heterogeneous structures we are trying to 123 

find and can themselves be thought of as a form of LD that interacts with the disease. Thus, to 124 

carry out our heterogeneity analysis we retain all the relevant SNPs (regardless of LD), and later 125 

correct for `population-wide' LD (e.g., SNP-correlations that are not disease-specific, but 126 

putatively ancestry-related) within our biclustering analysis below.   127 
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Assessing high-level structure with principal components analysis 128 

 We restricted analyses to 486,823 variants in the UKB data that were associated with 129 

AD with an uncorrected p-value of <0.05 from the AD GWAS by Kunkle et al. [12] to 130 

accommodate potential association signals beyond those exhibiting genome-wide significance. 131 

After applying MAF (>1%) and genotype missingness filters (<10%), a principal components 132 

analysis (PCA) was applied to the allele combinations (dummy-coded according to the 3 133 

possible allele combinations for each) of these AD-associated variants across all UKB cases 134 

and controls to assess the presence of high-level structure in the data (i.e., a non-Gaussian 135 

distribution). For more details on the choice of allele-coding, see Supplemental Methods section 136 

Rationale for allele-coding. The PCA was implemented in C using the normalized power 137 

iteration method calculated to a relative error of 1e-6, or single-digit precision. Individuals were 138 

assigned to clusters, hereafter referred to as “constellations” to disambiguate from the term 139 

“bicluster” used in subsequent steps, by applying the ISO-SPLIT algorithm [34] implemented in 140 

MATLAB (https://github.com/flatironinstitute/isosplit5) to participant loadings on the first PC. 141 

Classification was based only on the first PC because it most robustly separated constellations 142 

across a range of p-value thresholds. 143 

Although the sample was restricted to White British participants, it is possible that these 144 

loadings reflect remaining ancestry-related population substructure. We therefore determined 145 

whether the resulting structure was specific to the set of AD-associated variants in several 146 

ways. First, PCA was applied to sets of variants restricted to p-value thresholds ranging from 147 

p<0.05 to p<1.0 in increments of 0.05. Loadings on the first two PCs were plotted at each 148 

increment, with individuals labelled according to cluster membership at the p<0.05 threshold to 149 

visually assess stability of clustering. Second, to determine whether the resulting structure was 150 

simply a function of the number of variants analyzed, a PCA was applied to a randomly chosen 151 

set of variants with the same size as those included in the analysis restricted to variants with 152 

p<0.05. Third, we examined loadings of allele combinations on the primary PC ordered by 153 
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genomic position as suggested by Privé et al. [35] to assess whether it was driven by regions of 154 

high population-wide LD.  155 

Bicluster analysis of disease-specific structure  156 

 Heterogeneity exhibited at the top level of the constellations strongly suggests that there 157 

may be other heterogeneous substructures contained within each. This possibility seems all the 158 

more likely due to the non-Gaussian distribution of subjects within each constellation, and that 159 

the distribution of cases and controls appears to be in different directions across constellations. 160 

 To search for biclusters we use the half-loop method described in Rangan et al. [36]. 161 

This biclustering strategy (along with similar spectral-biclustering strategies) works best when 162 

the combined population of cases and controls is relatively homogenous. Given the clear 163 

structure evident from the PCA and the differential distribution of cases relative to controls 164 

across constellations, we therefore searched for disease-specific heterogeneity within each 165 

constellation separately. 166 

 Our biclustering strategy involves an iterative process which starts with all the 167 

participants (in this case, all participants in a given constellation) and SNPs, and then 168 

sequentially removes AD cases and allele-combinations from consideration. The Supplementary 169 

Methods contains a detailed description of this procedure but is summarized here. Briefly, we 170 

can measure the fraction of allele combinations that are shared between cases and subtract 171 

from this the fraction that are shared with controls to obtain a disease-related signal strength of 172 

remaining AD cases and controls. This difference can be thought of as a measure of disease-173 

specific LD within the remaining AD-cases. The subtraction of the control-signal above is a form 174 

of “control-correction”. This control-correction is a critical step because it reduces the influence 175 

of structure present in both cases and controls on clustering. For example, disease non-specific 176 

LD or technical artifacts that are present in the full sample will be controlled for by this step. At 177 

each iteration the cases and allele-combinations with the smallest contributions to this signal are 178 

removed and the process repeats as described above. Recording this value at each step 179 
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produces a ‘trace’ which indicates the disease-related signal-strength associated with the 180 

remaining AD cases and variants at that iteration.  181 

In pursuing this process, we controlled for the first two principal-components extracted 182 

from a GRM of all individuals in our sample (and without thresholding for AD-associated SNPs) 183 

to control for ancestry. When calculating these genome-wide principal-components we did 184 

correct for LD, as our goal was to estimate the principal-components across the whole 185 

population (i.e., assuming homogeneity across subjects). 186 

We can use the peak of the trace to delineate the membership of the dominant bicluster 187 

(i.e., which AD cases and allellic-combinations contribute to the disease-specific signal). We 188 

identify the peak by finding the internal maximum, ignoring the initial and final iterations that 189 

include >95% or <5% of AD cases. 190 

As a null-hypothesis, we assume that the disease-label (i.e., case vs control) is not 191 

associated with the genetic profile of each subject. Therefore, we randomly permuted the case- 192 

and control-labels across subjects with similar genome-wide principal components (see Rangan 193 

et al. [27] for details) and re-calculated the traces as described above. Here, we use 500 194 

permutations. By comparing the original trace with the distribution of traces drawn from the null-195 

hypothesis, we can assign a p-value to the observed trace at each iteration. The null distribution 196 

will retain any structure that is uncorrelated with disease label, so provides a second type of 197 

correction against identifying clusters driven by non-disease-related LD. In this case, we only 198 

assess iterations that include >5% of the cases (i.e., the final iterations with very few cases 199 

and/or variants are ignored). To determine whether we have found a statistically significant 200 

bicluster within the original data, termed the ‘dominant’ bicluster, we can examine the p-value of 201 

the highest peak (pmax) and the average p-value across iterations (pavg). Depending on the 202 

structure of the bicluster, the various p-values may be quite different, but each may be a useful 203 

metric for identifying significant biclusters. For example, if the original trace has one or more 204 

clear peaks, then there are statistically robust ‘cutpoints’ which can be used to delineate 205 
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bicluster membership and pmax is likely to be very small. On the other hand, if the original trace 206 

has a very broad peak or a long plateau, then the bicluster is quite ‘fuzzy’, corresponding to a 207 

continuum of membership. In this case, we might expect pavg to be small, but pmax may be 208 

relatively large. If the dominant bicluster within a data-set is statistically significant, we can 209 

extract it and then search for a secondary bicluster. This is done by scrambling the entries of the 210 

submatrix associated with the bicluster (i.e., entries corresponding to the participants and allele-211 

combinations that were retained in the bicluster) and running the search algorithm again [27, 212 

37].  213 

Gene set enrichment analysis of bicluster-associated variants 214 

 We conducted a GWAS across AD-associated SNPs comparing bicluster cases with 215 

controls belonging to the same disease-relevant constellation in which the bicluster was found 216 

(e.g., bicluster 1 cases versus controls for constellation 1) using PLINK2 [38]. Analyses were 217 

adjusted for the first two genome-wide principal components. As with the analysis of 218 

constellations, variants positively associated with each bicluster (i.e., positive regression 219 

coefficient and uncorrected p<0.05) were mapped to genes using the g:Profiler package in R 220 

[39]. A gene set enrichment analysis was then applied to annotated genes from each bicluster 221 

using the clusterProfiler package in R [40, 41]. The analysis was restricted to gene sets from the 222 

Gene Ontology resource [42, 43] containing between 10 and 1,000 genes. The Cytoscape app 223 

EnrichmentMap v3.3 [44] was used to visualize gene sets significantly enriched (FDR corrected 224 

p<0.05) in each bicluster. We constructed a network in which nodes represented gene sets 225 

significantly associated with each bicluster (gene sets can be associated with either or both). 226 

Edges were defined by the proportion of overlapping genes between gene sets (using a 227 

minimum overlap threshold of 0.5). Next, the AutoAnnotate app 228 

(http://baderlab.org/Software/AutoAnnotate) was used to cluster and annotate nodes based on 229 

degree of overlapping genes using the MCL Cluster algorithm.  230 
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Validation of genetic heterogeneity in ADNI 231 

We next investigated whether the disease-relevant and disease-specific heterogeneity 232 

found in the UKB would generalize to Alzheimer’s disease cases and controls from the ADNI 233 

(see Supplementary Methods section Replication of disease-relevant constellations in ADNI for 234 

full details). First, we determined the subset of AD-associated SNPs common to both the UKB 235 

and ADNI datasets. Mirroring the original analysis, we applied a PCA to all cases and controls 236 

across this set of intersecting SNPs. ADNI participants were projected into the same principal 237 

components space using the allele combination loadings defined in UKB data, allowing us to 238 

assess overlap between datasets. ADNI participants were assigned to the nearest constellation 239 

based on participant loadings on the first principal component. 240 

After participants were classified into constellations, we assessed replication of the 241 

dominant biclusters separately in the constellations in which they were found (see 242 

Supplementary Methods section Replication of disease-specific biclusters in ADNI for full 243 

details). Thus, we tested replication of bicluster 1 only among individuals belonging to 244 

constellation 1, and tested replication of bicluster 2 only among individuals belonging to 245 

constellation 2. For a given bicluster, we calculated the first 2 dominant SNP-wise principal 246 

components (using only SNPs in common to both datasets) among the UKB cases belonging to 247 

the bicluster. The resulting SNP loadings were used to project UKB participants in the 248 

constellation (including controls, bicluster cases, and non-bicluster cases). Similarly, we 249 

calculated projections for each of the ADNI participants belonging to a given constellation using 250 

these UKB bicluster-defined loadings. If the bicluster structure is present in the ADNI data, then 251 

the distribution of cases and controls in this space should be similar between datasets. That is, 252 

for a given participant in the testing set, participants from the training set located nearby should 253 

tend to have the same label.  254 
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We can choose what fraction of the training set participants to compare, denoted as 𝑓, 255 

and for a given choice of 𝑓 we calculated the proportion of nearest neighbors in the training set 256 

that have the same label (i.e., either case or control) as each of the individuals in the test set. 257 

We assessed the quality of each choice of 𝑓 using a permutation test in which the average 258 

“label match” across participants in the test set is compared to a null distribution constructed 259 

from label-shuffled data. We ran 500 permutations for these analyses. We calculate the average 260 

z-score across the range of 𝑓 in (𝑓, 𝑓), with 𝑓 corresponding to the lower end of the 95% 261 

confidence-interval for affine-point-matching (i.e., 𝑓~ 6%) and 𝑓at 50%. This average is 262 

calculated using a normalizing factor to correct for heteroskedasticity [45]. The variance 263 

determining the normalizing factor is calculated from the analogous 𝑧-scores obtained after 264 

alignment of the projections onto principal-components calculated from randomly selected 265 

biclusters (i.e., subsets of cases and allele-combinations) of the same size as the bicluster of 266 

interest. We calculated a global empirical p-value by comparing the average 𝑧-score of the 267 

observed data across the range of parameter choices of 𝑓 in (𝑓, 𝑓) to the null distribution 268 

across the same range. Given that a particular bicluster is globally significant, values of 𝑓 269 

corresponding to high 𝑧-scores indicate reasonable values of 𝑓 to use when labelling new data, 270 

as described below. 271 

Association of bicluster groups with cognitive and biomarker trajectories 272 

 The procedures described above were repeated on the full set of ADNI genotyping data, 273 

this time including individuals with MCI in addition to AD cases and controls. This included 274 

applying the previously described genotyping filters, projecting ADNI data onto PC space 275 

defined by the UKB data and assigning to the nearest constellation, and then projecting 276 

individuals belonging to constellations 1 and 2 using the bicluster-defined loadings from 277 

biclusters 1 and 2, respectively. The number of nearest neighbors with each label (i.e., bicluster 278 

case, non-bicluster case, and controls) was then recorded for each ADNI participant. The 279 
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fraction of training set participants used as nearest neighbors was determined by the fraction 280 

with the highest 𝑧-score in the validation step described above. Each ADNI participant was 281 

assigned a soft label, calculated as the proportion of nearest neighbors in the UKB training set 282 

that were bicluster cases. To assign individuals to biclusters 1 and 2, k-means clustering with 283 

k=2 was applied to the soft labels (i.e., proportions of nearest neighbors that were bicluster 284 

cases) of each ADNI participant belonging to constellations 1 and 2 separately.  285 

  Phenotypic analyses were restricted to the ADNI MCI participants who were not 286 

included in the bicluster validation analysis. We examined change of cognition, amyloid, and 287 

phosphorylated tau (p-tau) over time between individuals labelled as bicluster 1, bicluster 2, or 288 

non-bicluster. Cognition was assessed using scores on the Preclinical Alzheimer’s Cognitive 289 

Composite (PACC) [46, 47]. Amyloid was assessed with florbetapir PET data processed 290 

according to previously published methods (http://adni.loni.usc.edu/methods) [48, 49]. 291 

Specifically, we downloaded mean standardized uptake value ratios (SUVR) from a set of 292 

regions including frontal, temporal, parietal and cingulate cortices using whole cerebellum as a 293 

reference region. Cerebrospinal fluid p-tau CSF samples were collected on cohort participants 294 

and processed as previously described [50]. CSF p-tau was measured with the fully automated 295 

Elecsys immunoassay (Roche Diagnostics) by the ADNI biomarker core (University of 296 

Pennsylvania). Florbetapir PET and CSF p-tau were chosen as the measures of amyloid and p-297 

tau because they provided the highest number of visits with relevant data across our MCI 298 

participant group.  299 

 Group differences between individuals with MCI labelled as bicluster 1, bicluster 2, or 300 

non-bicluster were assessed with linear mixed effects models using the lme4 [51] and lmerTest 301 

[52] R packages. For each outcome of interest (cognition, amyloid, or p-tau), all timepoints with 302 

available data were included. An interaction between age and group was used to assess 303 

differences in the trajectories of cognitive and biomarker measures over time. A random 304 

intercept was included for participant.  305 
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RESULTS 306 

Identification of disease-relevant constellations 307 

 The PCA of AD-associated variants that were retained after applying QC filters 308 

(n=446,700 SNPs; 1,340,100 allele-combinations) in the UKB data revealed three distinct 309 

clusters, or “constellations”, each containing a mixture of AD cases and controls (Figure 1A). 310 

The plots in Figure 1B indicate that this structure only emerges when restricting to AD-311 

associated SNPs. When all variants are included in the PCA (e.g., no p-value criterion is used) 312 

there is also evidence for substructure, but it is quite different than what is observed when a 313 

threshold of p<0.05 is used, with individuals from each of the constellations being highly 314 

interspersed. The separation of constellations along the dominant component emerges around 315 

p<0.25, and the constellations begin to further separate along the second PC at p<0.05. Results 316 

of a PCA applied to a random set of SNPs of the same size as were included at the p<0.05 level 317 

again found that individuals from each constellation were interspersed, and the overall structure 318 

closely mirrored that seen when all SNPs were included (Supplementary Figure 1). Three 319 

similarly distinct clusters emerge if a PCA is applied to additively-coded data as opposed to 320 

allele-coding (Supplemental Figure 2). 321 

Plotting the SNP-wise loadings of PC1 revealed strong contributions from variants in the 322 

region of chromosome 17q21 (Figure 2). This is a known region of extended LD with complex 323 

genomic architecture, including a 900-kb inversion polymorphism surrounding the MAPT gene 324 

that defines two haplotyes, H1 and H2, with H1 containing multiple sub-haplotypes [53, 54]. 325 

Examining the genotypes of each constellation at the H1/H2 tagging SNP rs8070723, there is a 326 

strong (but not perfect) correspondence between constellations and haplotypes. Constellation 1 327 

is largely homozygous for the H1-associated allele, constellation 3 is largely homozygous for the 328 

H2-associated allele, and constellation 2 is heterozygous (Supplemental Table 2). Thus, while 329 

variation from across the genome contributes to this constellation structure, it is driven primarily 330 
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by several correlation patterns within this LD block, likely corresponding to H1/H2 haplotype 331 

status.  332 

Taken together, these findings suggest that the constellations are disease-relevant 333 

because they only emerge as dominant modes of variation when restricting consideration to AD-334 

associated variants, and because the distribution of cases and controls falls along different 335 

directions across constellations. However, they are not disease-specific because constellations 336 

contain both cases and controls, suggesting cluster membership alone does not discriminate 337 

between high and low disease risk. The three constellations were not significantly different on 338 

demographic characteristics, including sex, age, education, percent with AD dementia, or 339 

number of APOE-e4 alleles (Supplementary Table 1).  340 

 341 

Identification of disease-specific biclusters 342 

 The stark heterogeneity exhibited at the level of the disease-relevant constellations 343 

strongly suggests that there may be other heterogeneous substructures contained within each. 344 

This possibility seems all the more likely due to the non-Gaussian distribution of subjects within 345 

each constellation. Additionally, the distribution of cases and controls appears to be different 346 

across constellations. Examining Figure 1A, it appears that the bias or shift in cases relative to 347 

controls does not fall in the same direction across constellations, thus requiring that the search 348 

for biclusters be carried out separately for each constellation. The results of our bicluster 349 

searches are shown in Figure 3. Each subplot corresponds to the search in a different 350 

constellation. Within each subplot the red curve corresponds to the signal-strength of the 351 

dominant bicluster within the data, referred to as a ‘trace’ in the Methods section. The black 352 

curves indicate the distribution of traces drawn from the null-hypothesis via a permutation-test. 353 

Generally speaking, a red trace that has either a high peak or a high average (relative to the 354 

distribution of black traces) indicates a statistically significant bicluster. For this data set we 355 

detected a statistically significant bicluster in constellation 1 (termed “bicluster 1”; pavg=0.002, 356 
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pmax=0.008) and constellation 2 (termed bicluster 2; pavg=0.028, pmax=0.244), but not in 357 

constellation 3 (pavg=0.484, pmax=0.102), which is the smallest of the 3 constellations. The shape 358 

of the traces conveys additional information about the structure of the biclusters. For example, 359 

the sharp peaks defining bicluster 1 in Figure 3A indicate clear cut points at which membership 360 

can be clearly delineated (i.e., a disease subtype). In contrast, the broader plateau of the trace 361 

in Figure 3B reflects a bicluster with “fuzzy” boundaries whereby there is a smoother continuum 362 

of membership in the bicluster. This is also reflected in the different pattern of p-values between 363 

biclusters (i.e., whether the peak or average of the trace tends to be more significant). Thus, 364 

examining the traces informs us whether disease heterogeneity takes the form of distinct 365 

subtypes, a continuous spectrum of risk, or some intermediate structure. After delineating and 366 

removing the dominant bicluster within constellations 1 and 2 (see Methods) we searched once 367 

again for any additional biclusters but did not find a second bicluster that was statistically 368 

significant in either constellation (Supplementary Figure 3). However, when searching for 369 

these secondary biclusters, the clearly non-Gaussian distribution of traces drawn from the label-370 

shuffled null distribution (visualized as clumped strands among the black traces) suggests there 371 

is residual heterogeneity, but we are not powered to identify it in the current sample. The 372 

bicluster participants were not significantly different on demographic characteristics, including 373 

sex, age, education, or number of APOE-e4 alleles (Supplementary Table 1). Supplementary 374 

Figure 4 presents a plot of the constellations shown in Figure 1 with bicluster cases 375 

highlighted.  376 

 377 

Gene set enrichment results of disease-specific biclusters 378 

Bicluster 1 was enriched for a number of gene sets, including those related to receptor 379 

activity, calcium and sodium ion transport, dendritic structure, GTPase activity, and regulation of 380 

the MAPK cascade. Bicluster 2 was enriched for gene sets related to the MHC protein complex, 381 

regulation of cell size, lipid transport, and tyrosine kinase activity. Both biclusters showed 382 
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enrichment for cell-projection morphogenesis, and synaptic transmission. Figure 4 shows 383 

network plots of gene sets enriched in each bicluster. The gene sets are grouped by proportion 384 

of overlapping genes and labelled with dominant terms to illustrate the shared and unique 385 

functions associated with variants in each bicluster.  386 

Although many of the enriched gene sets identified in this analysis relate to basic 387 

functions and thus do not appear to be AD-specific, it should be noted that the variants 388 

considered in these analyses were already selected for their association with AD. That is, the 389 

gene sets shown in Figure 4 are those which are enriched in bicluster variants relative to the 390 

other AD-associated variants, rather than with respect to all other variants, including AD-391 

nonspecific variants. Pathways that are typically found to be enriched for AD-associated 392 

variants constitute a background signal that is likely shared among many of the cases, including 393 

those that are not part of either bicluster.   394 

There is also a degree of overlap in the gene sets enriched for each bicluster. However, 395 

the proportion of overlap seen at the level of gene sets is reduced when looking at the overlap 396 

among constituent genes or SNPs (Supplementary Figure 5). This indicates that the variants 397 

associated with each bicluster may have impacts that converge on similar downstream 398 

pathways, but the specific perturbations encompassed by each may not be the same. 399 

Disease-relevant constellations are evident in ADNI data. 400 

Using only SNPs common to both datasets, we re-calculated the top principal 401 

components of AD-associated variants in the UKB data. These loadings were used to project 402 

both the UKB and ADNI data into the same PC space. As seen in Figure 5, the grouping of 403 

UKB participants into 3 constellations was almost perfectly mirrored in the ADNI data, albeit with 404 

a slight shift in positioning. As in the UKB data, each constellation contained a mixture of AD 405 

cases and controls, reflecting disease-relevant but not disease-specific clustering.  406 

 407 
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Disease-specific biclusters replicate in ADNI 408 

  Overall, we found evidence for significant replication of bicluster 1 in the ADNI data 409 

(global p=0.006), and weaker yet significant replication of bicluster 2 (global p=0.048). This 410 

pattern is consistent with the initial bicluster search, in which bicluster 1 seemed to have more 411 

distinct boundaries whereas the boundaries of bicluster 2 were more diffuse. The best label 412 

similarity ranking in comparison to the null distribution was achieved using 31.6% of the sample 413 

as nearest neighbors for bicluster 1 and using 27.3% of the sample as nearest neighbors for 414 

bicluster 2. Figure 6 displays the labeling accuracy across a range of nearest neighbors. Note 415 

that the shape of these curves can be influenced by the structure of the bicluster. For example, 416 

a bicluster with clearly delineated boundaries may be less sensitive to altering the nearest 417 

neighbor parameter compared to one with blurrier boundaries. Consistent with this, we see high 418 

accuracy of label matching in bicluster 1 across a large range of nearest neighbor fractions, 419 

ranging from about 17% up to our maximum threshold of 50%. In contrast, the accuracy of label 420 

matching bicluster 2 is more sensitive to this parameter choice, with high accuracy using 421 

nearest neighbor fractions from about 26% to 36%. Importantly, these plots provide a range of 422 

sensible values one can use to label new data.   423 

 424 

Cognitive and biomarker trajectories across bicluster groups in ADNI MCI participants  425 

 We found evidence for differential cognitive and biomarker trajectories across bicluster 426 

groups in a separate set of ADNI individuals diagnosed with MCI. Individuals assigned to 427 

bicluster 2 demonstrated significantly greater decline on the PACC compared to the non-428 

bicluster (β=-0.40, t-value=-2.29, p=0.022) and bicluster 1 groups (β=-0.60, t-value=2.92, 429 

p=0.004) (Figure 7A). Bicluster 1 demonstrated a somewhat greater increase in florbetapir over 430 

time compared to the non-bicluster group, but this difference was not significant (β=0.32, t-431 

value=1.52, p=0.129) (Figure 7B).  Bicluster 2 demonstrated a significantly greater increase of 432 
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CSF p-tau over time compared to the non-bicluster group (β=0.45, t-value=2.05, p=0.041) 433 

(Figure 7C). 434 

DISCUSSION 435 

Genetic analyses suggest the etiology of AD is multifactorial [55], but the extent to which 436 

the composition of genetic influences on AD risk varies across individuals and whether it is 437 

replicable across different data sets has been unclear. We identified evidence for several 438 

subsets of individuals that exhibit different patterns of genetically-mediated vulnerability to the 439 

risk for AD. Among AD-associated SNPs, there is clear heterogeneity across individuals, and 440 

this heterogeneity seemed to follow a hierarchical structure. Importantly, this structure was 441 

observed in two independent datasets, indicating that it is not sample-specific, but rather 442 

appears to be a generalizable feature of AD genetic risk.  443 

The first level of heterogeneity emerged as 3 clusters, which we termed “constellations”, 444 

from a PCA of the UKB data confined to variants associated with AD based on prior GWAS. 445 

Similar analyses (i.e., PCA) are often used to identify ancestry-related population structure [56], 446 

but we found that the constellations only emerged when examining AD-associated SNPs and 447 

individuals from each constellation were highly intermixed when analyzed using all SNPs or a 448 

random selection of SNPs. These results indicate that the constellations do not simply reflect 449 

ancestry-related substructure. We further found a spike in loadings on the first PC used to 450 

define the constellations within the region of chromosome 17q21.31. This is a region of strong 451 

extended LD driven by a 900-kb inversion polymorphism surrounding the MAPT gene that 452 

defines two haplotypes, H1 and H2, with the H1 haplotype further dividing into several sub-453 

haplotypes [53, 54]. The MAPT gene codes for tau, the primary component of neurofibrillary 454 

tangles, so it is clearly relevant to AD. However, as a risk gene it is more strongly associated 455 

with primary tauopathies, and investigations of the MAPT locus and the H1/H2 haplotypes find 456 

inconsistent evidence for a specific association with AD risk [54, 57]. A stratified GWAS of AD 457 
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by Strickland, et al. [58] found that there were several variants with haplotype-dependent 458 

associations, which may explain these inconsistencies.  459 

It may be that our constellations at least partially reflect the H1/H2 haplotypes (along 460 

with H1 sub-haplotypes) defined by variation in this region. Using the H1/H2 haplotype-tagging 461 

SNP rs8070723, Strickland, et al. [58] found that 39% of their sample were H2 carriers (H1H2 + 462 

H2H2). Based on the genotypes of individuals across our constellations, individuals in 463 

constellations 2 and 3 (who largely have genotypes corresponding to H1H2 and H2H2 carriers, 464 

respectively) accounted for an identical 39% in our sample as well. A block of complete LD in 465 

this region and minimal recombination may further explain the surprising degree of separation 466 

between these constellations [53, 54, 59]. We note an important aspect of these constellations: 467 

they contain both cases and controls and therefore membership is not associated with 468 

increased AD risk. However, the overall distribution of cases and controls is different in each. 469 

Taken together with results from Strickland, et al. [58] showing haplotype-dependent 470 

associations, we refer to the constellation structure are “disease-relevant” in that it may alter the 471 

relative importance of other risk variants (e.g., by associating with protection or vulnerability to 472 

these other risk variants) but is not directly associated with increased AD risk.  473 

Cases belonging to the disease-specific biclusters harbored distinct genetic signatures 474 

when compared to other AD cases and may therefore reflect “subtypes” of AD genetic risk. The 475 

variants defining the two disease-specific biclusters were enriched for both similar and unique 476 

pathways when compared to each other and the disease-relevant constellations in which they 477 

were found. It is important to re-emphasize the fact that these analyses were restricted to AD-478 

associated variants, which are enriched for lipid processing, cholesterol transport, amyloid 479 

precursor (APP) processing and Aβ formation, tau protein binding, and immune response [12]. 480 

The bicluster-associated pathways reported here thus exist within this broader context of other 481 

AD-associated pathways. Bicluster 1 was enriched for gene sets involved in regulating the 482 

MAPK cascade, which may contribute to AD progression in several cell-type-dependent ways, 483 
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such as increasing neuroinflammation, promoting neurofibrillary tangle formation, and 484 

depressing synaptic plasticity [60]. Bicluster 2 demonstrated enrichment in a cluster of gene 485 

sets related to the major histocompatibility complex (MHC), which is consistent with findings that 486 

implicate microglia-mediated immune response as a key player in AD [12, 15, 61, 62]. Both 487 

biclusters – and bicluster 1 in particular – were enriched for gene sets related to synaptic 488 

signaling and signal transduction. Similar enrichment was found among newly prioritized genes 489 

in the most recent largescale GWAS of AD [15].  We also found both biclusters were strongly 490 

enriched for a number of pathways that interact to influence the morphogenesis and outgrowth 491 

of neurons. This includes gene sets related to the cellular components themselves (e.g., cell 492 

bodies, dendritic spines, synapses, axonal projections, cystoskeletal components), but also 493 

factors that modulate their development such as polymerization, β-catenin binding, and GTPase 494 

activity [63-67]. Disruption of these processes may leave structures more vulnerable to insult 495 

resulting in, for example, greater Aβ-mediated synapse loss. APP (the precursor of Aβ) is 496 

important for regulating axonal and synaptic growth through influencing cytoskeletal remodelling 497 

[68] and tau plays a critical role in stabilizing microtubules [69, 70]. It is therefore possible that 498 

the hallmark pathologies of AD, i.e., Aβ and tau protein build-up, may exert impacts through 499 

toxic effects, but also reflect a loss of function that affects cell structure and growth. Further 500 

work is needed to comprehensively characterize the impacts of these bicluster-associated 501 

variants.   502 

We found that both the disease-relevant constellation structure and the disease-specific 503 

biclusters replicated in the ADNI sample. There are several important differences between the 504 

ADNI and UKB cohorts. First, although analyses were restricted to individuals of European 505 

ancestry, the UKB was further restricted to a White British subset, so the ADNI data may 506 

contain relatively more ancestry-related heterogeneity. Second, the studies used different 507 

genotyping chips (and ADNI genotypes were obtained with 3 different chips across phases) and 508 

imputation panels. Third, ADNI participants were recruited with the intent of mirroring a clinical 509 
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trial population focused on Alzheimer’s disease, whereas the UKB attempted to recruit a 510 

broader base of individuals to study multiple outcomes. Replicable structure across these 511 

datasets is thus unlikely to reflect dataset-specific or artifactual confounds that should 512 

differentially affect these datasets. 513 

Supporting the relevance of the genetic structure found here, we found that a separate 514 

set of ADNI participants diagnosed with MCI assigned to different bicluster groups 515 

demonstrated differential cognitive and biomarker trajectories. Individuals with genetic 516 

signatures resembling bicluster 2 exhibited greater accumulation of p-tau and a corresponding 517 

steeper decline in cognitive performance over time. The variants associated with this genetic 518 

subtype may contribute to a more aggressive form of AD. We previously found that genetic risk 519 

affecting different biological pathways can preferentially relate to amyloid or tau accumulation 520 

[71]. Thus, it may be that the balance of pathological accumulation is shifted towards p-tau in 521 

these individuals, and p-tau has been shown to be more closely linked to subsequent 522 

neurodegeneration [72] and cognitive decline [73] compared to amyloid. The genetic 523 

heterogeneity observed here may impact not only level but distribution of pathology, which may 524 

be particularly important in the case of tau [3, 7, 74]. Heterogeneity in genetic risk may also 525 

relate to comorbid conditions that exacerbate AD progression. It is therefore clear that more 526 

work is needed to characterize the downstream impacts of genetic heterogeneity on disease 527 

outcomes.   528 

Our findings may indicate that there are likely multiple genetically-mediated pathologies 529 

underlying AD that converge on common clinical manifestations. This is not a unique 530 

phenomenon. For example, Charcot-Marie-Tooth disease involves a common set of clinical 531 

symptoms that can arise from separate genetic origins [75]. We did find evidence for overlap in 532 

the pathways enriched across the different constellations and biclusters identified in our 533 

analysis, and this may indicate where convergence begins. However, there are a few caveats. 534 

First, receiving the same clinical diagnosis does not rule out the possibility of meaningful 535 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 3, 2024. ; https://doi.org/10.1101/2023.05.02.23289347doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.02.23289347
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

differences across cases. There are atypical forms of clinically-defined AD [76-79] and there is 536 

growing evidence for several biological subtypes of AD characterized by distinct patterns of 537 

pathological spread or neurodegeneration [2, 3, 5]. Further work is needed to determine 538 

whether the genetic heterogeneity identified here is associated with more subtle phenotypic 539 

differences. Second, the degree of overlap among pathways that we observed is driven by 540 

SNPs that were assigned to genes and pathways, but not all SNPs were assigned to genes. 541 

Many AD-associated SNPs are located in non-coding regions, so the overlap of enriched gene 542 

sets ignores substantial numbers of SNPs uniquely associated with each. Differences between 543 

constellations and biclusters may arise from the functional effects of the variants themselves, 544 

including those not assigned to genes. Third, it is possible that the subsets of cases identified by 545 

the biclustering represent misdiagnosed AD (assuming the underlying disease cause is driven 546 

by partially distinct genetic factors). Identifying misdiagnoses or undiagnosed cases in a 547 

heterogenuous population is a potential use-case of the method. However, the number of cases 548 

in each bicluster would require a higher rate of misdiagnosis than one might expect, especially 549 

in ADNI where other dementias were specifically excluded.  550 

CONCLUSIONS 551 

In sum, we found evidence of a hierarchical structure underlying heterogeneity in the 552 

genetic risk of AD. The disease-relevant constellation structure is driven to a large degree by an 553 

extended region of LD on chromosome 17q.21, with constellations potentially reflecting MAPT 554 

haplotypes. Membership in a given constellation did not directly increase risk for AD, but may 555 

alter the relative importance of other genetic risk variants for AD. On the other hand, the 556 

biclusters may be considered disease subtypes with distinct genetic signatures compared to the 557 

broader population of AD cases, which may have important implications for treatment efforts. 558 

Despite all cases presenting with a common clinical syndrome, the etiology and path taken to 559 

clinical manifestation may vary across patients. The differential cognitive and biomarker 560 
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trajectories between genetic subtypes provides some evidence that this heterogeneity has 561 

consequences for downstream disease processes. Identifying subtypes of AD could facilitate 562 

precision medicine approaches that tailor treatment strategies to the individual for increased 563 

effectiveness. 564 
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TABLES 

Table 1. Sample characteristics of UK Biobank dataset.  

 Overall CU AD 

n 8217 5478 2739 
Sex, n male (%) 3993 (48.6) 2662 (48.6) 1331 (48.6) 
Age, years (SD) 64.74 (4.21) 64.74 (4.21) 64.74 (4.21) 
Education, 
years (SD) 11.95 (4.96) 12.21 (5.01) 11.41 (4.80) 
APOE-e4 alleles, 
n (%)    

0 5082 (61.8) 4063 (74.2) 1019 (37.2) 
1 2647 (32.2) 1319 (24.1) 1328 (48.5) 
2 488 (5.9) 96 (1.8) 392 (14.3) 

APOE-e4 
carriers, n (%) 3135 (38.2) 1415 (25.8) 1720 (62.8) 

CU = Cognitively unimpaired, AD = Alzheimer’s disease dementia 

 

 

Table 2. Sample characteristics of ADNI dataset. The Alzheimer’s disease 

(AD) and cognitively unimpaired (CU) groups were included in validation 

analyses of genetic heterogeneity found in the UK Biobank. The mild cognitive 

impairment (MCI) group was included in analyses of cognitive and biomarker 

trajectories. 

 Overall CN Dementia MCI 

n 1369 470 500 399 
Sex, n male (%) 765 (55.9) 225 (47.9) 297 (59.4) 243 (60.9) 
Age, years (SD) 73.70 (7.11) 72.47 (6.31) 74.61 (7.43) 74.00 (7.38) 
Education, 
years (SD) 16.01 (2.76) 16.67 (2.44) 15.51 (2.89) 15.87 (2.79) 
APOE-e4 alleles, 
n (%)     

0 750 (54.8) 334 (71.1) 174 (34.8) 242 (60.7) 
1 493 (36.0) 122 (26.0) 245 (49.0) 126 (31.6) 
2 126 (9.2) 14 (3.0) 81 (16.2) 31 (7.8) 

APOE-e4 
carriers, n (%) 619 (45.2) 136 (28.9) 326 (65.2) 157 (39.3) 
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FIGURES 

 

Figure 1. Principal component analysis of UKB data restricted to Alzheimer’s disease-

associated variants reveals three constellations. A) Principal component analysis was 

applied to allele combinations of UK Biobank cases and controls restricted to variants with a p-

value<0.05 in the Kunkle et al. Alzheimer’s GWAS [80]. The scatter plot displays participant 

loading on the first two principal components (PC1 and PC2) and colored by Alzheimer’s 

disease case-control status. Three distinct clusters, or constellations, are clearly present and 

each contains a mix of cases and controls. Heatmaps displaying the density of cases and 

controls in each constellation are also shown to demonstrate that, despite substantial overlap 

between the groups, there is some offset in the distributions. However, the directional bias is not 

consistent across constellations. B) Principal component analysis results when variants were 

restricted across a range of p-value thresholds from the Kunkle et al. Alzheimer’s GWAS [80]. 

The scatter plots are colored by constellation labels defined at the p<0.05 threshold. 

Participants from all three constellations are highly mixed when all variants (p<1.0) are included. 

The constellation structure begins to emerge along the first principal component at p<0.25, and 

further separate along the second principal component at p<0.05.  
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Figure 2. A) Hex bin plot of loadings across allele combinations on first principal component 

from the PCA on UKB cases and controls restricted to variants with a p-value<0.05 in the 

Kunkle et al. Alzheimer’s GWAS [12]. Allele combinations are ordered by chromosome and 

base position across the x-axis. Color represents density of data points that fall within a given 

hex. B) The location of peak loadings on PC1 is shown in greater detail along with gene 

annotations from the UCSC database. The peak loadings occur in the region of 17q21.31, 

overlapping with a known region of extended LD surrounding the MAPT locus.  
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Figure 3. Bicluster traces of observed data versus label-shuffled data. The disease-related 

signal-strength associated with the remaining UKB Alzheimer’s cases relative to controls is 

plotted on the y-axis. At each iteration, allele combinations and cases that contribute least to 

this difference are removed. The proportion of remaining cases is shown on the x-axis. The red 

trace represents the original data and black traces represent label-shuffled data, corresponding 

to a null distribution. A red dot indicates the iteration with the maximum separation between 

cases and controls (ignoring signal in the first iterations), and is used to define the bicluster. The 

sharper peak of constellation 1 indicates that this bicluster has more distinct boundaries, 

whereas the bicluster in constellation 2 has “fuzzier” boundaries as indicated by the broad yet 

lower peak.  
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Figure 4. Network plot of gene sets enriched among bicluster genes. Network visualization 

of gene set enrichment results for biclusters 1 and 2. First, separate GWAS compared 

individuals in each bicluster to all controls from the same constellation in which the bicluster was 

found (e.g., bicluster 1 cases versus all controls from constellation 1). SNPs that were nominally 

associated with a given bicluster (i.e., positive regression coefficient and p<0.05) were mapped 

to genes based on position. Over-representation analysis of gene lists for each bicluster was 

used to identify gene sets associated with each bicluster. Nodes represent significantly enriched 

gene sets (pFDR<0.05) with color indicating the bicluster they are associated with. Edges 

represent the overlap in genes belonging to gene sets using a threshold of 0.5. Gene sets were 

clustered based on overlaps and automatically annotated based on the descriptions of each 

gene set cluster.  
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Figure 5. ADNI data projected along principal components defined in UKB data replicate 

distribution of disease-relevant constellations. Principal components were recalculated in 

UKB data using only AD-associated variants common to both datasets. Participants from both 

datasets were then plotted by participants loadings on the first two principal components. Colors 

represent constellations, UKB participants are plotted with squares, and ADNI participants are 

plotted with circles.  
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Figure 6. Replication of disease-specific biclusters in ADNI data. The similarity between 

case-control labels of individuals in the test set (ADNI) and the most frequent label among 

nearest neighbors in the training set (UKB) was used to assess replication of biclusters. Only 

individuals belonging to the constellation in which the given bicluster was found were 

considered. The fraction of individuals from the training set (i.e., UKB) considered as nearest 

neighbors is plotted along the x-axis. The y-axis in Panels (A) and (D) shows the average 

fraction of nearest neighbors with a matching label. The red line in Panels (A) and (D) shows 

values from the original data, while the black lines show values from label-shuffled trials drawn 

from the null-distribution. A trial-wise mean and variance can be defined from the null 

distribution to normalize values, with the associated z-scores shown in Panels (B) and (E). A 

rank-normalization of the scores compared to the null distribution is shown in Panels (C) and 

(F). 
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Figure 7. Association of bicluster groups in ADNI MCI sample. ADNI individuals diagnosed 

with MCI were assigned to bicluster groups (bicluster 1, bicluster 2, or non-bicluster). 

Differences in longitudinal cognitive and biomarker trajectories between groups were tested with 

age x group interactions in linear mixed effects models. Model predicted values are shown in 

the figure. A) Cognition was measured with the Preclinical Alzheimer’s Cognitive Composite 

(PACC). B) Amyloid was measures using florbetapir PET. C) Phosphorylated tau (p-tau) was 

measured using CSF p-tau.  
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