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Abstract

Background: High-dimensional clinical data are becoming more accessible in biobank-scale

datasets. However, accurately phenotyping high-dimensional clinical data remains a major im-

pediment to genetic discovery.

Methods: We introduce a general deep learning framework, REpresentation learning for Ge-

netic discovery on Low-dimensional Embeddings (REGLE), for discovering associations between

genetic variants and high-dimensional clinical data. REGLE uses convolutional variational au-

toencoders to compute a non-linear, low-dimensional, disentangled embedding of the data and can

also incorporate expert clinical metrics. We demonstrate the utility of REGLE by application to

spirograms, which measure lung function. We generate two types of synthetic representations of
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pulmonary functions we call spirogram encodings (SPINCs) and residual spirogram encodings

(RSPINCs).

Findings: Genome-wide association studies on (R)SPINCs identify more genome-wide signifi-

cant loci than existing methods while replicating most known lung function loci. Furthermore,

(R)SPINCs are associated with overall survival and, under the latent causal variable model,

they exhibit significantly high genetic causality proportion with asthma, chronic obstructive

pulmonary disease (COPD), and inflammatory diseases. Finally, we construct a set of polygenic

risk scores (PRS) that are generally predictive of pulmonary traits and diseases. We demon-

strate superior performance predicting asthma and COPD, in multiple ancestries and across four

biobanks, compared to PRSs constructed using expert-defined pulmonary function measure-

ments.

Interpretation: REGLE is a method for generating low-dimensional, disentangled representa-

tions of high-dimensional clinical data that does not require labels, and improves upon expert-

defined phenotypes for genetic discovery and disease prediction. It can flexibly incorporate

expert-defined or clinical features and provides a framework to create accurate disease-specific

PRS in datasets which have minimal expert phenotyping. (R)SPINCs are quantifying clinically

relevant features that are not currently captured in a standardized or automated way.

Funding: Google LLC.

1 Introduction

High-dimensional clinical data (HDCD) provide a unique opportunity to reveal the genetic architec-

ture of diseases and complex traits when coupled with biobank-scale genetic data [1, 2, 3, 4, 5, 6].

However, we lack statistical methods to fully utilize HDCD in genome-wide association studies

(GWAS), as standard GWAS require the phenotype of interest to be encoded as a single scalar.

Multiple methods have been developed to use HDCD in GWAS, but each has unique limitations.

A natural procedure to use HDCD in GWAS is to perform GWAS on every single data coordinate

(e.g. time points or pixels). For example, prior work performed GWAS on each recorded point

of electrocardiograms to identify its genetic architecture [7]. There are multiple shortcomings of

this approach: 1) running GWAS on thousands of phenotypes can be prohibitively computation-

ally expensive, 2) HDCD often have a correlation structure in which the actual number of degrees

of freedom is much lower than the number of coordinates in the data, and 3) multiple hypothesis

testing correction for highly correlated coordinates reduces statistical power [8, 9]. One popular ap-

proach to address these issues is to use principal component analysis (PCA) [10] on the HDCD and
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then perform GWAS on a subset of the principal components (PCs) [11]. However, PCA assumes

a linear relationship between the raw HDCD and the underlying biological factors of interest, and

does not explicitly model temporal or spatial structure of HDCD. This incomplete representation of

the data can lead to suboptimal downstream genetic analysis.

Machine learning-based (ML-based) phenotyping uses HDCD as input to a supervised machine

learning model (specifically a deep learning model) to predict trait labels, and then performs GWAS

using the model predictions as the target phenotype [3, 12, 6]. While ML-based phenotyping can

augment standard GWAS on manual trait labels, the supervised model only learns signals related

to the specific target trait and may require many labeled examples in the case of a deep learning

model.

The most common method for GWAS on HDCD uses a small number of expert-defined features

(EDFs) of HDCD as the target phenotypes. For example, spirograms are a graphical representation

of spirometry test results, a widely-used clinical test for lung function that measures airflow and

volume over time [13, 14]. Spirograms can be summarized into EDFs including forced vital capacity

(FVC), forced expiratory volume in the 1st second (FEV1), FEV1/FVC, peak expiratory flow (PEF)

and forced mid-expiratory flow (FEF25-75%) [15]. Spirogram EDFs are used in clinical settings to

diagnose diseases such as COPD [16, 17]. EDFs are heritable, and GWAS on EDFs have helped

identify the genetic architecture of lung function [18, 19, 20]. However, EDFs may not capture the

entirety of biological factors encoded in spirograms and thus GWAS on these EDFs may not exploit

the full potential of spirograms.

To overcome these limitations we develop a principled method, REpresentation learning for

Genetic discovery on Low-dimensional Embeddings (REGLE), that is computationally efficient, re-

quires no labels, and can incorporate information from EDFs if they are available. As a case study,

we apply REGLE to understand the genetic architecture of lung function from raw spirograms.

Compared to GWAS on spirogram EDFs (e.g. FEV1), our GWAS on the learned encodings both

recovers most known genetic loci linked to lung function and also detects additional loci. We com-

puted polygenic risk scores (PRS) from GWAS on the learned encodings and evaluated their ability

to discriminate asthma and COPD in multiple datasets and genetic ancestries. Several lines of evi-

dence, including stronger lung function enrichments, genetic causality for COPD and asthma, and

significantly improved polygenic risk prediction, indicate that REGLE successfully extracts a mean-

ingful low dimensional representation of lung function from spirograms, which in turn improves

genetic discovery.
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2 Results

2.1 Overview of REGLE

REGLE consists of three main steps: 1) learning a non-linear, low-dimensional, disentangled repre-

sentation (i.e. an encoding) of the HDCD, 2) performing GWAS on each encoding coordinate, and

3) using PRSs from the encoding coordinates as genetic scores of general biological functions, and

potentially combining them to create a PRS for a disease or trait of interest (Figure 1).

In the first step, we train a variational autoencoder (VAE) [21] to compress and reconstruct

HDCD (Figure 1 and Methods). Autoencoders consist of a pair of function approximators, typically

called an encoder and a decoder, connected by a low-dimensional “bottleneck” layer. The encoder

summarizes the input data efficiently into a small set of numbers represented at the bottleneck layer,

and the decoder reconstructs the input data from the low-dimensional summary [22]. VAEs [21]

are a special type of autoencoders that introduce stochasticity in the encoder. The VAE can force the

learned encodings to be relatively disentangled [23], i.e. the encodings have relatively uncorrelated

coordinates and separable biological factors can be better captured in each coordinate.

In addition, REGLE enables relevant EDFs to be optionally included in the input to the decoder

of the model, so that the encoder is encouraged to learn only the residual signals not represented

by the EDFs (Figure 1). This ability to incorporate prior knowledge of important data features

(from users or clinicians) is a key advantage of REGLE.

In the second step, we perform GWAS independently on each learned encoding coordinate for

all individuals (Methods). In the final step, we compute coordinate-specific PRSs that represent

intermediate genetic scores of biological function, and linearly combine these coordinate-specific

PRSs into a single disease-specific PRS by training on a small number of individuals with disease

labels (Figure 1).

2.2 Overview of REGLE on spirograms

Spirograms are a graphical representation of clinical pulmonary function tests, typically repre-

sented by volume-time, flow-time, and flow-volume curves. Spirograms are used to diagnose respi-

ratory diseases such as COPD and understand lung function [24, 19, 6]. To understand the genetic

architecture of human lung function, we applied REGLE to obtain low-dimensional representa-

tions of spirogram curves, which we call spirogram encodings (SPINCs) (Figure 2). To construct

SPINCs, we trained a convolutional VAE [21] to reconstruct spirograms (volume-time and flow-
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Figure 1: Overview of representation learning for genetic discovery on low-dimensional em-
beddings (REGLE). In Step 1, we learn a low-dimensional embedding using a VAE where we
optionally condition the decoder on EDFs. In Step 2, we perform GWAS on all learned variables
(and EDFs if they are used). Finally in Step 3, we train a small linear model to learn weights for
each latent variable PRS to obtain the final disease-specific PRS.

time; Figure 2a and Methods). In addition, we constructed another set of encodings we call residual

spirogram encodings (RSPINCs) by injecting five EDFs (FEV1, FVC, FEV1/FVC, PEF, and FEF25-75%)

into the input to the decoder of the REGLE to reconstruct flow-volume (Figure 2a). We generated

SPINCs and RSPINCs for all individuals (n=351,120) in UK Biobank [25] using their first visit

spirogram, excluding individuals whose spirogram failed our QC measures (Methods). We used

80% of the European-ancestry individuals (n=259,692) to train the (R)SPINCs models and 20%

(n=65,266) to evaluate the reconstruction performance and choose hyperparameters (Supplemen-

tary Figure 1, Supplementary Table 1, and Methods). Using just 5 SPINCs (the same as the number

of common spirogram EDFs), we observed highly accurate reconstruction of the input spirograms

(Figure 2b) based on mean squared error across time. SPINCs consistently outperformed an equiv-

alent number of PCs in terms of reconstruction accuracy at small latent dimensions (Figure 2c,
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Supplementary Notes). We observed similarly accurate reconstructions for EDFs+RSPINCs as well

with RSPINCs (Supplementary Figure 2); we used 2 RSPINCs to balance the number of additional

coordinates and the reconstruction accuracy. Importantly, the learned representations are highly

consistent when trained with multiple different initializations (Supplementary Figure 3, Supple-

mentary Notes).

Figure 2: Overview of REGLE on spirograms. a) Learning spirogram encodings (SPINCs) using a
convolutional variational autoencoder (VAE) and residual spirogram encodings (RSPINCs) using a
convolutional VAE with “features injection”, using expert-defined features (EDFs) for example. b)
Reconstructing a spirogram (volume-time curve) from SPINCs (dim=5). c) Reconstruction errors
(mean squared error across time points) for reconstructed spirograms using the SPINCs model and
PCA with a varying latent dimension. Both the SPINCs model and PCA are trained (or “fitted”) on a
training set and the reconstruction error was evaluated in a separate validation set. d) Spirograms
created by RSPINCs (dim=2) decoder using a fixed set of injected features (i.e. EDFs) and varying
one RSPINC coordinate while fixing the other one to be zero. Line color indicates the varying
RSPINC coordinate value.

2.3 (R)SPINCs are partially interpretable

To interpret the influence of RSPINC coordinates on spirogram shape, we fixed the values of EDFs

(obtained from a randomly selected individual in the validation set) and varied one RSPINC co-
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ordinate while keeping the other one fixed at zero, and generated the corresponding flow-volume

spirograms using only the decoder portion of the RSPINCs model (Figure 2d). A typical flow-

volume spirogram consists of two distinct parts: the first part, a relatively brief part to reach peak

flow where the flow increases monotonically as the volume increases, and the second part, the

main part of the spirogram where the flow is monotonically decreasing. In Figure 2d, we clearly

observed that varying the first coordinate of RSPINCs amounts to widening or narrowing of the

second part (negative slope) while keeping the first part relatively fixed. Similarly, varying the

second coordinate of RSPINCs widens or narrows the first part (positive slope) while keeping the

second part relatively fixed. Notably, when varying either coordinate of RSPINCs, the maximum

flow value (PEF) and the final volume value (FVC) stay roughly the same, as expected since all

EDFs were fixed.

2.4 (R)SPINCs encode information beyond EDFs

Some coordinates of SPINCs are highly correlated with known EDFs. For example, the 3rd co-

ordinate of SPINCs is 96% correlated with FVC and 94% correlated with FEV1, while the 2nd

coordinate is 73% correlated with FEV1/FVC (after flipping the signs) (Supplementary Figure 4).

Both RSPINCs coordinates have low correlation (|R| < 0.3) with all EDFs, which is expected since

they were encouraged to learn only residual signals not captured by the EDFs (Supplementary

Figure 4). Both SPINCs and RSPINCs are correlated with other predictors of lung function (“covari-

ates”), such as age, sex, height, body mass index, and smoking status (Supplementary Figure 4). To

investigate if (R)SPINCs include information beyond EDFs and covariates, we residualized both the

EDFs and the covariates from (R)SPINCs and computed correlation with tabular UK Biobank fea-

tures. Multiple groups of fields strongly and significantly correlated with the (R)SPINCS even after

residualizing the EDFs and the covariates, including asthma, breathing issues, cognitive function,

and allergies (Supplementary Tables 3 and 4). Using the Cox proportional hazards model, we also

observed (R)SPINCs are associated with overall survival (Supplementary Notes, Supplementary

Figures 5 and 6, Supplementary Table 5, Methods).

2.5 (R)SPINCs detect additional novel loci for lung function

We generated SPINCs (dim=5) and RSPINCs (dim=2, in addition to 5 EDFs) for all individuals with

valid first-visit spirograms in UK Biobank (Supplementary Figures 1, 7 and 8; Methods). Then, we

7

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2023. ; https://doi.org/10.1101/2023.04.28.23289285doi: medRxiv preprint 

supplementary.pdf{}{}{}#figure.caption.19{}{}{}
supplementary.pdf{}{}{}#figure.caption.19{}{}{}
supplementary.pdf{}{}{}#figure.caption.19{}{}{}
supplementary.pdf{}{}{}#table.caption.44{}{}{}
supplementary.pdf{}{}{}#table.caption.45{}{}{}
supplementary.pdf{}{}{}#figure.caption.20{}{}{}
supplementary.pdf{}{}{}#figure.caption.21{}{}{}
supplementary.pdf{}{}{}#table.caption.46{}{}{}
supplementary.pdf{}{}{}#figure.caption.16{}{}{}
supplementary.pdf{}{}{}#figure.caption.22{}{}{}
supplementary.pdf{}{}{}#figure.caption.23{}{}{}
https://doi.org/10.1101/2023.04.28.23289285
http://creativecommons.org/licenses/by/4.0/


performed GWAS on all European-ancestry individuals(n=324,702) on all encoding coordinates

and 5 EDFs using BOLT-LMM [26, 27], adjusting for age, sex, age2, age× sex, height, height2, body

mass index, smoking status, pack-years of smoking, the type of genotyping array, and the top 15

genetic principal components (Methods). The Manhattan plots of 5 SPINCs and 2 RSPINCs GWAS

are illustrated in Supplementary Figures 9 to 13 and Supplementary Figures 14 and 15, respectively.

The intercept term from the stratified linkage disequilibrium score regression (S-LDSC) [28] was

close to 1 (Supplementary Table 6) for the GWAS of SPINCs and RSPINCs, indicating minimal

confounding bias. The SNP-heritability estimated from S-LDSC for SPINCs and RSPINCs showed

strong genetic components (Supplementary Table 6). For comparison, we also performed GWAS

on the first 5 PCs of the raw spirograms following the same steps.

We observed that GWAS on 5 SPINCs detected 575 independent genome-wide significant (GWS)

loci (R2 ≤ 0.1 and P ≤ 5× 10−8) after merging hits within 250kb together (Table 1, Methods). To

compare our results to known lung function loci from previous literature, we combined the largest

published GWAS on lung function (using FEV1, FVC, PEF, and FEV1/FVC) from Shrine et al. [20]

(580,869 individuals, compared to our 324,702 individuals in UK Biobank) with all lung function-

related loci in the NHGRI-EBI GWAS Catalog [29] (Methods). This resulted in 1104 independent

loci after merging loci by distance (250kb), hereafter referred to as “previously known loci”. Most

GWS loci from SPINCs and EDFs+RSPINCs recover previously known loci (89% for SPINCs, 90%

for EDFs+RSPINCs). Out of 575 genome-wide significant (GWS) SPINCs loci, 65 (11%) were not

previously known, compared to 32 from EDFs and 15 from PCA. Of 659 EDFs+RSPINCs GWS loci,

63 (10%) were not previously known (Table 1). Functional enrichment analysis with GARFIELD

[30] shows that these loci are enriched for lung tissue DNase I hypersensitive sites (Supplementary

Figures 16 to 20; Supplementary Figures 21 and 22; Supplementary Notes) and the EDFs+RSPINCs

loci show stronger ontology term enrichments than EDFs loci (Supplementary Figure 23) using

GREAT [31]. Notably, we found a strong enrichment for RSPINC2 in blood (Supplementary Fig-

ure 22).

Among the GWS loci discovered by SPINCs and EDFs+RSPINCs GWAS, we applied a stricter

P -value threshold of 1.0× 10−8 (to account for testing multiple coordinates) and further removed

all loci discovered by our GWAS on EDFs, in addition to the previously known loci. We found 25

loci remain from SPINCs and 30 loci from RSPINCs (Supplementary Tables 7 and 8). Lastly, to

further validate these novel loci, we used GCTA-COJO [32] to compute the association statistics

conditioned on previously known loci. Nearly all novel loci remain significant after the conditional
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analyses (Supplementary Tables 7 and 8). Thus, we conclude that these are potentially novel loci

associated with lung function that were not discovered by previous methods and may warrant

further biological investigation.

We note that in recent GWAS literature, some researchers transform the target phenotype values

at the cohort level using rank-based “inverse-normal transformation (INT)”, which can improve

statistical power in certain cases [33]. After applying INT on all traits (EDFs, PCs, SPINCs, and

RSPINCs), we observed increased numbers of hits from all methods (Supplementary Table 9), but

the overall relative trends remained consistent (Table 1).

Method (# traits) Sample size Total Known (%) Novel (%)

Shrine 2023 + GWAS Catalog > 581K∗ 1104 – –
Shrine 2023 581K 754 – –

EDFs (5) 325K 613 581 (95%) 32 (5%)
PCA (5) 325K 412 397 (96%) 15 (4%)
SPINCs (5) 325K 575 510 (89%) 65 (11%)
EDFs+RSPINCs (7) 325K 659 596 (90%) 63 (10%)

Table 1: Comparison of (R)SPINCs loci with previous GWAS. Expert-defined features (EDFs) are
FEV1, FVC, FEV1/FVC, PEF, and FEF25-75%. “Known” and “novel” is in reference to lung function
loci in Shrine et al. [20] and GWAS catalog.
* GWAS in Shrine et al. [20] has 580,869 individuals and other previous GWAS in the GWAS catalog
may have more individuals.

2.6 (R)SPINCs improves asthma and COPD PRS over EDFs in UK Biobank

We computed PRSs using BOLT-LMM [26, 27] for 5 SPINCs and 2 RSPINCs coordinates, in addition

to 5 EDFs. We treat these sets of PRSs as intermediate genetic scores for lung function. Given

a specific trait, a set of such intermediate PRSs, and a (small) set of individuals for whom the

trait status is available, one can combine the intermediate PRSs into a single trait-specific PRS as

a linear weighted sum of the intermediate PRSs by learning the weights using the individuals with

trait status (Figure 1). We created disease-specific PRSs for asthma and COPD from three sets

of intermediate PRSs: 1) 5 EDFs, 2) 5 SPINCs, and 3) 5 EDFs plus 2 RSPINCs. We trained the

disease-specific PRSs within the modeling set (n=324,958) of European ancestry individuals in UK

Biobank using medical-record-based asthma and COPD statuses. To evaluate the performance of

each disease-specific PRS, we computed the accuracy of the PRS in a completely separate set of

individuals of European ancestry (n=110,722) not previously used for model training or GWAS.
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Figure 3: PRS using SPINCs and RSPINCs in UK Biobank. Combined PRS for medical-record-
based asthma and COPD using three sets of intermediate PRS: 5 EDFs, 5 SPINCs, and 5 EDFs + 2
RSPINCs. Each set of PRS is combined by a linear model trained using the target phenotype labels
and the prevalence of the phenotypes in the top and bottom 5%, 10%, and 20% PRS individuals is
evaluated in a separate evaluation set. Vertical line segments indicate 95% confidence interval gen-
erated by bootstrapping (300 repetitions). The horizontal dashed line shows the total prevalence.
Star (*) sign indicates a statistically significant difference between the two methods using paired
bootstrapping (300 repetitions) with 95% confidence. Lower is better for the bottom percentiles;
higher is better for the top percentiles.

We observed that the top-decile high-risk individuals based on the SPINCs asthma PRS have an

asthma prevalence of 18.2%, while the top-decile individuals in EDFs asthma PRS have a preva-

lence of 17.2% (5.8% overall improvement; Figure 3, Supplementary Table 10). In fact, when

considering the top and bottom 5%, 10%, 20% PRS individuals based on SPINCs and EDFs asthma

PRSs, we observed that all top percentiles of SPINCs asthma PRS show higher asthma prevalence,

and all bottom percentiles of SPINCs asthma PRS show lower asthma prevalence, than the EDFs

asthma PRS, and four of the six differences are statistically significant (95% confidence with paired

bootstrapping) (Figure 3). Thus, SPINCs asthma PRS more effectively stratifies the risk groups than

EDFs asthma PRS on both ends of the risk spectrum. In addition, we observed statistically signif-

icant improvements in AUC-ROC, AUC-PR, and Pearson correlation by using the SPINCs asthma
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PRS (Supplementary Table 10). We observed the same trend for COPD, in which the top-decile

prevalence from SPINCs COPD PRS is 8.6% compared to 8.3% for the EDFs COPD PRS (Figure 3,

Supplementary Table 11). We also observed the same trend of improvement in other metrics in-

cluding AUC-ROC, AUC-PR, and Pearson correlation (Supplementary Tables 10 and 11). Lastly, we

observed that the EDFs+RSPINCs PRS outperforms the EDFs PRS on all metrics for both asthma

and COPD, with all differences except for COPD top-decile prevalence reaching statistical signifi-

cance (Figure 3, Supplementary Tables 10 and 11).

We observed that the SPINCs COPD PRS outperforms the FEV1/FVC PRS (Supplementary Ta-

ble 11) for predicting medical-record-based COPD, despite FEV1/FVC having previously been shown

to be one of the best phenotypes for generating a COPD PRS, even outperforming the binary COPD

PRS [6]. These results provide further evidence that SPINCs capture more genetic determinants

of lung function related to asthma and COPD than the same number of EDFs, and that RSPINCs

capture additional genetic factors not captured by the EDFs.

Finally, since each disease-specific PRS is constructed from intermediate (R)SPINCs coordinate

PRS using just 5–7 learned weights, we explored whether an accurate disease-specific PRS could

be learned from a subset of the training data. For both COPD and asthma, (R)SPINCs-based PRS fit

with as few as 100 disease cases performed indistinguishably from those trained on the full training

data (Figure 1 “Step 3”, Supplementary Figure 25). We also evaluated PRSs generated by GWAS

with a cohort-level phenotype adjustment using inverse-normal transformation. We observed fewer

significant differences with this adjustment, though SPINCs and EDFs+RSPINCs still maintain some

statistically significant differences for asthma PRS (Supplementary Figure 24).

2.7 (R)SPINCs PRS transferred to independent datasets and ancestry groups

The performance of PRS computed in one dataset can degrade significantly when transferring the

variant weights directly to another dataset or a different ancestry group [34]. In addition, the qual-

ity of COPD and asthma labels in different datasets can vary widely (e.g. using physician diagnoses,

self report, or medical records). To test the generalizability of our (R)SPINCs PRSs to individuals

outside of UK Biobank and non-European ancestry individuals, we transferred the variant weights

from the asthma and COPD PRSs in UK Biobank directly to the Genetic Epidemiology of COPD

(COPDGene) dataset [35], the eMERGE III dataset, the EPIC-Norfolk dataset [36], and Indiana

Biobank dataset [37].

For the COPDGene dataset, we computed PRS of all individuals using the same variant effect
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Figure 4: SPINCs PRS transferred to multiple independent datasets. SPINCs PRS for COPD
and asthma generated on UK Biobank are transferred to four independent datasets: COPDGene,
eMERGE III, EPIC Norfolk, and Indiana Biobank. a) PRS evaluation in COPDGene dataset on
COPD. b) PRS evaluation in eMERGE III dataset on asthma. c) PRS evaluation in EPIC Norfolk
study on COPD and asthma. d) PRS evaluation in Indiana Biobank on COPD and asthma. In
all figures, solid vertical intervals represent 95% confidence interval generated by bootstrapping
(300 repetitions). The horizontal dashed lines show the total prevalence in the evaluation set.
Star symbols indicate a statistically significant difference between the two methods using paired
bootstrapping (300 repetitions) with 95% confidence.

sizes obtained by BOLT-LMM in UK Biobank and the same linear weights to combine the EDFs,

EDFs+RSPINCs, and SPINCs PRS as before after matching variants. We used the “race” field in

COPDGene as a proxy for genetic ancestry and computed PRS performance in the two available

subsets separately: “Non-Hispanic White” and “African American”. We observed that for COPD, the

SPINCs COPD PRS outperforms the EDFs COPD PRS for both subset of individuals in COPDGene

for all four evaluation metrics (AUC-ROC, AUC-PR, top-decile prevalence, and Pearson correla-

tion). In the “Non-Hispanic White” subset (n=6,576), which matches the UK Biobank ancestry

group on which the PRS was trained, all four metrics are statistically significant (paired bootstrap-

ping; Figure 4a, Supplementary Table 12). In the “African American” subset (n=3,140), differ-

ences were statistically significant for AUC-ROC and Pearson correlation (Supplementary Table 12).

The EDFs+RSPINCs COPD PRS significantly outperformed the EDFs COPD PRS in “Non-Hispanic

White” in AUC-ROC and Pearson correlation, but did not in the “African American” subset (Supple-
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mentary Table 12).

We also transferred the UK Biobank PRSs to eMERGE III (“White” subset, n=8,288), EPIC Nor-

folk (self-reported “White”, n=21,010), and the Indiana Biobank (mostly European, see Methods,

n=5,254), to evaluate asthma, asthma and COPD, and asthma and COPD, respectively. We ob-

served consistent improvement from using SPINCs PRSs over EDFs PRSs for both COPD and asthma

phenotypes for top-percentile prevalences, AUC-ROC, and AUC-PR. The improvement was statisti-

cally significant for AUC-PR and the top 1% and 5% prevalence in eMERGE III, and for AUC-ROC

and AUC-PR in EPIC Norfolk (Figure 4b-d).

2.8 High association between (R)SPINCs and UKB phenotypes PRSs

To assess the influence of (R)SPINCs on traits and health outcomes, we performed phenome-wide

association studies (PheWAS). We compared pruning+thresholding PRSs of all (R)SPINCs coordi-

nates to PRSs of 7,145 phenotypes computed by the Pan-UK Biobank consortium (Methods, URLs).

For SPINCs, significant associations with strong correlation magnitude are driven by the 2nd and

3rd coordinates, which as mentioned above are strongly correlated with EDFs, and include ex-

pected phenotypes such as FEV1, FEV1/FVC, and PEF (Supplementary Tables 13 and 14). These

coordinates also show strong correlation with other diseases and traits previously hypothesized to

relate to COPD, including systemic lupus erythematosus [38, 39], thyroid dysfunction [40], and

gluten-free diet [41]. For RSPINCs, significant associations with strong correlation magnitude are

nearly all driven by RSPINC1 and also include the same diseases (Supplementary Tables 15 and 16).

Finally, we performed latent causal variable (LCV) analysis [42] to identify potentially causal

relationships between (R)SPINCs and EDFs with COPD, asthma, and lung disease phenotypes (sar-

coidosis, systemic lupus erythematosus, thyroid dysfunction, and gluten-free diet) where we ob-

served significant correlation between their PRSs in PheWAS (Supplementary Tables 17 and 18).

We observed a significant positive LCV output between the 2nd SPINCs coordinate and COPD,

suggesting a genetic causal link from SPINCs to COPD. We observed a significant negative LCV out-

put between the 5th SPINCs coordinate and asthma, suggesting a genetic causal link from asthma

to SPINCs. Interestingly, for all other lung disease phenotypes, we observed a direction of effect

from these phenotypes to SPINCs and RSPINCs (Supplementary Tables 17 and 18; Supplementary

Notes).
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3 Discussion

Large biobanks provide unique opportunities to identify the genetic factors underlying complex

traits and diseases, but accurately phenotyping [43] the cohorts remains a core challenge. We pro-

posed a general unsupervised deep representation learning method, REGLE (representation learn-

ing for genetic discovery on low-dimensional embedding), to discover the full genetic component of

a high dimensional clinical data (HDCD). We showcased the effectiveness of REGLE in spirograms,

where it produced latent variables (“encodings”) that are both partially interpretable and effective

for identifying genetic variants associated with lung function. Multiple lines of evidence show the

relevance of the model representations for quantifying general lung function.

Unsupervised representation learning of HDCD for genomic discovery is attractive owing to the

difficulty of acquiring (or defining) manual phenotypes at scale. Prior work has explored apply-

ing transfer learning [44] and contrastive learning [45] to retinal fundus images, or multimodal

autoencoders to cardiac data modalities [46]. A key strength of our method is the use of a VAE

to generate the non-linear low-dimensional representations of HDCD. First, by construction, the

coordinates of the latent representation are minimally correlated, which strengthens the combined

power of the downstream GWASs. As a result, the PRSs of the learned encodings are also minimally

correlated and contain relatively orthogonal genetic signals, which may contribute to the superior

accuracy of the disease/trait specific PRS created by the REGLE pipeline. Second, the learned rep-

resentations are stable up to changes in sign or order as we observed empirically (Section 2.3),

potentially due to a grounding effect of a VAE prior in the probabilistic model. As changes in sign

or order do not affect the outcomes of GWASs, the results of the REGLE pipeline are stable and

replicable. Regular autoencoders without a prior do not have this stability property as they can

learn any invertible linear transformation of a specific learned representation.

The architecture modification we introduce in REGLE to support expert-defined features (EDFs)

enables a principled use of expert human knowledge and encourages the remaining latent coordi-

nates to encode biological function explicitly not captured by the EDFs. This provides the opportu-

nity to build upon and improve the existing clinical practices with the extra information provided

from the residual features. For example, clinical review of pulmonary function tests includes visual

inspection of the curves for variation in shape. Coving of the flow volume loop is an indicator of

obstruction. The ability of (R)SPINCs to identify these differences while holding EDFs constant

suggest that (R)SPINCs are quantifying clinically relevant parameters that are not currently cap-
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tured in a standardized or automated way. While we demonstrated the value of the method on

spirograms to model lung function, it can be generalized to other HDCD modalities such as images.

The improved performance of SPINCs and EDFs+RSPINCs PRS over EDFs PRS provides evi-

dence for the existence of such residual genetic information. Importantly, the (R)SPINCs PRS for

asthma and COPD reduce each (R)SPINC coordinate GWAS into a PRS based solely on the effect

size estimates from the GWAS on the learned coordinates, and the disease-specific PRS is simply a

learned weighted sum of the five or seven constituent coordinate PRSs. This has important impli-

cations for disease risk prediction: it demonstrates that given a dataset with widespread unlabeled

quantification of lung system function (i.e. spirograms), genetic predictors for specific lung dis-

eases can be accurately learned with very few disease labels (enough to learn 5-7 features). We

hypothesize that unsupervised quantification of other organ systems may be similarly beneficial for

improving polygenic prediction across a wealth of diseases. Finally, we note that the PRS perfor-

mance reported here likely represents a lower bound achievable by the method; jointly estimating

disease-specific variant effect size estimates on the set of variants identified by the (R)SPINCs GWAS

may further improve performance.

There are several limitations to this work. First, while unsupervised representation learning of

HDCD for biological function is likely beneficial across data modalities, the generalizability of the

specific VAE method introduced here to even higher dimensional modalities like imaging and video

has not been assessed. In particular, VAEs tend to produce blurry image reconstructions [47, 48];

whether and how that affects the ability of a VAE to encode representations meaningful for genomic

discovery is important future work. Second, we did not directly optimize multiple GWASs for novel

genomic discovery, but used a straightforward (conservative) method to define and merge indepen-

dent associated loci. A possible extension would be to combine the signals from multiple (R)SPINC

coordinate GWAS [11] or apply methods that maximize heritability (e.g. [49]). Third, we did not

fully explore model architecture and training strategies specifically for genomic discovery. Some

ideas which may warrant further investigation include: 1) using previously proposed modifications

to the VAE loss function and the training procedure to maximize the degree of disentanglement of

coordinates while balancing the reconstruction error [50, 51, 52], 2) incorporating an additional

loss term to explicitly discourage correlation between RSPINCs and EDFs, and 3) introducing (semi-

) supervision in model training to overcome the limitations of purely unsupervised training [53].

Fourth, none of the spirograms in UK Biobank were obtained after bronchodilation, and the asthma

and COPD labels defined using clinical records are known to be noisy [6]. Fifth, we generated
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individual-level spirogram representations from a single blow, despite some individuals having up

to three acceptable blows in UK Biobank. Integrating all acceptable blows from an individual could

produce a more comprehensive representation of their lung function [54]. Sixth, model training

was performed exclusively in individuals of European ancestry. While PRS evaluation was per-

formed in multiple datasets and ancestries, the impact of ancestry-specific model training was not

explored.

Despite these limitations, our method provides a mechanism for identifying genetic influences

on organ function in the absence of labeled data, and naturally admits incorporating expert features

in the model. It also provides a method to create disease/trait specific PRS with very few labels (i.e.

in the order of hundreds). As biobanks with rich imaging, activity monitoring, medical records, and

paired genetic data continue to grow, we anticipate that this or similar methods will be increasingly

used to further elucidate the genetic underpinnings of human traits and diseases.

4 Methods

4.1 UK Biobank data preparation

Spirograms from UK Biobank were sourced from the data field 3066, which contains the volume

in milliliters of exhalation at 10 millisecond intervals (volume-time curve) and were preprocessed

closely following the procedures in Cosentino et al. [6]. To generate flow-time curves, we ap-

proximated the first derivative of volume with respect to time by taking a finite difference in the

volume-time curves. We normalized the volume-time and flow-time curves to 1000 time points, by

either truncating longer curves or by right-padding shorter curves with zero (for flow-time curves)

or the final value (for volume-time curves), and removed FEV1, FVC, PEF values in the extreme

tail (top/bottom 0.5%) of the observed values and all blows that fail the acceptability provided

by UK Biobank data field 3061. We used the first acceptable blow of an individual when there is

more than one. In addition, we dropped all flow curves whose values don’t fall in [-10, 20], all

volume curves whose values are not in [-5, 10], and all flow curves in which the proportion of

nonzero values are less than 20%. Finally, we generated flow-volume curves from volume-time and

flow-time curves by interpolating 1000 evenly spaced volume values between 0 and 6.58 liters (the

maximum observed volume in the dataset).

We then subdivide all European ancestry individuals processed this way into a 80% training set

and a 20% validation set. After additionally removing related individuals, there are 259,692 indi-
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viduals in the training set and 65,266 individuals in the validation set (Supplementary Figure 1).

Asthma and COPD status were determined by medical records using self report, ICD9, and

ICD10 codes as defined in Cosentino et al. [6].

4.2 Convolutional VAE model architecture and training

To generate SPINCs, we encode the flow-time and volume-time curves. In our VAE, we use one-

dimensional convolutional layers to utilize the temporal context of this time series, encoding the

two curves in two channels. In the encoder, we first apply three 1D convolutional layers, each

followed by max pooling, and use three fully-connected layers to generate the mean and variance

of the bottleneck layer. We use 5 latent dimensions, identical to the number of EDFs, and each

latent coordinate is sampled from the Gaussian distribution with the learned means and variances.

The decoder architecture is a mirror image of the encoder. We start with three fully-connected

layers followed by transpose convolutions layers, each prepended by an upsampling layer. See

“SPINCs model architecture” in Supplementary Notes for full details.

For RSPINCs, we encode the flow-volume curve alone, and we apply the same sequences of

convolutional and fully-connected layers as we did for SPINCs, while using only 2 latent dimensions

in this case. Importantly, we use a novel VAE architecture to concatenate the 5 EDFs directly to the

sampled output of the bottleneck layer (the layer right before the decoder) to learn only the residual

signals not represented by the EDFs, as previously discussed in Figure 2a. As a result, the encoder

output dimension is 2 while the decoder input has dimension 5 + 2 = 7. See “RSPINCs model

architecture” in Supplementary Notes for full details.

Both models are trained using the standard VAE loss function consisting of the reconstruction

loss and the (rescaled) Kullback–Leibler (KL) divergence loss. For RSPINCs the KL divergence loss

is only applied to the learned encodings, not to the injected EDFs. For optimization, the Adam

optimizer [55] is used with varying learning rates and batch sizes. The final learning rate and

batch size values (“hyperparameters”) for SPINCs and RSPINCs were chosen to minimize the VAE

loss in the validation set (Supplementary Notes, Supplementary Table 1).

After training SPINCs and RSPINCs models, we use the encoders of the trained models to gen-

erate the encodings for each individuals, using the mean value of the learned Gaussian distribution

of the encodings.

All models were implemented in TensorFlow V2 [56] and XManager (URLs) was used to manage

multiple machine learning experiments.

17

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2023. ; https://doi.org/10.1101/2023.04.28.23289285doi: medRxiv preprint 

supplementary.pdf{}{}{}#figure.caption.16{}{}{}
supplementary.pdf{}{}{}#table.caption.42{}{}{}
https://doi.org/10.1101/2023.04.28.23289285
http://creativecommons.org/licenses/by/4.0/


4.3 Phenotypic Correlation Analysis

To residualize EDFs and/or covariates from (R)SPINCs, we used ordinary least squares linear re-

gression. To compute the correlation of the EDFs-and-covariates-residualized (R)SPINCs with the

tabular fields in UK Biobank, we first preprocessed the tabular fields to remove special codes, nor-

malize, impute and aggregate the values, and finally transformed the categorical fields into one-hot

encodings. For each individual correlation analysis between a feature and one of the (R)SPINCs,

we computed the Pearson correlation and the P -value with two-sided alternative hypothesis.

4.4 Survival analysis

We performed analysis of overall survival for European individuals in the validation set (n=65,266)

using the time from first assessment (field 53) to death from any cause (field 40000). Subjects

who were not known to have died were right-censored at the date of UKB data ingestion (Feb

12, 2018). We quantified the association between overall survival and each SPINC, RSPINC, and

EDF per standard deviation using the hazard ratio, which was estimated from a Cox proportional

hazards model adjusting for age and sex. The proportional hazards assumption, with respect to

each SPINC, RSPINC, and EDF, was assessed using the Schoenfeld residual test. After stratifying

patients into quartiles using each SPINC, RSPINC, or EDF coordinate, the overall survival curves in

Supplementary Figures 5 and 6 were constructed using the standard Kaplan-Meier estimator with

bootstrapped 95% confidence intervals.

4.5 Genome-wide association studies and polygenic risk scores

GWAS on all EDFs, SPINCs, and RSPINCs were performed using BOLT-LMM v2.3.6 [26, 27], ad-

justing for age, sex, age2, age× sex, height, height2, body mass index, smoking status, the number

of packs of cigarettes smoked per year, the type of genotyping array, and the top 15 genetic princi-

pal components as covariates. GWAS was restricted to European ancestry individuals to minimize

confounding. For quality control we kept variants with minor allele frequency ≥ 0.001, imputation

INFO score ≥ 0.8, missing call fraction ≤ 0.05, and Hardy-Weinberg equilibrium P -value ≥ 10−10,

among all genotyped and imputed variants provided by UK Biobank. After GWAS, we performed

S-LDSC [28] to estimate SNP-heritability and detect potential confounding.

Genome-wide significant “hits” were defined as the most significant variants with p ≤ 5 ×

10−8 and independent at R2 < 0.1 using the PLINK –clump command. A reference panel for
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linkage disequilibrium (LD) calculation contained 10,000 unrelated European samples from the

UKB. Significant “loci” were created based on the span of reference panel SNPs in LD (R2 ≥ 0.1)

with the hits. Loci separated by fewer than 250 kb were subsequently merged.

While performing GWAS, PRSs for all traits (EDFs, SPINCs, RSPINCs, etc.) were computed using

the –predBetasFile option of BOLT-LMM, which generates PRS coefficients using a Bayesian linear

mixed model. While GWAS was performed on individuals with valid spirometry measurements, we

evaluated the performance of the PRS in a separate set of individuals not used for GWAS.

To determine the known lung function loci from previous literature, we extracted all significant

loci from Shrine et al. [20] and searched for lung function-related keywords in the NHGRI-EBI

GWAS Catalog (version v1.0.2-associations_e106_r2022-07-09) [29]. We used the following

keywords for the Catalog search (case insensitive): “asthma”, “chronic obstructive pulmonary dis-

ease”, “copd”, “expiratory flow”, “fev1”, “forced expiratory”, “forced vital capacity”, and “lung func-

tion”.

4.6 Summary statistics conditional and joint analysis

We applied conditional and joint analysis (COJO) on set of previously known loci using GCTA

(genome-wide complex trait analysis) software (version 1.93.3beta) and we set –cojo-cond to

the set of known loci. We provided 10,000 unrelated European samples randomly chosen from

UKB as the reference samples, which is the same reference used to perform LD clumping to define

hits, as part of GCTA-COJO input parameters.

4.7 PRS evaluation on respiratory diseases on multiple datasets

COPDGene dataset: COPDGene is a study of 10,300 current and former smokers with and without

COPD, self-reported non-Hispanic White and African-American, without known lung diseases other

than COPD and asthma (dbGaP accession phs000179.v6.p2). Additional study details, the study

protocol and details of genotyping have been previously published [35, 57], and additionally de-

tailed at copdgene.org. We used the provided variant calls in VCF files and imputed the variants

to the Haplotype Reference Consortium (HRC) reference panel using Michigan Imputation Server

[58], resulting in 39,127,678 total variants. Among 6,576 non-Hispanic White individuals, we had

access to 1,131 (17%) asthma cases and 2,781 (42%) COPD cases, and the rest were used as con-

trols. Meanwhile, among 3,140 African-American individuals, 760 (24%) were asthma cases and
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802 (26%) were COPD cases.

EPIC-Norfolk dataset: The European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk)

is a general population-based cohort study of men and women aged 40–79 years living in Norfolk,

UK and recruited from general practices between 1993 to 1997. EPIC-Norfolk cohort participants

were linked annually to nationally held hospital records and death certificates from 1999 to 2019

using UK National Health Service numbers. COPD was defined as any hospital admission or cause

of death coded 490–492, 494–496 (ICD-9) or J40–J44, J47 (ICD-10). Asthma was similarly defined

using codes 493 (ICD-9) or J45, J46 (ICD-10).

eMERGE III dataset: We utilize five consent groups that does not require IRB approval: General Re-

search Use (GRU), Health/Medical/Biomedical-Genetic Studies, (HBM-GSO), Health/Medical/Biomedical

(HMB), Health/Medical/Biomedical (MDS) HMB-MDS, and Health/Medical/Biomedical (PUB, GSO)

(HMB-PUB-GSO) (dbGaP accession phs001584.v2.p2). In eMERGE III, we have access to 1,038

asthma cases and 7,250 controls for European ancestry while in the case of African ancestry we

have access to 649 asthma cases and 1,367 controls. We used the 39,131,578 variants that are

imputed to the HRC reference provided by dbGaP [59].

Indiana Biobank dataset: The Indiana Biobank is a state-wide collaboration that provides central-

ized processing and storage of specimens that are linked to participants’ electronic medical infor-

mation via Regenstrief Institute at Indiana University. COPD was diagnosed by using ICD9: 491,

492, and 496, and ICD10: J41, J42, J43, and J44. Asthma was diagnosed by using ICD9: 493,

and ICD10: J45 and J46. Cases were defined as having at least one in-patient diagnosis or two

out-patient diagnoses. Those participants not having any diagnosis were defined as controls. Thus,

we have 1,445 COPD cases and 3,808 controls while we have 1,171 asthma cases and 4,083 con-

trols. Among 5,253 individuals for COPD evaluation, 3797 were of European ancestry, 1,371 of

African ancestry, and 85 Hispanic ancestry. Among 5,254 individuals for asthma evaluation, 3805

of European ancestry, 1,362 of African ancestry, and 87 of Hispanic ancestry. Indiana Biobank

samples used in this study were genotyped using Illumina Infinium Global Screening Array (GSA,

Illumina, San Diego, CA) by Regeneron (Tarrytown, NY). SNPs with missing rate > 5%, MAF ≤ 1%,

HWE P -value < 1 × 10−10 among cases and < 1 × 10−6 in controls were excluded as reported

previously [37]. Genotyping data were imputed to 1000 Genomes using the Michigan Imputation

Server [58]. Imputed variants with R2 < 0.30 and MAF< 1% were excluded. PLINK [60, 61] was

used to calculate PRS by using imputation dosages.
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4.8 Functional significance of discovered loci

We ran GREAT v4.0.4 [31] on the human GRCh37 assembly to perform functional enrichment

analysis of SPINCs, RSPINCs, and EDFs loci. We used the default “basal+extension” region-gene

association rule with 5 kb upstream, 1 kb downstream, 1000 kb extension, and curated regulatory

domains included. Furthermore, we ran GARFIELD [30] with default parameters to perform tissue-

specific analysis where we utilized 424 DNase I hypersensitive site hotspot annotations provided

by the GARFIELD authors [30].

4.9 Latent causal variable analysis

We applied LCV [42] (URLs) on genome-wide summary statistics for each pair of phenotypes. To

create the right input for LCV, we used the munge script provided by S-LDSC software (URLs) to

restrict the variants to HapMap3 SNPs with MAF > 0.05 and outside the MHC region. We utilized

the baseline LD scores for HapMap3 SNPs. A two-sided test was used for the estimated GCP and to

compute the significant level.

4.10 Genetic phenome-wide association study

To compute PheWAS, we downloaded GWAS summary statistics for 7,221 phenotypes from the

Pan-UKB consortium 20200615 release (URLs). After restricting to phenotypes that contained

European statistics and did not persistently fail in LD clumping, we were left with 7,145 prun-

ing+thresholding PRSs generated by PLINK (URLs) using the –clump command with an index vari-

ant significance threshold of 5 × 10−8 and LD threshold of 0.1, with LD computed from a random

subset of 10,000 European individuals in UK Biobank.

SPINCs and RSPINCs pruning+thresholding PRSs were computed analogously to the Pan-UKB

PRSs. We computed the Pearson correlations between the PRSs derived from latent dimensions with

the PRSs derived from Pan-UKB phenotypes and the P -values with two-sided alternative hypothesis.

URLs

Baseline and BaselineLD annotations: https://data.broadinstitute.org/alkesgroup/ldscore

BOLT-LMM software: https://data.broadinstitute.org/alkesgroup/bolt-lmm
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COPDGene study: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_

id=phs000179.v6.p2

GCTA software: https://github.com/jianyangqt/gcta

GREAT software: http://great.stanford.edu

GWAS Catalog: https://www.ebi.ac.uk/gwas/

Indiana Biobank study: https://indianabiobank.org/

Pan-UK Biobank GWAS: https://pan.ukbb.broadinstitute.org

PLINK software: https://www.cog-genomics.org/plink1.9

TensorFlow: https://www.tensorflow.org

UCSC LiftOver: https://genome.ucsc.edu/cgi-bin/hgLiftOver

UK Biobank study: https://www.ukbiobank.ac.uk

XManager: https://github.com/deepmind/xmanager

Michigan Imputation Server https://imputationserver.sph.umich.edu/index.html#!pages/home

Data availability

Open-source code and trained model weights are available at https://github.com/Google-Health/

genomics-research under the spirogram-encodings directory. SPINCs and RSPINCs values of UK

Biobank individuals will be returned to UK Biobank and will be made available by UK Biobank.
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