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Significance Statement 

The complex phenotype of diabetic nephropathy from type 2 diabetes complicates diagnosis 

and prognosis of patients. Kidney histology may help overcome this difficult situation, 

particularly if it further suggests molecular profiles. This study describes a method using 

panoptic segmentation and deep learning to interrogate both urinary proteomics and 

histomorphometric image features to predict whether patients progress to end-stage kidney 

disease since biopsy date. A subset of urinary proteomics had the most predictive power in 

identifying progressors, which could annotate significant tubular and glomerular features 

related to outcomes. This computational method, which aligns molecular profiles and 

histology, may improve our understanding of pathophysiological progression of diabetic 

nephropathy as well as carry clinical implications in histopathological evaluation.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 3, 2023. ; https://doi.org/10.1101/2023.04.28.23289272doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.28.23289272
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page | 3  

 

Abstract 

Background: The heterogeneous phenotype of diabetic nephropathy (DN) from type 2 

diabetes complicates appropriate treatment approaches and outcome prediction. Kidney 

histology helps diagnose DN and predict its outcomes, and an artificial intelligence (AI)-

based approach will maximize clinical utility of histopathological evaluation. Herein, we 

addressed whether AI-based integration of urine proteomics and image features improves DN 

classification and its outcome prediction, altogether augmenting and advancing pathology 

practice. 

Methods: We studied whole slide images (WSIs) of periodic acid-Schiff-stained kidney 

biopsies from 56 DN patients with associated urinary proteomics data. We identified urinary 

proteins differentially expressed in patients who developed end-stage kidney disease (ESKD) 

within two years of biopsy. Extending our previously published human-AI-loop pipeline, six 

renal sub-compartments were computationally segmented from each WSI. Hand-engineered 

image features for glomeruli and tubules, and urinary protein measurements, were used as 

inputs to deep-learning frameworks to predict ESKD outcome. Differential expression was 

correlated with digital image features using the Spearman rank sum coefficient.         

Results: A total of 45 urinary proteins were differentially detected in progressors, which was 

most predictive of ESKD (AUC=0.95), while tubular and glomerular features were less 

predictive (AUC=0.71 and AUC=0.63, respectively). Accordingly, a correlation map between 

canonical cell-type proteins, such as epidermal growth factor and secreted phosphoprotein 1, 

and AI-based image features was obtained, which supports previous pathobiological results. 

Conclusions: Computational method-based integration of urinary and image biomarkers may 

improve the pathophysiological understanding of DN progression as well as carry clinical 

implications in histopathological evaluation. 
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Introduction 

Diabetic nephropathy (DN), in the setting of type 2 diabetes, is the leading driver of chronic 

kidney disease (CKD) and end-stage kidney disease (ESKD) worldwide.1 The incidence of 

DN is increasing due to high prevalence of diabetes, with subsequent kidney complications 

such as proteinuria and a decline in kidney function affecting more than 40% of patients.2-4 

The result is an increased burden of cardiovascular morbidity and mortality,5 but the current 

therapeutic tools including lifestyle modification, blockers of renin-angiotensin-aldosterone 

system and SGLT2 inhibitors may not be sometimes effective to manage the rising incidence 

of DN and comorbidities. The heterogeneous phenotype of DN complicates a comprehensive 

approach, with a subset of patients having an abrupt decline in kidney function requiring 

dialysis within a few years of diabetes diagnosis.6 

Kidney biopsy is the gold standard diagnosis of kidney disease, and histology aids in 

predicting prognosis and/or response to therapy.7 The utility of a renal biopsy in the setting of 

diabetes, beyond staging of DN, is critical to identifying non-diabetic processes (up to 30% of 

cases)8,9 with a different etiology and disease trajectory compared with DN.10,11 For improved 

classification and staging of DN, the Renal Pathology Society generated a DN classification 

schema.12 This system reflects the course of progressive DN well,13,14 but has been hindered 

by the lack of practical application and implementation.15 Recent approaches have 

interrogated molecular profiles with classical grading systems of tissue histology such as T 

cell- and antibody-mediated rejection, glomerulonephritis, and glomerular nephropathy,16-18 

but the resulting integrated metric has not yet been reported for the RPS DN classification 

schema. 

Artificial intelligence (AI) has the potential to classify kidney disease histology in an 

automated fashion, which reduces the burden on pathologists and promises to improve 
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reproducibility and robustness.19 Our previous work demonstrated digital RPS classification 

of diabetic glomerulopathy in renal biopsies20,21 where our models achieved high levels of 

agreement with pathologist classification. To demonstrate the value added by these 

computational techniques, AI-based supervision for morphological changes related with 

molecular profiles or patient outcomes, but imperceptible to the human eye, are a promising 

next step.22-24 Herein, we integrated urinary proteomic profiles with AI-based histology 

images from biopsy-confirmed DN cases. The urinary proteomic model performed better than 

the AI-based image feature models in predicting early deterioration of kidney function. 

Several significant proteins and/or relevant pathways were associated with histological 

changes at the pixel and morphological levels. These results suggest that the urinary 

proteomic dataset could improve annotation of meaningful AI image features. Based on our 

results, AI will enable the extraction of molecular data encoded in the DN histology or in 

CKD histology in general. The resulting framework will stimulate the next revolution in 

histology-guided care of DN and generate new hypotheses for discovering novel 

pathobiology with diagnostic and prognostic implications. 
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Results 

Renal Tissue Multicompartment Segmentation 

A PAS-stained renal tissue biopsy whole slide image (WSI) from each subject was segmented 

into six classes: image background, interstitium (excluding perivascular stroma), non-

sclerotic glomeruli, globally sclerotic glomeruli, tubules, and arteries/arterioles. We used 

features quantified from the glomerular and tubular image segments for our computational 

DN prediction study in this work. The segmentation was first performed by our trained 

panoptic segmentation network, and each slide was then manually corrected for any errors or 

missed segmentations.25 Approximately 30% of glomeruli and 10% of tubules required at 

least some manual correction. Examples of corrected network predictions are shown in Fig. 1. 

For this study, only cortical regions of the biopsies were used for analyses. Therefore, 

medullary regions were manually annotated and excluded from further analyses. Panoptic 

Quality (PQ),25,26 was measured for segmentation of glomeruli, globally sclerotic glomeruli, 

and tubules in cortical regions. PQ ranges from 0, indicating no object recognition or 

completely incorrect object segmentation, to 1, indicating perfect segmentation of a given 

class when compared to ground truth. On average, PQ=0.76, 0.79, and 0.89 for segmenting 

glomeruli, globally sclerotic glomeruli, and tubules, respectively.  

Renal Tissue Sub-Segmentation 

Glomerular sub-segmentation was carried out similarly to the method described by Ginley et 

al.20 in our earlier work and a similar methodology was employed for tubular sub-

segmentation. Each glomerular and tubular instance was further segmented into three 

components: (1) nuclear, (2) PAS-positive, and (3) white space. Examples of the tubular sub-

compartmentalization are shown in Fig. 2. This method of sub-segmentation has been shown 

previously to be useful in classifying patients into stages of DN, by using features extracted 
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from the compartmentalized glomeruli.20 In this work, we studied the validity of such sub-

segmentation in the context of prediction of DN progression. We did not analyze artery and 

arteriolar morphometries for our studies since, in a single WSI, the typical sparse appearance 

of fewer arteries/arterioles does not capture all possible 2D projections of these structures to 

determine feature information that would otherwise be invariant of feature variation as 

expected in 3D structures. Thus, feature quantification from arteries/arterioles for the 

subsequent analysis task would be prone to noise compared to glomeruli and tubules.    

Renal Tissue Image Feature Quantification 

Beofre feature quantification, crops of glomeruli and tubules were color-normalized using the 

Reinhard method,27 described above. Hand-engineered digital image features were measured 

from each segmented instance of glomeruli and tubules. The features measured per 

glomerulus have been described in our earlier work20 and new features were added, including 

component-specific distance metrics, such as quantiles of pixel distance from the glomerular 

border. In total, there were 315 digital image features measured for each glomerulus (Supp. 

Table 3).  

Tubular digital image features from the three components segmented of each tubule 

include pixel colors, textures, morphology, containment of one tubular sub-segment in 

another, and inter- and intra-structural distances. Examples of these feature extractions are 

shown in Fig. 3. One unique aspect of this set was the features added to measure more 

specific tubular morphology. While glomeruli typically appear circular in histological 

sections, tubules can have a highly variable shape. To account for this variance, we measured 

tubular curl,28 major axis length, perimeter, and area. These features quantify the tortuosity 

and size of each tubule. Also, features were defined to quantify tubular basement membrane 

(TBM) morphology. During feature extraction, the TBM was segmented from the rest of the 
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PAS-positive area, and color, textural, and size features were measured for the resulting 

segmentation. Some examples of TBM thickness quantifications are shown in Fig. 3. TBM 

thickening is a feature of tubular atrophy and in particular has been shown to be of significant 

in diabetic kidney disease.29 A total of 207 digital image features were measured for each 

segmented tubule (Supp. Table 4).          

Urinary Proteomics Data Feature Manifold Classification 

The feature sets used in this study were initially analyzed using Seurat.30,31 Each feature set 

(urinary proteins, glomerular image features, tubular image features) was visualized 

separately using Uniform Manifold Approximation and Projection (UMAP) to project and 

reduce the high-dimensional feature-space to a 2-dimensional plot.32 For subject-wise 

visualization of image feature sets in UMAP space, each feature was averaged, and the 

standard deviations were calculated across all object instances (i.e., for all the segmented 

glomeruli or tubules) in a single biopsy. An SVM was trained on each feature set to classify 

patients on whether they progressed to ESKD within 2 years of biopsy. To account for the 

imbalance in outcomes, the class weights were adjusted to be inversely proportional to class 

frequencies.33 For aggregated glomerular image features, the SVM achieved Matthews 

Correlation Coefficient (MCC), MCC=0.35. For tubular image features, we achieved 

MCC=0.58, and for the full urine protein set, MCC=0.60. MCC is used for measuring 

differences between predicted and actual values, ranging from -1 to 1, where -1 represents 

complete anti-correlation, 0 represents no correlation, and 1 represents perfect correlation, 

and is more robust when dealing with class imbalances. The simplified feature spaces and 

SVM hyperplanes are shown in Fig. 4.  

Using Seurat, we were also able to identify 45 proteins that were differentially 

measured (Bonferroni adjusted p<0.05) in subjects that progressed to ESKD. Cluster 
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biomarkers were found using the FindMarkers function. Of these proteins, 25 were 

significantly higher in patients progressing to ESKD (Table 1), while 20 were significantly 

lower (Table 2). Using this limited set of differentially identified proteins, we reduced the 

number of features in the urine protein set and retrained the SVM, achieving an improved 

MCC=0.72. 

Mapping Urinary Proteomic Features to Pertinent Renal Cells using Single-Nuclei RNA 

Sequencing 

The percentage of cells and average expression for each of the 45 differentially measured 

urinary proteins were assessed in single-nuclei RNA (snRNA) sequencing data for both non-

diabetic control and diabetic kidney tissues (n=3 per each).34 Canonical cell-type candidate 

biomarkers, and protein expression for the differentially identified urinary proteins are shown 

in Fig. 5. A total of 11 clusters including proximal convoluted tubule, parietal epithelial cell, 

thick ascending loop, distal convoluted tubule, collecting duct (principal cell, intercalated cell 

type A and B), podocyte, endothelial cell, mesangial cell, fibroblast, and immune cells were 

identified by cell marker genes. Further sub-clustering of the above mesangial cell and 

fibroblast clusters yielded additional three sub-clusters, namely, fibroblast, myofibroblast, 

and mesangial cell, see Fig. 5A-B. The single cell gene expression of differentially measured 

urine proteins in DN subjects with progressive disease is summarized in Fig. 5C. This result 

provides insights linking likely cell-type of origin for differentially identified urinary proteins. 

Additionally, we quantified the changes in protein expression between non-diabetic and 

diabetic cases (Fig. 5D). As an example, there was a significant increase in the number of 

fibroblasts expressing the C7 gene (gene name of Complement component 7) in diabetic 

kidneys, subclustered with mesangial cells and fibroblasts (Fig. 5E). We explored this 

relationship further in the context of our data (urinary proteomics and digital biopsy image 
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features in DN), correlating it with differential image features. To summarize our findings 

thus far, we learned from our data that urinary proteomics data may be more informative than 

digital pixel-level image features of glomeruli and tubules, and certain urinary proteomics 

measurements may be originating from renal cells with prognostic significance for diabetic 

versus non-diabetic status.  

Disease Progression Prediction using AI 

AI was implemented to predict disease progression in patients with DN because of its unique 

ability to detect and model nonlinear relationships,35 which is important for studying 

nonlinear disease progression such as that of CKD.36 We used 2 neural network architectures 

to predict progression in DN patients. Urinary proteins are subject-level measurements, and 

therefore these features can be used directly to produce a classification through a series of 

dense layers, in a Fully Connected Neural Network (FCNN). However, the digital image 

features measured in this study are measured from multiple instances (namely, multiple 

segmented glomeruli or tubules) per patient, and must be aggregated to form a single 

prediction for a patient. We therefore used a Recurrent Neural Network (RNN) to incorporate 

all glomeruli or tubules to form predictions following recipes discussed in our previous 

publication.20 Since some of our data is unlabeled, we trained our networks using a self-

training semi-supervised scheme.37 The results are aggregated from each subject when 

applied in the holdout set during 10-fold cross-validation. We compared the SoftMax 

predictions of each network to the patient’s ground truth label, and assessed the performance 

with the area under the curve (AUC) of the receiver operating characteristic curve. These 

results are shown in Fig. 6.   

We achieved the best performance when training on differentially identified urinary 

proteins in an FCNN, with AUC=0.95. This score indicates nearly perfect agreement between 
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the classifier network and the ground truth label. Amongst image feature types, those 

measured for tubules outperformed glomeruli. Tubular image features achieved AUC=0.71, 

while glomerular image features achieved AUC=0.63. The difference in performance for 

tubular and glomerular image features may be a characteristic of the present cohort, or the 

difference in numbers of glomeruli compared to tubules in a typical biopsy sample that we 

analyzed. Nevertheless, the outperformance of urinary proteomic features may guide the 

significant annotation of image features in correlation to DN progression.    

Correlation of Renal Tissue Morphometry and Urinary Proteomics Data 

Using Spearman’s rank correlation coefficient, we measured the degree of correlation 

between digital image features and urinary protein measurements, while controlling for 

confounding variables. We were interested in understanding how changes in the urinary 

proteome may be reflected in tissue sections and analyzing the significance of these 

relationships. Each digital image feature across all structures in each subject was matched 

with their respective differentially identified urinary proteomic profile, and with their 

associated molecular pathway scores. The measured correlation coefficients are displayed on 

heatmaps reflecting the degree of correlation between an image feature and a urinary protein 

or pathway (Fig. 7). On average, correlation coefficients with glomerular image features were 

greater than those with tubules, but p-values were lower for tubules, likely due to differences 

in sample size.  

Discovery via Renal Tissue Image Pixel Parsing  

As a select example among the highest Spearman rank correlation coefficients, when looking 

at the correlation coefficients calculated between non-sclerotic glomerular image features and 

urinary proteins, one of the most highly correlated pair consisted of the protein Complement 

component 7 (C7) and the mean value of red pixel values in PAS-positive region, with a 
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coefficient value of 0.30 (FDR adjusted p <0.05). These pixel values are directly related to 

the perceived brightness in an image. However, of the three color channels, the green channel 

has the most significant effect.38 Furthermore, the standard deviation of the pixel values in an 

image is related to the image contrast,39 specifically within the PAS-positive region of the 

segmented glomerulus. Since this feature and protein have a direct correlation, as the amount 

of C7 present in the urine increases, one should expect to see an increase in this image feature. 

As demonstrated from snRNA sequencing data, C7 was expressed in renal fibroblasts. 

Furthermore, one can link this relationship to outcome, since C7 is also a urinary protein that 

is differentially elevated in patients developing ESKD. Some image feature examples are 

shown in Fig. 8. 

When looking at correlation coefficients between tubular image features and urinary 

proteins, a few interesting cases arose. One of the most highly correlated pairs consisted of 

the epidermal growth factor (EGF), and the standard deviation of green pixel values in the 

TBM regions, with a coefficient value of 0.15 (p <0.05). Similar to the glomerular example, 

EGF was also relatively highly correlated with the standard deviations of the red and blue 

pixels in the TBM regions. As the amount of EGF present in the urine decreases, one should 

also expect to see a decrease in these features in the image data. EGF has previously been 

implicated in the development of acute kidney injury and CKD,40 and is expressed in renal 

tubular cells,41 as supported by our snRNA sequencing results.  

Overall, the most highly correlated feature-protein pairs involved the secreted 

phosphoprotein 1 (SPP1). SPP1 is another protein that is found in renal tubular cells, as 

shown in both our snRNA sequencing results, and previous studies,42 while the receptor is 

found in immune cells.43 These urinary proteins were elucidated by this study for their 

relations to renal morphology in histological images, but their specific roles in kidney 
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diseases are currently not fully understood.44     
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Discussion 

AI utilization has achieved remarkable advances particularly in segmenting microscopic 

structures of kidney. The next revolution may include the guidance of AI annotation to kidney 

histology while providing implicative information, such as patient outcome and relevant 

molecular profile, in addition to histology itself. As the first challenge, we correlated image 

features segmented by AI with urinary proteomic profiles in biopsy-proven DN with type 2 

diabetes. Signatures in urinary proteins could discover novel histologic features related to DN 

progression; herein, various tubular image features, rather than glomerular, were selected to 

be associated with worse outcome. Furthermore, we applied various approaches, such as 

pathway analysis and pixel-based histologies, which may inspire researchers to consider how 

to expand the AI use in several kidney diseases as well as DN. 

Biopsy is the current gold standard for diagnosis and outcome prediction of kidney 

disease, and predicting response to therapy. In this work, we examined the digital 

morphology of glomeruli and tubules as seen in renal biopsies. It is much more manageable 

for a pathologist to analyze individual glomeruli, since these structures are significantly less 

present in the biopsy as compared to tubules. The large number of tubules present in a biopsy 

makes it difficult for pathologists to integrate data over the entire WSI and make an objective 

prognosis. In this work, we are able to use the power of AI and computation to study image 

features from a large number of tubules, and found that the tubular image features from a 

standard needle biopsy are more predictive of disease progression than glomerular features. 

Therefore, we also suggest that computational methods like those we have demonstrated 

provide an advantage over current diagnosis standards, since our methods can provide a 

reproducible and comprehensive view of the tubular morphology. 

We have also demonstrated the ability to link urinary proteomics data to quantitative 
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image features. Qualitative image analysis has long been the standard for assessing pathology, 

but our results show that proteomics are robust in assessing progression in DN. Therefore, 

discovering and investigating links between image features and molecular profiles can aid in 

further research to increase our understanding of the nonlinear nature of DN. This 

methodology is also not limited to DN, or specific to renal pathology. Investigating these 

links further could lead to discoveries in the area of nondiabetic kidney disease. Integration of 

other data types (e.g., spatial tissue or blood omics) are also applicable in this case, 

depending on investigative goals and resources.         

As discussed in Ginley et al.,20 sub-segmental distinction of both glomeruli and 

tubules in accordance to underlying pathobiology is complex. Our sub-segmentation of 

glomeruli and tubules does not fully reflect actual components of the glomerulus and tubule. 

The simplification of each structure into three basic components (nuclear, PAS-positive, and 

white space) based on their colorimetric appearance is a limitation to our performance in 

quantifying disease progression. Also, we largely analyzed each data source (image and 

molecular) individually, and there is a potential value in integrating image and molecular data 

to predict disease progression, which can be an area of future investigation. Lastly, our 

snRNA sequencing data come from non-diabetics and early diabetic, while the urinary 

proteomics and histology are sampled from various stages of DN. Therefore, the sequencing 

data may not be fully reflective of the conclusions we have made. To mitigate this 

shortcoming, our future study will focus on generating image, urinary proteomics, and 

snRNA sequencing data from same subject to tighten the conclusions made in this work.      

The similarity in microscopic structure may not always guarantee the same 

pathophysiology, which is a cause of heterogenous outcomes within the same histological 

grade of kidney diseases. The current pathology reports made by human eyes would miss 
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undistinguishable image features at the pixel level and not be linked to overall molecular 

signatures. The present study addresses this issue using urinary proteomics in the DN kidneys, 

and integrated results between urinary and histology signatures would provide better 

understanding of pathophysiology and the histological implication related to outcomes. The 

present study will be a basis of future studies using AI-based histological segmentation as 

well as multimodal molecular data to make a breakthrough in overcoming current clinical 

difficulties in understanding holistically a patient’s health state. 
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Methods 

Human Samples 

Study subjects were from Seoul National University Hospital, Seoul, Korea. Human data 

collection followed protocols approved by the Institutional Review Board at the Seoul 

National University Hospital (H-1812-159-998). All experiments were performed according 

to federal guidelines and regulations. Individual subject data contain patient demographic and 

medical history information, including height, weight, age, history of diabetes, stroke, and 

presence of hypertension. Blood tests were administered to the subjects at the time of biopsy. 

Serum creatinine was used to measure the estimated glomerular filtration rate (eGFR) at the 

time of biopsy using the CKD-EPI equation.45 Patients were re-evaluated and new blood 

samples were collected at one- and two-years following the initial biopsy and urine collection, 

and eGFR was recalculated. For each timepoint, it was determined whether serum creatinine 

had doubled compared with baseline, whether eGFR had reached 50% of the baseline value, 

and whether the subject had reached end stage kidney disease (ESKD). A full description of 

subject baseline characteristics can be found in Supp. Tables 1 and 2.    

Whole Slide Image Data  

Image data for this study consisted of brightfield microscopy WSIs of periodic acid-Schiff 

(PAS)-stained renal biopsies (2011-2017) from n=56 human DN subjects as a testing set. An 

additional n=30 WSIs from human DN patients from 2018-2021 were used as a validation set, 

but outcome data was not available for these patients. Whole slide images were collected on a 

digital slide scanner (Aperio AT2, Leica Biosystems, Wetzlar, Germany) with a 0.25 µm per 

pixel resolution. Following the Renal Pathology Society (RPS) DN scoring system,12 

glomerular lesions, interstitial fibrosis and tubular atrophy (IFTA), interstitial inflammation, 

arteriolar hyalinosis, and arteriosclerosis were scored. 
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Urine Sample Preparation 

Urine sample of 1-2 ml from each subject was concentrated to 250 ul using a spin filter with a 

molecular weight cut-off of 3 kDa (Millipore, Billerica, MA). The protein concentration was 

measured according to the Bradford assay protocol (Bio-Rad protein assay kit, Bio-Rad, 

Hercules, CA). Protein of 50 µg was precipitated by adding a 5-fold volume of ice-cold 

acetone. The precipitated samples were reconstituted in 50 µl of SDT buffer (2% SDS, 0.1 M 

dithiothreitol in 0.1 M Tris HCl; pH, 8.0) and heated to 95°C. The denatured proteins were 

digested by a filter-aided sample preparation method as previously described46 with some 

modifications. Briefly, protein samples were loaded onto an Amicon 30K filter (Millipore, 

Billerica, MA), and buffer was exchanged with UA solution (8 M urea in 0.1M Tris-HCl; pH, 

8.5) via centrifugation. After three buffer exchanges with UA solution, the reduced cysteines 

were alkylated with 0.05 M iodoacetamide in UA solution for 30 min at room temperature in 

the dark. Thereafter, UA buffer was exchanged for 40 mM ammonium bicarbonate twice. The 

protein samples were digested with trypsin/LysC (enzyme to substrate ratio of 1:100) at 37°C 

for 16 h. The resulting peptides were collected in new tubes via centrifugation, and an 

additional elution step was performed using 40 mM ammonium bicarbonate and 0.5 M 

sodium chloride. Peptides were desalted and fractionated on a homemade styrene 

divinylbenzene reversed-phase sulfonate-StageTips by basic reverse-phase using a stepwise 

gradient of acetonitrile (40%, 60%, and 80%) in 1% ammonium hydroxide. 47,48 Fractionated 

peptides were completely dried with a vacuum dryer and stored at -80°C. 

Establishment of a Matching Peptide Library 

To construct a matching peptide library for matching between runs, we made a pool of sub-

aliquots of the same protein amount (5 ug) from urines. The pooled urine proteins (100 ug) 

were digested using the two-step filter-aided sample preparation as described previously.48,49 
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Digested peptides were desalted using Oasis HLB solid-phase extraction. For constructing the 

matching peptide library, 100 µg of purified peptides were fractionated using an Agilent 1260 

bioinert HPLC (Agilent, Santa Clara, CA) equipped with an analytical column (4.6 × 250 mm; 

5-µm particle). High-pH reversed-phase peptide fractionation was performed at a flow rate of 

0.8 ml/min over a 60-min gradient using solvent A (15 mm ammonium hydroxide in water) 

and solvent B (15 mM ammonium hydroxide in 90% acetonitrile). A total of 96 fractions was 

collected at 30-second intervals over a 48-minute gradient. The collected fractions were 

noncontiguously concatenated into 24 fractions. In detail, early-, middle-, and late-eluting 

peptides were combined by mixing every 24th original fraction (e.g., combining fractions 1, 

25, 49, and so on). The pooled fractions were dried in a vacuum centrifuge and stored at -

80°C until liquid chromatography-tandem mass spectrometry (LC-MS/MS). 

LC-MS/MS Analysis 

LC-MS/MS analysis was performed using Quadrupole Orbitrap mass spectrometers, Q-

exactive plus (Thermo Fisher Scientific, Waltham, MA) coupled to an Ultimate 3000 RSLC 

systems (Dionex, Sunnyvale, CA) with a nanoelectrospray source as previously described 

with some modifications.46,47 Namely, peptide fractions of individual urine samples were 

separated on a two-column setup with a trap column (300 µm I.D. × 0.5 cm, C18 3 µm, 100 

Å) and analytical column (50 µm I.D. × 50 cm, C18 1.9 µm, 100 Å). Before sample injection, 

the dried peptide samples were reconstituted in solvent A (2% acetonitrile and 0.1% formic 

acid). After the samples were loaded onto the nano LC, a 90-min gradient from 8% to 30% 

solvent B (100% acetonitrile and 0.1% formic acid) was applied to all samples. The spray 

voltage was 2.0 kV in positive ion mode and the temperature of the heated capillary was set 

to 320°C. Mass spectra were acquired in data-dependent mode using a top 15 method. The 

Orbitrap analyser scanned precursor ions with a mass range of 300–1650 m/z and resolution 
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of 70,000 at m/z 200. Higher-energy collisional dissociation (HCD) scans were acquired at a 

resolution of 17,500 at m/z 200. HCD peptide fragments were acquired at a normalized 

collision energy of 28. The maximum ion injection times for the survey and MS/MS scans 

were 20 ms and 120 ms, respectively. 

Data Processing for Label-Free Quantification 

Mass spectra were processed with MaxQuant (version 1.6.1.0).50 MS/MS spectra were 

searched against the Human Uniprot protein sequence database (December 2014, 88,657 

entries) using the Andromeda search engine.51 Primary searches were performed using a six-

ppm precursor ion tolerance for total protein level analysis. The MS/MS ion tolerance was set 

to 20 ppm. Cysteine carbamido-methylation was set as a fixed modification and N-

Acetylation of proteins and oxidation of methionine were set as variable modifications. 

Enzyme specificity was set to full tryptic digestion. Peptides with a minimum length of 6 

amino acids and up to 2 missed cleavages were considered. The required false discovery rate 

(FDR) was set to 1% at the peptide, protein, and modification levels. To maximize the 

number of quantification events across samples, matching between runs was performed using 

the pooled urine sample as a matching library. For label-free quantification, the Intensity 

Based Absolute Quantification (iBAQ) algorithm52 was used as a part of the MaxQuant 

software. Briefly, iBAQ values calculated by MaxQuant were raw intensities divided by the 

number of theoretical peptides. Thus, iBAQ values were proportional to the molar quantities 

of the proteins. The proteomic data have been deposited in the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org)53 via the PRIDE partner repository (accession 

no. PXD037505). 

Human AI Loop (HAIL) Pipeline 

To conduct computational segmentation of renal micro-compartments, we used our 
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previously published, publicly available HAIL pipeline.54 This pipeline allows users to train 

segmentation CNNs directly from annotations produced in the WSI viewer Aperio 

ImageScope®. HAIL allows for an iterative process of network training, where the network’s 

own predictions produced after each training iteration can be manually corrected and used to 

bootstrap further annotation data. 

Panoptic Segmentation 

Panoptic segmentation25 was performed on PAS stained WSIs to classify pixels into six 

categories, and to resolve separate instances (e.g., individual tubules) of the same class. These 

six categories include image background, interstitium (excluding perivascular stroma), non-

sclerotic glomeruli, globally sclerotic glomeruli, renal tubules, and arteries/arterioles. To train 

the model, 126 WSIs of kidney biopsy from native diabetic, lupus nephritis, and transplant 

patients were selected due to the presence of minimal cortex (<10%) in the slide, and fully 

annotated for all six categories. The network architecture was modelled closely after Google's 

Panoptic-Deeplab model.55 There are three primary differences between our network model, 

and DeepLab-Panoptic. First, to reduce the memory overhead, the feature encoding backbone 

used is ResNet50.56 Second, the output stride of our encoder is only 8 compared with 16 as in 

the DeepLab-Panoptic model. Finally, for the output of our instance decoder branch, rather 

than predicting a Hough transform, our branch predicts the distance transform of each object. 

Then, instance segmentation is performed by computing a watershed transform57 on the 

predicted output distance transform map. Classification IDs of the predicted objects are 

settled with the majority voting rule used in Panoptic-DeepLab. The network was trained on 

cropped image patches of 560 × 560-pixel size and batch size 2 for approximately 3.8M steps. 

The trained network was then used for prediction where medullary regions were manually 

annotated and excluded from the analysis. Finally, glomeruli and tubules with artefact were 
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manually removed from the final segmentations to eliminate erroneous quantification. 

Approximately 30% of glomeruli and 10% of tubules needed some manual correction. 

Segmentation accuracy was assessed using the Panoptic Quality (PQ) metric.26 This metric 

joins segmentation quality and recognition quality to assess both semantic and instance 

segmentation performance. PQ was only measured for segmentation of glomeruli, globally 

sclerotic glomeruli, and tubules, since these were the classes used in later analyses. We 

selected five random WSIs from patients that progressed to ESKD and 5 random WSIs from 

patients that did not, and these images were used for performance analysis. Our manually 

corrected annotations for these slides were further corrected by a pathologist, and used as a 

ground truth.   

Glomerular and Tubular Sub-Segmentation 

To simplify sub-segmentation of the annotated regions, glomerular pixels are assigned to one 

of three components based on their appearance in the PAS-stained biopsies, according to 

Ginley et. al20: (1) nuclei, (2) PAS-positive areas, including the glomerular basement 

membrane, mesangium, and Bowman’s capsule, and (3) luminal areas, including capillary 

lumina and the Bowman’s space. For tubular segmentation, the three compartments were 

similar, where PAS-positive areas included tubular basement membrane and “intra-tubular 

objects” consisting of PAS-positive areas of the tubule not contained within the basement 

membrane, such as the proximal tubule brush border.   

Nuclei were detected in the tissue by a custom-coded Panoptic segmentation network. 

This network was trained on previously annotated data described by Ginley et. al.20 In both 

glomerular and tubular images, nuclei were segmented by the same network. In glomeruli, 

PAS+ components were segmented by a several step process. First, the original RGB image 

was color-normalized using the Reinhard method,58 then was transformed to the hue-
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saturation-value color space,59 the saturation channel was isolated, and the dark regions were 

brightened using a gamma transform.60 For each glomerulus, this gamma was set at a 

constant of 0.7. Otsu’s thresholding method61 was then applied to segment the PAS+ area, 

excluding the already segmented nuclei. Once the nuclear and PAS+ components were 

segmented, the remaining pixels not contained in these components were classified as 

luminal pixels. PAS-positive components of the tubules were segmented in a slightly different 

fashion. First, the RGB image was color-normalized, and then transformed to the LAB color 

space.62 Second, the lightness color channel (L) was isolated and a constant threshold of 80 

was applied to the 8-bit pixels. All pixels, not already classified as nuclei, above this 

threshold were classified as luminal, or white-space components. All other pixels not 

contained in the nuclear or luminal segmentation were classified as PAS-positive components.  

Quality Control and Color Normalization 

To detect batch effects in the histology samples, we used the open-source softwares HistoQC 

and Cohort Finder63,64 for quality control. The “first” configuration was used on the n=56 

testing samples with determined outcome status, and 2 batches were detected by the software. 

Each batch contained exactly 28 samples, with exactly 8 patients progressing to ESKD 

partitioned into each cohort. To control for stain variation between the 2 batches, the 

Reinhard method of color normalization58 was used. Before normalization, tissue masks were 

generated for the thumbnail images using a saturation threshold, RGB values for the tissue 

sections were converted to the LAB color space, and the averages and standard deviations for 

L, A, and B values were determined across the entire dataset (n=56). These values were then 

used to normalize image crops before feature extraction.  

Feature Engineering 

For glomerular images, digital image feature types are defined according to the methods 
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described by Ginley et al.20 These feature types included color, texture, morphology, 

containment of one compartment within another, interstructural distances, and intrastructural 

distances. A total 315 image features were measured for each glomerulus. This feature set 

was expanded from the original paper for this cohort. For tubular images, similar types of 

digital image features (color, texture, morphology, containment, intra- and interstructural 

distances) are quantified for the same respective structures. Additional features are defined 

for the tubular basement membrane, and to measure tubular tortuosity. A total 207 image 

features per tubule were quantified. A full list of digital image feature sets for glomeruli and 

tubules can be found in Supp. Tables 3 and 4.  

Image/ Proteomic Feature Manifold Classification 

Image/proteomic feature expression manifolds were studied in low dimensional space using a 

state-of-the-art software Seurat.30,31 Seurat is typically used for studying single-cell RNA 

sequencing data, but can be extended to other high-dimensional data, such as digital image 

features and urinary proteomics without loss of generality. For image feature analysis, each 

datapoint is modelled as a computationally segmented individual microcompartment (e.g., 

tubule, glomerulus), and corresponding feature values are quantified engineered feature data. 

For urinary proteomics analysis, each datapoint is modelled as a single subject, and 

corresponding feature values are measured urinary proteomics feature expressions. As a first 

step, the data are normalized by a global-scaling normalization method. This method 

normalizes each feature by min-max scaling values between 0-1, multiplying by a scale factor, 

and then log-transforming the result. The data is then scaled to zero mean and unit variance. 

Principal component analysis was then performed on the scaled data. Non-linear 

dimensionality reduction using UMAP32 is performed using the first 20 principal components 

per datapoint. Class labels (e.g., subjects with ESKD vs. non-ESKD) of interest are applied to 
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these points following dimensionality reduction.  

We analyzed differentially measured proteomics and image features between various 

data classes to characterize these classes. Features that are differentially expressed between 

classes are discovered using the FindMarkers function in Seurat, which uses the Wilcoxon 

rank sum test65 to determine statistical significance. This function also automatically 

performs p-value adjustment using Bonferroni correction, based on the number of features in 

the dataset. Features with an adjusted p <0.05 were identified as differentially expressed.  

To classify subjects based on ESKD binary outcome measure, we performed binary 

classification of the UMAP feature data using an SVM classifier.66 One-dimensional 

hyperplanes were optimized using a radial basis function kernel, with balanced class weight, 

to classify the subjects. The performance of the classifier was quantified using Matthews 

correlation coefficient.67   

Mapping Urinary Proteins to Source Renal Parenchymal Cells using Single-Nuclei RNA 

Sequencing Data   

While fusing urinary proteomics data and digital renal tissue image features is an important 

goal of our study, it is also important to map the urinary proteomics data to pertinent renal 

cell types to investigate biological relevance of our findings. For this mapping, pooled 

snRNA sequencing data of early diabetic (n=3) and nondiabetic (n=3) patients from a 

previous study34 were used. Genes expressed in ≥3 cells, cells with ≥500 unique molecular 

identifier counts were used. The R68 and Seurat30,31 software packages as well as pheatmap 

package (version 1.0.12; an R package to draw heatmap) embedded in R were used for data 

analyses and visualization. For mapping the following functionalities from these software 

packages were used: SCTransform for merging data with adjusting batch-effects; 

FindNeighbors and FindClusters for finding clusters; RunUMAP, FeaturePlot, DotPlot, and 
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pheatmap for data visualization; and Findmarkers for identifying differentially expressed 

genes. 

Disease Progression Prediction using Urinary Proteins by Semi-Supervised Fully 

Connected Neural Network 

For each patient in the test cohort of n=56 subjects, 2,038 unique urinary proteins were 

identified across all subjects at the time of the biopsy, and for the additional validation cohort 

(n=30), 2,313 urinary proteins were identified across all the subjects (Supp. Table 5). 

Proteins identified as contaminant were removed. To predict patient progression to ESKD, we 

designed a fully connected neural network (FCNN). For all the AI networks, a binary 

outcome for ESKD progression within 2 years of biopsy was used as ground truth using 

differentially detected proteins as input. The network architecture consists of an input layer 

for protein data, then a series of 2 dense layers, each with 30 hidden nodes. These dense 

layers both contain leaky rectified linear unit (ReLU) activation functions, and 50% dropout 

during training. The last dense layer connects to a two-node prediction layer, with a SoftMax 

activation function. Cross-entropy was used to compute the loss for this network. The 

network was trained with an Adam optimizer, with the learning rate set at 0.001.The network 

was trained in a self-supervised fashion37 with n=56 labelled cases and n=30 unlabelled cases. 

First, the labelled dataset was split into 90% training and 10% testing, and the network was 

trained using just this training set for 500 iterations with batch size 50. Then, predictions 

were produced for the additional dataset of n=30 that did not have any outcome label. The 

SoftMax output was clipped at a threshold over 0.90, so any network predictions with more 

than 90% confidence were kept, and assigned the label produced by the network. Next, the 

newly labelled cases were added to the original set, and a single training step of batch 50 was 

run. Then, predictions are reproduced for the second dataset of n=30, and the process is 
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repeated for a total of 100 iterations. Lastly, predictions are run on the 10% holdout labelled 

set, and compiled into the final predictions. The network is then reset, and a different 10% 

holdout is taken for testing. This was repeated for 10 folds and the results reported are 

compiled from 100 trials of 10-fold cross validation. Performance was calculated using the 

area under the receiver operator characteristic curve. The generalized network architecture is 

shown in Supp. Doc. 1.    

Disease Progression Prediction using Image features by Semi-Supervised Recurrent 

Neural Network 

To predict DN progression in our cohort using quantified image features from glomerular or 

tubular compartments, we employed the recurrent neural network (RNN) architecture 

designed by Ginley et al.20 The goal is to predict an outcome label for a given WSI by 

incorporating at the network input the ensemble of quantified image features per 

compartment basis serially with respect to all the glomeruli or tubules in a biopsy. The main 

modification of the network architecture with that described in Ginley et al.20 is the final 

prediction layer, where we use 2 prediction nodes for our binary outcome (ESKD vs. no-

ESKD in 2 years after biopsy), with a SoftMax activation. All training parameters, including 

learning rate, batch size, and training steps were kept the same. Semi-supervised training was 

coded similarly to the FCNN above. First, 500 training steps of batch size 256 and 10-time 

steps were completed with 90% of the labelled dataset. Predictions were run on the 

unlabelled patients, and those with prediction confidence >75% were kept, assigned the 

predicted label, and added back to the training set. Then, 100 additional training steps are run 

with the expanded training set, and predictions on all the unlabelled data are rerun. This 

process is repeated 5 times for 500 additional training steps. Final predictions are compiled 

from 10 trials of 10-fold cross-validation. The generalized network architecture is shown in 
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Supp. Doc. 1. 

Correlation of Renal Tissue Morphometry and Molecular Data 

Our previous experiments investigate how urine proteins and digital image features of renal 

structures relate to DN outcome. We next sought to understand how these 2 orthogonal data 

modes are related. These relationships were quantified using partial Spearman’s rank 

correlation coefficient, which controlled for several covariates, including sex, age, height, 

weight, hypertension, number of years with diagnosed diabetes, and history of stroke and 

ischemic heart disease. For this analysis, we used partialcorr command embedded in 

MATLAB (Mathworks, Natick, MA).69 Coefficients were measured for one-to-one 

relationships between quantified structural image features and protein expression or scores of 

molecular pathways formed by an ensemble of proteins. We adjusted the p-values of the 

correlation measures using the Benjamini-Hochberg method.70 

For the above correlative study, to quantify the functionality of the measured urinary 

proteins at pathway level, we developed a scoring method for upregulation and 

downregulation of molecular pathways, using Ingenuity Pathway Analysis (IPA; Qiagen, 

Hilden, Germany).71 First, the proteins included in each pathway were identified. Then, the 

raw protein measurements were added by one, and the resulting values were log-transformed. 

The resulting data were then min-max scaled between 0-1 per protein basis. Following 

scaling, values were adjusted by their biological expectation of upregulation/downregulation 

in pertinent pathways, according to the analytical algorithms embedded in IPA. Namely, the 

scores of the proteins that were expected to be upregulated during the upregulation of a 

particular pathway were kept the same. Scores of the proteins that were expected to be 

downregulated during the upregulation of a particular pathway were revised by subtracting 

their pertinent values from 1. This method was followed so that all protein values would 
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increase/decrease similarly during upregulation/downregulation of a pathway. Lastly, the 

scaled values of the proteins for each pathway were summed for each patient, to obtain one 

score per pathway. The pathways evaluated are listed in Supp. Table 6. 

Discovery via Renal Tissue Image Pixel Parsing  

Of the most highly correlated pairs (structural image features vs protein expression or 

pathway scores), we focused our studies on proteins or molecular pathways with biological 

relevance to renal pathology. This focus limited the proteins of interest to those expressed in 

renal cell types, and molecular pathways of interest to those involving aspects of renal 

function. Distributions across patients were investigated for structural image features highly 

correlated with these biologically relevant molecular candidates. Discovered image features 

were visualized in MATLAB, via mapping the quantified image features in the image space. 

Projected maps were qualitatively studied by renal pathology experts, and relationships with 

compelling trends were used for future hypothesis generation.  
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Data & Code Availability 

Codes for Panoptic Segmentation are available at 

https://github.com/SarderLab/Watershed_Panoptic_Segmentation 

Codes for Object and Feature Extraction are available at 

https://github.com/SarderLab/Object_and_Feature_Extraction 

Codes for Neural Network prediction of DN progression are available at 

https://github.com/SarderLab/DN_progression_prediction 

WSIs, corresponding multi-compartmental segmentations, trained model files and all the 

corresponding outcomes, as well as confounding data for analyzing the performance our 

finding are available at https://bit.ly/3MhFYQc. Raw measured proteomics data is available 

via Supp. Table 7. 
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the biological meaning of the image level features corresponding to molecular markers 

pertinent from the urinary proteomic data. JZ contributed with the statistical analysis 

conducted in the study. KYJ generated ground-truth segmentation boundaries for analyzing 

the performance of the multi-compartment renal tissue segmentation. SSH co-conceived the 

overall study with PS integrating urinary proteomics data with renal tissue image data, 

optimized urinary proteomics data generation, as well as spearheaded the database generation 

with matching renal tissue whole slide image data as well as with corresponding outcome 
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Figure Legends 

Fig. 1. Whole slide image segmentation of renal Biopsy. Biopsy level predictions mapped 

back on a whole slide image (WSI) viewer Aperio ImageScope. Background (none), 

interstitium (green), glomeruli (yellow), globally sclerotic glomeruli (red), tubules (blue), 

arteries and arterioles (orange). Black scale bar = 2 mm. Red scale bars = 200 µm. 

Fig. 2. Component segmentation of renal tubules. Tubules segmented into nuclear 

component (blue), periodic-acid Shiff (PAS)+ component (red), and luminal/white space 

component (green). Scale bars = 25 µm. 

Fig. 3. Feature extraction from renal tubules. (A, D, G) Original images from whole slide 

image (WSI). (B, E, H) Representation of closest internuclear distance. (C, F, I) 

Representation of tubular basement membrane thickness. Scale bars = 25 µm. 

Fig. 4. Uniform Manifold Approximation and Projection (UMAP) dimensionality 

reduction for various feature types. (A) Aggregated glomerular features, (B) Aggregated 

tubular features, (C) Full urine proteomics set, (D) Protein biomarkers related to end-stage 

kidney disease (ESKD) progression. Red dots represent patients progressing to ESKD within 

two years of biopsy/urine collection. Blue dots represent patients that did not. Red 

background represents support vector machine (SVM) prediction of progressing to ESKD 

within 2 years. Blue background represents SVM prediction of not progressing to ESKD 

within 2 years. Urinary proteins are more robust in delineating progressors from non-

progressors than image features, and a reduced set of significant proteins increases predictive 

strength.   

Fig. 5. Mapping urinary proteomics data on an existing single cell RNA (scRNA) 

sequencing data to decipher cell locale of the identified urinary proteins. (A) UMAP 

(Uniform Manifold Approximation and Projection) plot of 23,987 cells pooled from a source 
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with human kidneys (left) and a plot subclustered from a MES_FIB cluster (right). (B) Dot 

plots to identify clusters (left) and a MES_FIB cluster (right). (C) Dot plots for the gene 

expression of increased (left) and decreased (right) urine proteins related with progression of 

diabetic nephropathy. The genes corresponding to CFHR1, CFHR2, FGG, FGA, and GKN1 

were not expressed in all the clusters. (D) Heatmap of logarithmic fold changes of genes in 

diabetic kidneys compared with non-diabetic kidneys. (E) Expression of the C7 gene in the 

UMAP plot of a MES_FIB cluster. PCT, proximal convoluted tubule; TAL, thick ascending 

limb of loop of Henle; DCT, distal convoluted tubule; CD-PC, principal cell of the collecting 

duct; CD-ICA, type A intercalated cell of the collecting duct; CD-ICB, type B intercalated 

cell of the collecting duct; PEC, parietal epithelial cell; PODO, podocyte; ENDO, endothelial 

cell; MES, mesangial cell; FIB, fibroblast; IMM, immune cell; MF, myofibroblast. 

Expression of genes encoding differentially identified proteins in snRNA sequencing data 

from diabetic and non-diabetic kidneys showed key differences in specific genes.   

Fig. 6. AI Network end stage kidney disease (ESKD) prediction performance. Results 

shown from fully connected neural network (FCNN) using ESKD marker proteins (green), 

recurrent neural network (RNN) using tubular digital image features (orange), and RNN 

using glomerular digital image features (blue). AI predictions compared to ground truth labels 

for n = 56. FCNN results shown for 100 trials of 10-fold cross validation. RNN results shown 

for 10 trials of 10-fold cross-validation. Urinary proteomics continue to show the greatest 

predictive power over image features. 

Fig. 7. Spearman Rank Correlation Coefficients between digital image features and 

urinary protein measurements or molecular pathway scores. Color at intersection 

represents single spearman coefficient between pairs. Glomerular correlations were generally 
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higher in magnitude, but tubular correlations were more statistically significant, with both of 

these relationships likely coming from differences in sample size. 

Fig. 8. Pixel parsing discovery result for significant correlations between urinary 

proteomics and digital image features. (A) Violin plot of the average value of red pixel 

values in glomerular PAS+ regions, plotted for each patient in order of increasing mean 

feature value. Scatter plot of urinary proteomic measurements for Complement C7. 

Correlation between image feature and protein value is given by Spearman Rank Correlation 

Coefficient 0.30 (p<<0.0001). (B) Image of candidate glomerulus with low feature value, and 

(C) image of candidate glomerulus with high feature value. Black scale bars = 100 µm. (D) 

Violin plot of the standard deviation of green pixel values in the tubular basement membrane, 

plotted for each patient in order of increasing mean feature value. Scatter plot of urinary 

proteomic measurements for Epidermal Growth Factor. Correlation between image feature 

and protein value is given by Spearman Rank Correlation Coefficient 0.15 (p<<0.0001). (E) 

Image of candidate tubule with low feature value, and (F) image of candidate tubule with 

high feature value. First image highlights PAS+ segmented area, while second image shows z 

scores of green pixel values in PAS+ areas. Green scale bars = 25 µm. 
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Table 1. Up-regulated proteins in patients progressing to end-stage kidney disease 

Genes  Protein Name  
RBP4  Retinol-binding protein 4  
CFH  Complement factor H  
CFHR1  Complement factor H-related protein 1  
CFHR2  Complement factor H-related protein 2  
APOH  Apolipoprotein H 
LYZ  Lysozyme C  
PEBP4  Phosphatidylethanolamine-binding protein 4  
FGB  Fibrinogen beta chain  
FGG  Fibrinogen gamma chain  
FGA  Fibrinogen alpha chain  
CST3  Cystatin C  
CFD  Complement factor D  
GRN  Granulins  
COL18A1  Collagen type XVIII alpha-1 chain  
FBLN1  Fibulin-1  
ART3  Ecto-ADP-ribosyltransferase 3  
F12  Coagulation factor XII  
IGFBP3  Insulin-like growth factor-binding protein 3  
IGFBP4  Insulin-like growth factor-binding protein 4  
C7  Complement component 7  
SERPIND1  Heparin cofactor 2  
GKN1  Gastrokine-1  
ECM1  Extracellular matrix protein 1  
RNASE4  Ribonuclease 4  
LCN2  Neutrophil gelatinase-associated lipocalin  
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Table 2. Down-regulated proteins in patients progressing to end-stage kidney disease 

Genes  Protein Name  
MGAM  Maltase-glucoamylase, intestinal  
GAA  Lysosomal alpha-glucosidase  
CD44  CD44 antigen  
SPP1  Secreted phosphoprotein 1 
ATRN  Attractin  
CTBS  Di-N-acetylchitobiase  
GLB1  Beta-galactosidase  
AXL  Tyrosine-protein kinase receptor UFO  
LGALS3BP  Galectin-3-binding protein  
GNS  N-acetylglucosamine-6-sulfatase  
VCAM1  Vascular cell adhesion protein 1  
EGF  Pro-epidermal growth factor  
CADM4  Cell adhesion molecule 4  
LCAT  Phosphatidylcholine-sterol acyltransferase  
DNASE1  Deoxyribonuclease-1  
CTSD  Cathepsin D  
ASAH1  Acid ceramidase  
ANPEP  Aminopeptidase N  
VASN  Vasorin  
LRP2  Low-density lipoprotein receptor-related protein 2  
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Figures 

 

Fig. 1. Whole slide image segmentation of renal Biopsy. Biopsy level predictions mapped back on a whole slide 

image (WSI) viewer Aperio ImageScope. Background (none), interstitium (green), glomeruli (yellow), globally 

sclerotic glomeruli (red), tubules (blue), arteries and arterioles (orange). Black scale bar = 2 mm. Red scale bars = 200 

µm. 
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Fig. 2. Component segmentation of renal tubules. Tubules segmented into nuclear component (blue), periodic-acid 

Shiff (PAS)+ component (red), and luminal/white space component (green). Scale bars = 25 µm. 
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Fig. 3. Feature extraction from renal tubules. (A, D, G) Original images from whole slide image (WSI). (B, E, H) 

Representation of closest internuclear distance. (C, F, I) Representation of tubular basement membrane thickness. 

Scale bars = 25 µm. 
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Fig. 4. Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction for various feature 

types. (A) Aggregated glomerular features, (B) Aggregated tubular features, (C) Full urine proteomics set, (D) Protein 

biomarkers related to end-stage kidney disease (ESKD) progression. Red dots represent patients progressing to ESKD 

within two years of biopsy/urine collection. Blue dots represent patients that did not. Red background represents 

support vector machine (SVM) prediction of progressing to ESKD within 2 years. Blue background represents SVM 

prediction of not progressing to ESKD within 2 years. Urinary proteins are more robust in delineating progressors 

from non-progressors than image features, and a reduced set of significant proteins increases predictive strength.   
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Fig. 5. Mapping urinary proteomics data on an existing single cell RNA (scRNA) sequencing data to decipher 

cell locale of the identified urinary proteins. (A) UMAP (Uniform Manifold Approximation and Projection) plot 

of 23,987 cells pooled from a source with human kidneys (left) and a plot subclustered from a MES_FIB cluster 

(right). (B) Dot plots to identify clusters (left) and a MES_FIB cluster (right). (C) Dot plots for the gene expression 

of increased (left) and decreased (right) urine proteins related with progression of diabetic nephropathy. The genes 

corresponding to CFHR1, CFHR2, FGG, FGA, and GKN1 were not expressed in all the clusters. (D) Heatmap of 

logarithmic fold changes of genes in diabetic kidneys compared with non-diabetic kidneys. (E) Expression of the C7 

gene in the UMAP plot of a MES_FIB cluster. PCT, proximal convoluted tubule; TAL, thick ascending limb of loop 

of Henle; DCT, distal convoluted tubule; CD-PC, principal cell of the collecting duct; CD-ICA, type A intercalated 

cell of the collecting duct; CD-ICB, type B intercalated cell of the collecting duct; PEC, parietal epithelial cell; 

PODO, podocyte; ENDO, endothelial cell; MES, mesangial cell; FIB, fibroblast; IMM, immune cell; MF, 

myofibroblast. Expression of genes encoding differentially identified proteins in snRNA sequencing data from 

diabetic and non-diabetic kidneys showed key differences in specific genes.   
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Fig. 6. AI Network end stage kidney disease (ESKD) prediction performance. Results shown from fully connected 

neural network (FCNN) using ESKD marker proteins (green), recurrent neural network (RNN) using tubular digital 

image features (orange), and RNN using glomerular digital image features (blue). AI predictions compared to ground 

truth labels for n = 56. FCNN results shown for 100 trials of 10-fold cross validation. RNN results shown for 10 trials 

of 10-fold cross-validation. Urinary proteomics continue to show the greatest predictive power over image features. 
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Fig. 7. Spearman Rank Correlation Coefficients between digital image features and urinary protein 

measurements or molecular pathway scores. Color at intersection represents single spearman coefficient between 

pairs. Glomerular correlations were generally higher in magnitude, but tubular correlations were more statistically 

significant, with both of these relationships likely coming from differences in sample size. 
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Fig. 8. Pixel parsing discovery result for significant correlations between urinary proteomics and digital image 

features. (A) Violin plot of the average value of red pixel values in glomerular PAS+ regions, plotted for each patient 

in order of increasing mean feature value. Scatter plot of urinary proteomic measurements for Complement C7. 

Correlation between image feature and protein value is given by Spearman Rank Correlation Coefficient 0.30 

(p<<0.0001). (B) Image of candidate glomerulus with low feature value, and (C) image of candidate glomerulus with 

high feature value. Black scale bars = 100 µm. (D) Violin plot of the standard deviation of green pixel values in the 

tubular basement membrane, plotted for each patient in order of increasing mean feature value. Scatter plot of urinary 

proteomic measurements for Epidermal Growth Factor. Correlation between image feature and protein value is given 

by Spearman Rank Correlation Coefficient 0.15 (p<<0.0001). (E) Image of candidate tubule with low feature value, 

and (F) image of candidate tubule with high feature value. First image highlights PAS+ segmented area, while second 

image shows z scores of green pixel values in PAS+ areas. Green scale bars = 25 µm. 
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