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Summary 

COV50, a urinary proteomic classifier, predicts disease progression and death from SARS-CoV-2 at 

early stage, suggesting it might predict pre-established vulnerability. This study investigated the value 

of COV50 in predicting non-COVID-19 associated death. Urinary proteomic data were extracted from 

the Human Urinary Proteome Database. In the ICU group (n=1719), an increase in the COV50 score 

of one unit resulted in a 20% higher relative risk of death (adj. HR 1·2 [95% CI 1·17-1·24]). The same 

increase in COV50 in non-ICU patients (n=7474) resulted in a higher relative risk of 61% (adj. HR 

1·61 [95% CI 1·47-1·76]), in line with adjusted meta-analytic HR estimate of 1·55. A higher COV50 

scoring was observed in frail patients (p<0·0001). The COV50 classifier is predictive of death, and is 

associated with frailty suggesting that it detects pre-existing vulnerability. These data may serve as 

basis for proteomics guided intervention, reducing the risk of death and frailty.  
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INTRODUCTION 

In the recently reported CRIT-COV-U study, a urinary peptide-based classifier that predicts a critical/ 

lethal course of COVID-19 was developed and validated 1,2. This classifier, termed COV50, is based 

on 50 specific urinary peptides, all significantly associated with critical/lethal outcome. The most 

prominent changes observed were reduction of peptides derived from collagen alpha 1(I), polymeric 

immunoglobulin receptor and CD99 antigen, and an increase in peptides derived from alpha-1-

antitrypsin 3. A support-vector machine-based algorithm was applied to combine 50 peptides into a 

classifier that provides a dimensionless variable predicting outcome. In the validation study, COV50 

could predict critical disease course, death, or both, with an area under the receiving operating curve 

(AUC) of 0·81.  

Prediction of critical disease course and/or death was possible at the earliest possible date, i.e., the first 

positive indication of a SARS-CoV-2 infection. This result suggested that outcome prediction may not 

be solely based on molecular events associated with SARS-CoV-2 infection, but may be partly due to 

already present pre-established vulnerability. This would indicate that prediction of severe disease 

course may be possible even before the virus infection due to susceptibility to a “second hit” – here, 

SARS-CoV2 infection. A study to investigate this hypothesis does not appear feasible, as it would 

require the recruitment of an excess of 105 subjects to include a sufficient number of patients that will 

experience SARS-CoV-2 infection and a critical or lethal disease course. However, it appeared 

reasonable to assume that, if the COV50 classifier detects a vulnerable population, a significantly 

higher number of this vulnerable population (defined by a COV50 score above the threshold) should 

experience death, compared to the population with a lower score. This hypothesis was investigated in 

the present study, testing the association of mid- and long-term mortality with COV50. 

 

RESULTS 

First, we evaluated the hypothesis that the COV50 classifier defines the vulnerable population at a 

molecular level, irrespective of SARS-CoV-2 infection. For that purpose, we investigated datasets 

from subjects from the FROG-ICU study 4, as this study was more comparable to the CRIT-COV 

study (patients in ICU) and had available a large number of endpoints. We identified 1719 datasets to 

be included in this study, for which follow-up and information on relevant covariables were available 
5.  

To further support our analysis, we also investigated if COV50 enables death prediction in subjects, 

not in ICU. Studies with more than 50 individuals and available follow-up information were selected 
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from the Human Urinary Proteome Database 6,7, applying the same criteria as above regarding the 

availability of covariables.  

The demographic information on the subjects included in the study split by ICU and death is given in 

Table 1. Among the risk factors for death, we found significant differences at the aggregate level in 

both the ICU and the non-ICU subgroups, according to expectation. The median COV50 score is 

significantly (p <0·001) higher in patients that were to experience death during the observation time, 

as also displayed in it`s distributions in Panel A of Figure 1.  

As age is a crucial risk factor for death, we described the relationship between COV50 and mortality 

split by age groups in panels B and C of Figure 1. Panel B describes mortality in person-time in 

COV50 groups, whereas panel C relates mortality as a percentage with continuous COV50. In both 

subgroups, an increase in COV50 accompanies higher mortality, and the effect is more pronounced in 

higher age groups. 

Crude HRs in Figure 2 A for all studies on average show an association of higher relative risk of 

death with increasing COV50 scores, with all but 5 studies showing a significantly elevated relative 

risk. For all subgroups in the meta-analysis, besides the diabetes-related studies, the combined 

estimate for the HR is significantly different from 1, as indicated by the 95% CIs. In general, 

adjustment for risk factors lowered the COV50 HR estimates, which aligns with expectations, , as 

adjustment generally improves comparability by accounting for observed between study heterogeneity 

on the patient level. However, in studies (particularly PersTIgAN, STOPIgAN) with low numbers of 

events, variance increased drastically with the adjustment. The estimates from the meta-analysis 

resulted in an unadjusted HR of 1·77 [95% CI 1·58-1·97] and an adjusted HR of 1·55 [95% CI 1·39-

1·73]. 

Though appearing on a trend level within and between the subgroups, neither heterogeneity nor 

subgroup differences were significant (Figure 2). 

With a 95% prediction interval for the unadjusted HR ranging from 1·47 to 2·13 we can expect future 

studies to find a predictive effect of COV50 on death in a broader population.  

Subgroup HR estimates from the adjusted meta-analysis in Figure 2 B are robust, since they are close 

to corresponding estimates from the pooled adjusted Cox regression in Table 2. In the ICU group, an 

increase in the COV50 score of one unit results (on average, ceteris paribus) in a 20% higher relative 

risk of death (adj. HR 1·2 [95% CI 1·17-1·24]). As the absolute risk of death is considerably lower in 

non-ICU patients, the same increase in COV50 in non-ICU patients results in a higher relative risk of 

61% (adj. HR 1·61 [95% CI 1·47-1·76]). This is in line with the adjusted HR estimate of 1·55 from the 

meta-analysis.  
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Frailty may be considered an extensive vulnerability. Based on these considerations, we examined the 

distribution of COV50 scoring in a cohort of frail subjects and controls where CE-MS data from 

previous analysis were available 8. The mean COV50 scoring in 196 controls was -1·041, while in 73 

frail subjects it was -0·677. The difference in the means of 0,365 was highly significant (p<0·0001), 

supporting our hypothesis that COV50 is associated with frailty. 

Since COV50 is a composite score based on 50 distinct urinary peptides, we examined which of these 

50 peptides served as individual predictors of death in the cohorts investigated (ICU, non-ICU). 

Specifically, we compared the distribution of the 50 peptides in the datasets from survivors with those 

from subjects that died. The outcome was assessed at 1 and 5 years for ICU and non-ICU cohorts, 

respectively. 

The results of this analysis are shown in Table 3. A high degree of concordance was found when 

comparing the peptides regulation trend in the context of COVID-19, death in or after ICU, or death 

without ICU stay. The most notable and significant changes were associated with future fatal events 

are the reductions of specific collagen fragments, most of collagen alpha I(I).  

In the ICU subjects, 28 of the 50 peptides were found to be significantly associated with future death. 

Of these, 26 showed a regulation trend in a similar direction as for critical/lethal COVID-19. At the 

same time, two peptides, one from alpha-1-acid glycoprotein 1 and one from sodium/potassium-

transporting ATPase subunit gamma, had an opposing regulation. When investigating the most 

prominent peptides derived from collagen, all significant changes are concordant between death in 

COVID-19 or ICU. In the non-ICU subjects, 36 of the 50 peptides were significantly associated with 

future death. Of these, 27 showed a regulation concordant with the one in critical/lethal COVID-19, 

while 9 peptides changed in an opposing direction. The latter are the peptides derived from alpha-1-

acid glycoprotein 1, polymeric immunoglobulin receptor, neurosecretory protein VGF, CD99 antigen, 

hornerin, collagen alpha-1(I), and collagen alpha-2(I).  

A major difference in comparison to the distribution in COVID-19 patients was observed for CD99 

antigen and polymeric immunoglobulin receptor. While in critical COVID-19 patients a consistent and 

significant reduction of multiple CD99 antigen  and polymeric immunoglobulin receptor peptides was 

associated with severe/lethal disease, this was not observed in ICU and non-ICU populations not 

infected with SARS-CoV2.  

 

DISCUSSION 
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The data demonstrate that the COV50 classifier not only predicts an unfavourable outcome of a 

COVID-19 episode but apparently identifies “vulnerable subjects”, who are likely at substantially 

higher risk of severe or lethal COVID-19. At the same time, this vulnerability also appears relevant in 

other clinical situations (e.g., non-SARS-CoV2 infections) leading to ICU admission. Moreover, it 

increases the risk of death in most pathological conditions. This concept of the “second hit 

phenomenon” exaggerated on the grounds of pre-established chronic diseases, and inappropriate 

innate immune response to injury and trauma has been related to perfusion changes of critical 

compartments and pathological sequelae 9.  

The most prominent and consistent findings are the reduction of several specific urinary collagen 

fragments, most from collagen alpha-I(I). The reduction of these collagen fragments most likely 

indicates reduced collagen degradation in the extracellular matrix, which is expected to result in 

increased organ fibrosis. Fibrosis is generally associated with vulnerability to “second-hit events” 

either in e.g. infectious or general (cardiovascular) scenario. It is reasonable to assume that the 

“second hit” in the context of a SARS-CoV-2 infection is depicted via peptides deregulated in severe 

COVID-19 only, like CD99 antigen and Polymeric immunoglobulin receptor. 

The concordance of significant changes observed due to critical/lethal COVID-19 appears to be higher 

in the context of ICU than in non-ICU subjects. While an objective measure to assess significant 

differences does not seem to exist, a concordance (based on up- or down-regulation) of 93% (in the 

case of ICU) compared to 75% (in the case of non-ICU) is at least indicative. 

As expected, similarities between changes in biomarkers in patients developing the critical condition, 

irrespective of the underlying pathology and disease etiology, could be observed. At the same time it 

becomes evident that specific changes, a decrease of peptides from CD99 antigen and polymeric 

immunoglobulin receptor, are associated explicitly with critical COVID-19, and cannot be associated 

with all-cause death, neither in nor outside ICU.  

This study's findings agree with previous research that reported an association of urinary peptides (or 

classifiers based on these) with unfavourable outcome. A search in Pubmed for the keywords (urine 

OR urinary) AND (peptidom* OR proteom*) AND (death OR mortality) in the title or abstract 

resulted in 96 publications. Upon manual inspection by three authors, 11 manuscripts were found to be 

relevant, describing studies investigating the association of urinary peptides with mortality in humans, 

including the manuscripts describing the development of COV50 1,2,10. Currie et al. described a 

significant value of CKD273, a classifier based on 273 urinary peptides, in predicting mortality in 155 

microalbuminuric type 2 diabetic patients 11. Similar results were also presented by Verbeke et al., 

where CKD273 was significantly associated with mortality in 451 chronic kidney disease patients 12. 

Nkuipou-Kenfack et al. reported the association of urinary peptides with death, and the development 

of a classifier based on these to predict mortality after ICU stay in 1243 patients 5. In 2021, Martens et 
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al. described the association of multiple urinary peptides, many of these collagen fragments, with 

biological age, and mortality 13. Batra et al. presented a proteomics-based mortality signature in 

COVID-19 and acute respiratory distress syndrome patients 14. In the context of hepatocellular 

carcinoma, Bannaga et al. described several urine peptides being significantly associated with death 15. 

Very recently, Wei et al. reported on the detection of urinary peptides related to pulse-wave velocity 

also being associated with mortality 16. In a very well-powered study on 1170 patients that underwent 

cardiac surgery, Piedrafita and colleagues reported the identification of 204 urinary peptides associated 

with acute kidney injury 17. A classifier based on these 204 peptides was validated in an independent 

cohort of 1569 ICU patients, demonstrating good performance and significant association with 

mortality. In almost all of these studies, collagen peptides were among the most prominent 

biomarkers, with reduced abundance being associated with increased risk of death, as also 

demonstrated recently by He and colleagues in the context of heart failure 18. The data on quite large 

cohorts in ICU and subjects not in critical condition at the time of sampling indicate that urinary 

peptides and classifiers derived thereof hold significant predictive value for a patient-relevant 

endpoint: death. In complete agreement with previous studies, prediction of death appears to be based 

mainly on collagen fragments, which may indicate attenuation of collagen degradation, consequently 

progressing fibrotic processes. Evidently, the COV50 classifier was not developed to predict death in 

the general population. Also, based on the observation in this study that several peptides contained in 

this classifier show opposite regulation on predicting critical COVID-19 or death from any cause, it is 

to be expected that a classifier developed explicitly for prediction of death, based on only those 

peptides significantly associated with death, could be of substantial value in guiding death-preventing 

interventions. It is to be expected that such classifier would be based mainly on collagen fragments.  

In this study we demonstrate that the urinary COV50 classifier is significantly associated with future 

death in ICU patients as well as in non-ICU patients. Further research is needed to assess if specific, 

personalized intervention guided by urinary collagen fragments can significantly improve outcomes, 

reducing future death. 

 

LIMITATIONS OF THE STUDY 

The study has limitations. It has been performed based on previously generated datasets. However, the 

large number of datasets, the high number of endpoints assessed, and the very high significance level 

of the findings strongly support that the results can be generalized. Along these lines, a strength of the 

study is the inclusion of datasets from multiple studies, indicating a robust basis for the assessment. 
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Figure titles and legends 

Figure 1: A) Density of the COV50 distribution in ICU and non-ICU subjects. B) Mortality per 

person-years for FROG and non-ICU cohorts given age and COV50. C) Mortality as share [0-1] from 

a logistic regression for FROG and non-ICU cohorts given age and COV50. 
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Figure 2: Random effects meta analyes based on the log-HR and the standard errors from the separate 

cox regressions. A) Unadjusted, B), adjusted for sex, age, kidney function and BMI. The size of dot 

symbols is proportional to weight and weight is inverse proportional to HR standard error. 
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Table 1: Descriptive statistics for the ICU and non-ICU samples analysed within this study. 

  ICU Non-ICU 

 Level/Unit Overall Death: no Death: yes p Overall Death: no Death: yes p 

N  1,719 (100%) 1,139 (66,3%) 580 (33·7%)  7,474 (100%) 6,849 (91·6%) 625 (8·4%)  

Study FROG 1,719 (100%) 1,139 (100%) 580 (100%)     <0·001 

 CAD Predictions     145 (1·9%) 50 (0·7%) 95 (15%)  

 CardioRen     116 (1·6%) 87 (1·3%) 29 (4·6%)  

 DIRECT     1,487 (20%) 1,448 (21%) 39 (6·2%)  

 EPOGH     914 (12%) 850 (12%) 64 (10%)  

 EU Priority     1,769 (24%) 1,756 (26%) 13 (2·1%)  

 GenScot     473 (6·3%) 417 (6·1%) 56 (9·0%)  

 Heart Failure     84 (1·1%) 67 (1·0%) 17 (2·7%)  

 Homage Fibrosis     354 (4·7%) 229 (3·3%) 125 (20%)  

 PersTIgAN     270 (3·6%) 265 (3·9%) 5 (0·8%)  

 Predictions     91 (1·2%) 85 (1·2%) 6 (1·0%)  

 PROPHET     462 (6·2%) 444 (6·5%) 18 (2·9%)  

 STOP IgAN     109 (1·5%) 107 (1·6%) 2 (0·3%)  

 Sun Makro     581 (7·8%) 556 (8·1%) 25 (4·0%)  

 TransBioBC     131 (1·8%) 117 (1·7%) 14 (2·2%)  

 UZ Gent     488 (6·5%) 371 (5·4%) 117 (19%)  

Age [yrs] 62 (50, 73) 58 (46, 69) 70 (61, 78) <0·001 60 (48, 68) 59 (47, 66) 73 (66, 79) <0·001 

Female yes 602 (35%) 414 (36%) 188 (32%) 0·11 2,857 (38%) 2,657 (39%) 200 (32%) <0·001 

BMI [kg/m²] 26·2 (22·9, 30·0) 26·2 (22·8, 29·9) 26·4 (23·1, 30·1) 0·6 27·5 (24·3, 31·2) 27·6 (24·3, 31·4) 26·9 (23·7, 30·1) <0·001 

Systolic BP [mmHg] 123 (109, 140) 124 (110, 140) 120 (107, 139) 0·01 132 (121, 145) 132 (121, 144) 138 (124, 153) <0·001 
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Diastolic BP [mmHg] 64 (55, 75) 66 (56, 77) 60 (52, 70) <0·001 79 (72, 85) 79 (73, 85) 75 (67, 82) <0·001 

Mean Arterial BP [mmHg] 84 (74, 95) 86 (76, 96) 80 (71, 92) <0·001 97 (90, 104) 97 (90, 104) 97 (88, 105) 0·3 

Hypertension yes 979 (57%) 602 (53%) 377 (65%) <0·001 3,090 (41%) 2,758 (40%) 332 (53%) <0·001 

eGFR [ml/min/1·73 m²] 87 (48, 127) 97 (57, 132) 67 (37, 107) <0·001 82 (59, 99) 84 (62, 100) 61 (37, 80) <0·001 

Kidney Disease yes 716 (42%) 378 (33%) 338 (58%) <0·001 2,212 (30%) 1,898 (28%) 314 (50%) <0·001 

Diabetes yes 280 (16%) 160 (14%) 120 (21%) <0·001 4,101 (55%) 3,938 (57%) 163 (26%) <0·001 

Cardiovascular Disease yes 98 (5·7%) 49 (4·3%) 49 (8·4%) <0·001 1,357 (18%) 983 (14%) 374 (60%) <0·001 

COV50  1·17 (0·34, 1·83) 1·01 (0·11, 1·74) 1·45 (0·72, 1·97) <0·001 -1·88 (-2·33, -1·27) -1·89 (-2·34, -1·30) -1·69 (-2·26, -0·94) <0·001 

FU Duration [month] 12·0 (2·0, 12·1) 12·0 (12·0, 12·5) 0·7 (0·3, 2·1) <0·001 47 (29, 67) 48 (29, 67) 38 (19, 62) <0·001 

 

Categorical variables are described with absolute (N) and group-wise relative frequencies (%), continuous variables with median (IQR). P-values for group differences result from chi-squared 

homogeneity tests for categorical and for Wilcoxon rank sum test for continuous variables. Abbreviations: BMI= body mass index; BP= blood pressure; eGFR= estimated glomerular filtration rate; 

FU= follow-up; ICU= intensive care unit; yrs= years 

  

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

ay 1, 2023. 
; 

https://doi.org/10.1101/2023.04.28.23289257
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.04.28.23289257
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

Table 2: Estimates from the pooled adjusted Cox regression. 

 

 

Effect Group (Non-ICU Subgroup) HR 95% CI  p 

Age   1·83 1·43, 2·35 <0·001 

Female   0·78 0·69, 0·87 <0·001 

log(BMI)   0·91 0·87, 0·94 <0·001 

MAP   0·88 0·84, 0·93 <0·001 

log(eGFR)   0·89 0·84, 0·95 <0·001 

COV50 ICU  1·2 1·17, 1·24 <0·001 

 Non-ICU  1·61 1·47, 1·76 <0·001 

  CVD 1·51 1·36, 1·68 <0·001 

  Diabetes 1·24 1·23, 1·25 <0·001 

  Population 1·68 1·31, 2·15 <0·001 

  CKD 1·82 1·70, 1·94 <0·001 

  Other 1·75 1·45, 2·11 <0·001 

 

HR = Hazard Ratio, CI = Confidence Interval 

All regressors besides Female and COV50 are were normalized to mean 0 and sd 1.  

n = 9,193; N events = 1,205; 

statistic.wald = 7,096; p = <0·001; 

c-index = 0 ·618; c-index SE = 0·013; 

Log-likelihood = -5,959;
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Table 3: List of 50 urinary peptides included in the COV50 classifier and their respective regulation trend in investigated cohorts (ICU and non-ICU).  

Peptide sequence Protein name 

COVID19 ICU cohort Non-ICU cohort 

Regulation 

trend:  critical 

vs. moderate  

p-value 

Regulation 

trend: non-

survivors vs. 

survivors 

p-value 

Regulation 

trend: non-

survivors vs. 

survivors 

GGSKRISIGGGS 
Keratin, type II cytoskeletal 

6A 
89·348 3·225E-01 1·486 1·068E-01 0·926 

EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAE Alpha-1-antitrypsin 45·185 3·920E-10 2·293 2·207E-05 1·065 

AGPpGKAGEDGHpGKpGRpGERG Collagen alpha-2(I) chain 31·308 5·167E-02 1·391 7·320E-06 1·905 

LmIEQNTKSPLFMGKVVNPTQK Alpha-1-antitrypsin 24·440 4·265E-06 1·887 1·199E-02 1·049 

AGPpGKAGEDGHPGKPGRpGERG Collagen alpha-2(I) chain 16·970 2·012E-01 1·156 4·800E-01 1·007 

GPpGPKGNSGEpGApGSKGDTGAKGEpGPVG Collagen alpha-1(I) chain 12·171 5·383E-01 1·552 1·297E-01 1·312 

GPEGPSGKpGINGKDGIPGAQGImGKpGDRGpKGERGDQGIP 
Collagen alpha-1(XIX) 

chain 
12·145 3·644E-06 1·336 9·306E-17 2·741 

TGAKGAAGLpGVAGApGLpGPRGIpGPVGAAGATGARG Collagen alpha-2(I) chain 11·673 1·672E-01 1·042 3·345E-01 1·090 

LQGLPGTGGppGENGKpGEpGpKGDAGApGApGGKGDAGApGERGpPG Collagen alpha-1(III) chain 10·849 7·038E-02 1·242 1·423E-11 2·268 

KGEKGDSGASGREGFPGVpGGTGP Collagen alpha-1(VII) chain 10·487 2·373E-06 1·299 4·389E-15 3·685 

LkGQpGApGVkGEpGApGENGTpGQTGARG Collagen alpha-2(I) chain 6·149 3·528E-02 1·093 4·450E-10 1·679 

SETAPAAPAAPAPAEKTPVKKKA Histone H1.4 5·020 3·855E-01 1·124 2·271E-03 1·338 

FDVNDEKNWGLS Alpha-1-acid glycoprotein 1 0·529 8·309E-03 1·269 1·134E-01 1·101 

NSGEpGApGSKGDTGAkGEpGPVG Collagen alpha-1(I) chain 0·525 4·819E-01 1·043 5·667E-04 1·138 

ESGREGApGAEGSpGRDGSpGAKGDRGETGP Collagen alpha-1(I) chain 0·488 9·459E-01 1·032 1·815E-06 1·186 

PpGPAGFAGPPGADGQPGAKGEpGDAGAKGDAGPPGPAGP Collagen alpha-1(I) chain 0·420 7·672E-09 0·764 2·597E-01 0·940 

EGSpGRDGSpGAKGDRGETGPA Collagen alpha-1(I) chain 0·405 1·317E-01 0·931 2·140E-02 0·922 

FPGQTGPRGEMGQp Collagen alpha-1(VII) chain 0·403 2·534E-03 0·938 2·225E-03 0·867 

GLSMDGGGSPKGDVDP 
Na/K-transporting ATPase 

su g 
0·396 8·038E-02 1·848 7·910E-08 1·246 
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GPpGVPGpPGpGGSPGLP 
Collagen alpha-1(XXII) 

chain 
0·395 1·011E-02 0·895 1·020E-03 0·779 

VGPpGPPGPpGPpGPPS Collagen alpha-1(I) chain 0·344 2·422E-11 0·762 5·447E-12 0·702 

pGKDGDTGPTGPQGPQ 
Collagen alpha-1(XXII) 

chain 
0·316 6·035E-02 1·109 2·003E-05 0·867 

ERGEAGIpGVpGAKGEDGKDGSPGEpGANG Collagen alpha-1(III) chain 0·308 3·259E-05 0·846 1·283E-05 0·789 

GpKGDpGIpGLDRSGFpGETGSPGIPGHQ Collagen alpha-3(IV) chain 0·306 8·925E-01 1·110 1·520E-01 0·837 

WVGTGASEAEKTGAQEL Gelsolin 0·271 3·674E-06 0·727 9·910E-02 0·949 

GSEGPQGVRGEPGpPGPAGAAGPAGNPGADGQPGAKGANG Collagen alpha-1(I) chain 0·247 1·090E-06 0·644 5·287E-01 0·938 

VGPpGPpGPpGPpGPPS Collagen alpha-1(I) chain 0·241 3·011E-04 0·862 3·597E-05 0·832 

PpGESGREGApGAEGSpGRDGSpGAKGDRGETGP Collagen alpha-1(I) chain 0·228 1·938E-05 0·774 3·814E-01 1·033 

EAGGGSNSLQNSP 
FERM domain-containing 

protein 4A 
0·212 3·251E-03 0·925 2·825E-03 0·880 

GRPEAQPPPLSSEHKEPVAGDAVPGPKDGSAPEVRGA Neurosecretory protein VGF 0·194 1·984E-03 0·996 9·369E-04 1·336 

GpAGPRGERGPpGESGA Collagen alpha-2(I) chain 0·191 1·332E-02 0·969 4·501E-02 1·172 

PGTpGSPGPAGASGNPG Collagen alpha-1(II) chain 0·183 1·262E-01 1·127 1·109E-03 0·879 

PpGESGREGApGAEGSpGRDGSPGAKGDRGETGP Collagen alpha-1(I) chain 0·180 1·149E-13 0·572 2·199E-11 0·626 

PQGPpGPTGpGGDKGDTGPpGPQGLQGLpGT Collagen alpha-1(III) chain 0·178 1·735E-15 0·544 7·330E-03 0·848 

EEKAVADTRDQADGSRASVDSGSSEEQGGSSRALVST 
Polymeric immunoglobulin 

receptor 
0·150 4·374E-04 0·655 4·096E-03 1·361 

EDGHpGKPGRpGERG Collagen alpha-2(I) chain 0·144 3·184E-13 0·643 9·128E-26 0·504 

DQGPVGRTGEVGAVGPpGFAGEKGpSGEAGTAGPPGTpGPQG Collagen alpha-2(I) chain 0·131 5·957E-12 0·484 1·742E-02 0·910 

DDGEAGKpGRpG Collagen alpha-1(I) chain 0·111 2·951E-22 0·446 9·736E-21 0·526 

NDGApGKNGERGGpGGp Collagen alpha-1(III) chain 0·096 2·493E-05 0·857 9·434E-01 1·043 

SGPPGRAGEPGLQGPAGPpGEKGEPGDDGpSGAEGPpGPQG Collagen alpha-1(II) chain 0·095 3·589E-10 0·687 9·461E-01 0·994 

GFAGPPGADGQPGAKGEPGDAGAKGDAGPPGPAGPAGpPG Collagen alpha-1(I) chain 0·095 9·680E-07 0·683 2·210E-02 0·723 

ppGSNGNpGPPGPPGPSGKDGPKGARGDSGPPGRAGEPG Collagen alpha-1(II) chain 0·091 4·139E-05 0·649 5·508E-10 0·686 

SGQSSGYTqhGSGSGh Hornerin 0·074 2·017E-01 1·173 1·355E-02 1·151 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

ay 1, 2023. 
; 

https://doi.org/10.1101/2023.04.28.23289257
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.04.28.23289257
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

EEKAVADTRDQADGSRASVDSGSSEEQGGSSRALVSTLVPLG 
Polymeric immunoglobulin 

receptor 
0·063 3·892E-04 0·771 1·819E-01 0·969 

DADLADGVSGGEGKGGSDGGGSHRKEGEEADAPGVIPGIVGAVV CD99 antigen 0·056 2·031E-08 0·720 9·826E-01 1·073 

PGPVGpPGSNGPVGEPGPEGPAGNDGTPGRDGAVGERGDRGDPGPAGLPG Collagen alpha-2(V) chain 0·051 1·197E-03 0·416 1·916E-04 0·583 

DDPRPPNPPKPMPNPNPNHPSSSGS CD99 antigen 0·047 1·053E-01 1·014 1·159E-02 0·738 

EEDDGEVTEDSDEDFIQP 
E3 ubiquitin-protein ligase 

TRIM33 
0·039 2·111E-16 0·384 1·304E-06 0·807 

GTDGpMGpHGpAGPKGERGE 
Collagen alpha-1(XXV) 

chain 
0·023 1·357E-07 0·581 1·247E-09 0·684 

HVSGSGQSSGFGQHESRSGHSSYGQHGFGSSQSSGYG Filaggrin-2 0·000 3·889E-02 0·467 3·720E-02 0·922 

 

P-values below 0·05 are marked in bold. Peptides with an increased abundance in the case vs. the control group are marked in red, while those with decreased abundance are marked in green. The 

regulation trend was calculated by dividing average abundances in the individual case vs. the control group. The P-value was adjusted for multiple testing using the Benjamini-Hohberg method. 
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Figure 1: A) Density of the COV50 distribution in ICU and non-ICU subjects B) Mortality per 

person-years for FROG and non-ICU cohorts given age and COV50. C) Mortality as share [0-1] from 

a logistic regression for FROG and non-ICU cohorts given age and COV50. 
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Figure 2: Random effects meta analyes based on the log-HR and the standard errors from the separate cox regressions. A) Unadjusted, B), adjusted for sex, age, 

kidney function and BMI. The size of dot symbols is proportional to weight and weight is inverse proportional to HR standard error.
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METHODS 

Patients 

Intensive care unit (ICU): patients from the medical, surgical, or mixed ICUs at 14 university 

hospitals from the FROG-ICU study were used 19. Inclusion criteria were mechanical ventilation or 

administration of vasoactive agents for at least 24�h. The exclusion criteria were age under 18, severe 

head injury with a Glasgow Coma Scale below 8, brain death or persistent vegetative state, pregnancy 

or breastfeeding, transplantation in the past 12�months, moribund status, and lack of social security 

coverage. All capillary electrophoresis coupled to mass spectrometry (CE-MS) datasets where 1-year 

follow-up and information on relevant covariables (age, body mass index (BMI), sex, blood pressure, 

estimated glomerular filtration rate (eGFR), presence of diabetes, kidney, cardiovascular disease, 

hypertension) was available were included in the present study without pre-selection.  

Non-ICU: The assessment of COV50 in the non-ICU population was based on 7474 datasets from the 

Human Urinary Proteome Database 7 with available information on age, sex, eGFR, blood pressure, 

BMI, presence of diabetes, kidney disease, cardiovascular disease, hypertension, and a follow-up data. 

The additional dataset from frail patients and controls included all samples investigated in the 

FRAILOMIC project 8. 

All datasets were from previously published studies and fully anonymized. Ethical review and 

approval were waived for this study by the ethics committee of the Hannover Medical School, 

Germany (no. 3116-2016), due to all data being fully anonymized. The number of subjects per study 

and patient characteristics are listed in Table 1. 

Urinary proteome/peptidome data 

The urinary proteome is well characterized and reference standards are available 20. Urine proteome 

analysis was performed on urine samples collected at study inclusion, bio-banked until assayed. 

Detailed information on urine sample preparation, proteome analysis by CE-MS, data processing, and 

sequencing of the urinary peptides allowing identification of parental proteins is available in previous 

publications 13,21,22. 

Outcome 

In the FROG-ICU study, information on vital status was collected 3, 6, and 12�months after ICU 

discharge, as previously described 4. For the non-ICU patients, vital status and outcome was assessed 

as described in the specific original studies 12,13,18,23-36.  
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Statistics 

As descriptive statistics for the ICU and non-ICU samples, shown in Table 1, median and 1st and 3rd 

quartile (IQR) were used for continuous variables and absolute (N) and relative frequencies (%) for 

categorical variables. Hypotheses of no differences in scale or distribution of patient characteristics 

between the death and non-death groups were tested with Wilcoxon–Mann–Whitney tests for 

continuous and with χ2-homogeneity tests for categorical variables. 

Kernel density estimates of the distribution of COV50 scores split by ICU and mortality groups are 

displayed in Figure 1 A. Mortality per person-time stratified by age and COV50 groups, seen in 

Figure 1 B, is estimated as the ratio of the number of the deceased to the sum of all patients` 

observation times within each group scaled to 100 person-years. The corresponding mortality 

probabilities and their 95% confidence intervals (CI) for each group, as seen in Figure 1 C, represent 

estimates from a logistic regression including all 9193 patients.  

For each study, separate unadjusted Cox regressions for the effect of the COV50 score on 

experiencing death were performed, as listed in Figure 2 A. In Figure 2 B these models were 

additionally adjusted for age, female, log(BMI), mean arterial pressure (MAP) and log(eGFR). All 

regressors besides female and COV50 were normalized (mean 0, sd 1). The natural logarithms of the 

estimated hazard ratios (logHR) and their standard errors were combined in meta-analyses to 

determine the effect of the COV50 score on mortality. A random effects model was estimated after the 

assumption that included studies are heterogeneous, i.e., coming from different populations. Study 

weights are based on the logHR estimates` uncertainty, namely their standard errors. Studies were 

categorized into more homogenous subgroups, and estimates for each subgroup are displayed in 

Figure 2. Overall and group-wise between-study heterogeneity is presented with τ2 and assessed by 

Higgins & Thompson’s I2 statistic. χ2-Tests for heterogeneity and subgroup differences are based on 

Cochran’s Q. Random effects meta-analysis estimates are presented with 95% CIs and a 95% 

prediction interval for the overall effect is given. One Cox regression stratified by study pooling all 

9193 patients was used as a benchmark to the meta-analytic approach. As displayed in Table 2, the 

model`s adjustment specification is identical to the adjusted separate study regressions (Figure 2 B). 

To be comparable to the adjusted meta-analytic estimate, HRs for COV50 interacted with ICU and 

non-ICU, as well as for the above-mentioned non-ICU subgroups, were estimated. Standard errors 

were clustered on the study level for more robust inference and due to unobserved heterogeneity 

between studies. The models log-likelihood, it`s Wald test and concordance are reported in Table 2. 

We allow for a type 1 error of 5%, all hypotheses are two-sided. All analyses were carried out using R 

4.2.2.   
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Role of the funding source  

The funders had no role in the design of the study; collection, analyses, or interpretation of data; in the 

writing of the manuscript; or in the decision to publish the results. 

 

Data and code availability 

Anonymised data and code used in conducting the analyses will be made available upon request 

directed to the corresponding author. Proposals will be reviewed and approved by the authors with 

scientific merit and feasibility as the criteria. After approval of a proposal, data can be shared via a 

secure online platform after signing a data access and confidentiality agreement. Data will be made 

available for a maximum of 5 years after a data sharing agreement has been signed. 
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