1	Detection of dynamic lung hyperinflation using cardiopulmonary exercise testing and
2	respiratory function in patients with stable cardiac disease: a multicenter cross-sectional study
3	
4	Kazuyuki Kominami ¹ , Kazuki Noda ² , Nanaho Minagawa ³ , Kazuya Yonezawa ⁴ , Masanori Ueda ⁵ ,
5	Yasuyuki Kobayashi ⁶ , Makoto Murata ⁷ , and Masatoshi Akino ⁸
6	
7	1 Kazuyuki Kominami, M.S.
8	Department of Rehabilitation, Sanseikai Kitano Hospital, Sapporo, Hokkaido, Japan
9	e-mail; <u>qqae3s4u9@gmail.com</u>
10	
11	2 Kazuki Noda
12	Department of Rehabilitation, National Hospital Organization Hakodate Hospital, Hakodate, Japan
13	e-mail; <u>knoda@hnh.hosp.go.jp</u>
14	
15	3 Nanaho Minagawa
16	Sinfuwakai Asabu Heart and Cardiac Rehabilitation Clinic, Sapporo, Hokkaido, Japan
17	e-mail; <u>minanaho@gmail.com</u>
18	

- 19 4 Kazuya Yonezawa, M.D. Ph.D.
- 20 Department of Cardiovascular Medicine, National Hospital Organization Hakodate Hospital,

- 21 Hakodate, Hokkaido, Japan
- 22 e-mail; <u>kyonezaw@hnh.hosp.go.jp</u>
- 23
- 24 5 Masanori Ueda
- 25 Department of Clinical Laboratory, Gunma Prefectural Cardiovascular Center, Maebashi, Gunma,
- 26 Japan
- e-mail; ueda-masa@outlook.jp
- 28
- 29 6 Yasuyuki Kobayashi
- 30 Department of Clinical Laboratory, Gunma Prefectural Cardiovascular Center, Maebashi, Gunma,
- 31 Japan
- 32 e-mail; koba@cvc.pref.gunma.jp
- 33
- 34 7 Makoto Murata, M.D. Ph.D.
- 35 Gunma Prefectural Cardiovascular Center, Department of Cardiology, Maebashi, Gunma, Japan
- 36 e-mail; yarukimanmann2000@yahoo.co.jp
- 37
- 38 8 Masatoshi Akino, M.D. Ph.D.
- 39 Department of Orthopedics, Sapporo Kiyota Orthopedic Hospital, Sapporo, Hokkaido, Japan

- 40 e-mail; <u>akimasa07@gmail.com</u>
- 41
- 42 Corresponding Author Name:
- 43 Kazuyuki Kominami
- 44 6-30, 1-chome, Kitano 1-jyo, Kiyota-ku, Sapporo, Japan 004-0861
- 45 Phone: +81-11-883-0121
- 46 Fax: +81-11-883-7261
- 47 E-mail address: <u>qqae3s4u9@gmail.com</u>
- 48
- 49 Short title: dynamic lung hyperinflation and exercise testing
- 50

51 Conflicts of Interest and Source of Funding:

- 52 This study received no funding. The authors declare no conflict of interest. The results of this study
- 53 do not constitute an endorsement by the *Journal of American Heart Association*.
- 54
- 55 Total word count of the manuscript (including the title page, abstract, text, references, table,
- 56 table and figure legends): 5643 words
- 57

- 58 Keywords: dynamic lung hyperinflation, air trapping, tidal volume, cardiopulmonary exercise
- 59 testing, respiratory function
- 60

61 Abstract

62	Background: Many patients with heart disease potentially have comorbid COPD, however there are
63	not enough opportunities for screening and the qualitative differentiation of shortness of breath
64	(SOB) has not been well established. We investigated the detection rate of SOB based on a visual
65	and qualitative dynamic lung hyperinflation (DLH) detection index during cardiopulmonary exercise
66	testing (CPET) and whether there was a difference in respiratory function between the two groups.
67	
68	Methods: We recruited 534 patients with heart disease and to scrutinize physical functions (369
69	males, 67.0±12.9 years) who underwent CPET and spirometry simultaneously. The difference
70	between inspiratory and expiratory tidal volume was calculated (TV E-I) from the breath-by-breath
71	data. A TV E-I decrease after the start of exercise comprised the convex group, and a TV E-I that
72	remained unchanged or increased comprised the non-convex group.
73	
74	Results:129 patients (24.2%) were in the convex; there was no difference in clinical characteristics
75	between groups. The Borg scale scores at the end of the CPET showed no difference. VE/VCO2
76	slope, its Y-intercept and minimum VE/VCO2 showed no significant difference. In the convex group,
77	FEV1.0% was significantly lower (69.4±13.1 vs. 75.0±9.0%), and FEV1.0% and Y-intercept and the
78	difference between minimum VE/VCO2 and VE/VCO2 slope were significantly correlated (r=

79 -0.343 and r=-0.478).

80

- 81 Conclusions: The convex group showed decreased respiratory function, suggesting potential airway
- 82 obstruction during exercise. A combined assessment of the TV E-I and Y-intercept of the VE/VCO2
- 83 slope or the difference between the minimum VE/VCO2 and VE/VCO2 slopes could potentially
- 84 detect COPD or airway obstruction.
- 85
- 86 Word count: 249 words
- 87

89 Introduction

90	Patients with cardiovascular diseases usually suffer from respiratory diseases such as
91	chronic obstructive pulmonary disease (COPD) [1-3], and develop fatigue and shortness of breath
92	because of a variety of factors that limit exercise and activity, including lifestyle factors such as
93	inactivity [4], increased left ventricular filling pressures [5], ventilatory-perfusion mismatch [6], and
94	impaired oxygen delivery capacity because of cardiac dysfunction [7]. Current smoking or
95	ex-smoking are common coronary risk factors and exacerbating factors of chronic heart failure
96	[8-12]. In addition, poor lung function is an independent risk factor for cardiovascular disease and
97	atrial fibrillation (AF) [13-17], and subclinical respiratory impairment is associated with the
98	development of hypertension, which is a major risk factor for cardiovascular disease and mortality
99	[18]. However, comorbid COPD without a history of smoking [19], potentially comorbid COPD, or
100	respiratory impairment may not be adequately assessed, and this has not led to early detection of
101	COPD or respiratory impairment in patients with heart disease [20].
102	Airflow obstruction in COPD is caused by decreased pulmonary elastic contractile
103	pressure because of peripheral airway involvement and emphysematous lesions, resulting in
104	collapsed airways and air trapped in the lungs during forced expiration (referred to as "air trapping").
105	Collapsed peripheral airways also occur during resting breathing as the disease progresses,
106	contributing to lung hyperinflation [21]. In addition, air trapping, caused by collapsed peripheral

107	airways, is strengthened with exertion or exercise, causing further lung hyperinflation. This is called
108	dynamic lung hyperinflation (DLH) and is an important factor in patients with COPD, contributing
109	to increased respiratory workload, shortness of breath on exertion, and reduced exercise tolerance
110	[22, 23]. Although measurement of inspiratory capacity (IC) during exercise testing or the
111	hyperventilation method has been proposed to assess DLH [24-29], opportunities for screening are
112	insufficient. In contrast, there have been several reports combining exercise testing and inspiratory
113	reserve capacity; however, there are limited reports on cardiopulmonary exercise testing (CPET),
114	which is the most standard method of assessing exercise tolerance [30-35]. Furthermore, CPET, the
115	gold standard for assessing exercise tolerance, provides information on the index of exercise
116	tolerance. In CPET, the Y-intercept of the linear carbon dioxide production (CO ₂) and minute
117	ventilation (VE) relationship (the VE/VCO ₂ slope) is related to the severity of COPD and the forced
118	expiratory volume (FEV) in 1 s (FEV1.0) as a percentage of forced vital capacity (FEV 1.0%) [36].
119	In previous studies, we have attempted to use CPET measurements to visually and qualitatively
120	detect the DLH [37]. In this method, the difference between the expiratory and inspiratory tidal
121	volumes is measured during incremental exercise, and expiration is assumed to be reduced relative
122	to inspiration when dynamic lung hyperinflation occurs.
123	In this study, we hypothesized that the presence or absence of the DLH index would be
124	correlated with the CPET indices and respiratory function. By clarifying the relationship between the

- 125 presence or absence of the indicators of DLH, CPET, and respiratory function, we believe a detailed
- 126 evaluation of respiratory function using CPET is possible. In addition, identifying respiratory
- 127 impairment by CPET in asymptomatic or very mild stages of COPD will permit early preventive
- 128 intervention and help prevent disease exacerbation.
- 129

131 Methods

132

133	We included 534 patients with stable heart disease and to scrutinize physical functions
134	(age:67.0 \pm 12.9 years [95%CI: 65.9–68.1], height:161.9 \pm 9.2 cm [95%CI: 161.2–162.7], body
135	weight: $62.5 \pm 14.6 \text{ kg} [95\%\text{CI: } 61.3-63.7], \text{BMI:} 23.7 \pm 4.4 \text{ kg/m}^2 [95\%\text{CI: } 23.3-24.1]) \text{ who}$
136	underwent CPET and spirometry testing approximately the same time.
137	
138	The CPET was performed using a stationary bicycle (StrengthErgo 8; Mitsubishi Electric
139	Engineering, Tokyo, COMBI 75XL3; Konami Sports Co., Ltd., Tokyo) on a breath-by-breath basis
140	with a gas analyzer (AE-300S or AE-310S; Minato Ikagaku Co., Tokyo). The maximal symptomatic
141	exercise was performed using the ramp protocol. The exercise protocol consisted of 2-3 minutes of
142	rest and 2–3 minutes of warm-up (W.U). The ramp protocol was adjusted to 10–20 W/min, assuming
143	the individual exercise tolerance level. The rating of perceived exertion (RPE) at the end of the
144	exercise was assessed using the Borg scale.
145	Furthermore, a breath-by-breath gas analyzer (AE-300S or AE-310S; Minato Ikagaku Co.,
146	Tokyo) was used to measure the ventilatory volume of each breath using a hot-wire flowmeter [38].
147	Before each exercise testing, we calibrated the test appropriately according to standard protocols.

149 Calculation of cardiopulmonary exercise testing measurements

150	We calculated the difference between inspiratory and expiratory tidal volumes (TV I and E,
151	respectively) for each breathing from breath-by-breath data in each CPET [37]. Further, we have
152	defined the difference between the expiratory and inspiratory tidal volumes to "TV E-I." We plotted
153	TV E-I against the time axis. In addition, we calculated the mean and standard deviation of TV E-I
154	per minute based on the start of the W.U (zero).
155	We extracted other CPET parameters, such as the VE/CO ₂ slope and the Y-intercept,
156	minimum VE/VCO ₂ , VO ₂ /HR, and dead-space gas volume to tidal volume ratio (VD/VT) for each
157	case.
158	
159	Spirometry testing
	Sphonetry testing
160	Spirometry testing was performed following standard methods using respiratory function
160 161	
161	Spirometry testing was performed following standard methods using respiratory function
161 162	Spirometry testing was performed following standard methods using respiratory function testing equipment (mainly electronic diagnostic spirometer Spiroshift SP-770 COPD Fukuda Denshi
	Spirometry testing was performed following standard methods using respiratory function testing equipment (mainly electronic diagnostic spirometer Spiroshift SP-770 COPD Fukuda Denshi
161 162 163	Spirometry testing was performed following standard methods using respiratory function testing equipment (mainly electronic diagnostic spirometer Spiroshift SP-770 COPD Fukuda Denshi Co., Tokyo).

analyzed using a paired t-test. Furthermore, plots of FEV1.0% and Y-intercept of VE/VCO₂ slope,

168	the difference between minimum VE/VCO_2 and VE/VCO_2 slope were linearly regressed, and
169	regression equations and coefficients were calculated. Statistical analyses were performed using
170	Statistics for Excel 2012 (Social Survey Research Information Co., Tokyo, Japan).
171	
172	Ethical considerations
173	The study was conducted following the principles outlined in the Declaration of Helsinki
174	and approved by the ethical committees of Hakodate National Hospital (approval number:

175 R4-0314001) and Gunma Prefectural Cardiovascular Center (approval number:2022020).

- 176 The data obtained were delinked and anonymized, and this study was conducted using the
- 177 data for analysis, with due consideration for protecting the participants' personal information. The
- 178 authors confirmed that none of the participants could be identified, and they were fully anonymized.
- 179 Furthermore, the authors affirmed that all mandatory health and safety procedures complied with the
- 180 course of conducting the experimental work reported in this paper.
- 181

167

183 **Results**

184

185	There were no differences in physical parameters between the convex and non-convex
186	groups; however, there were significantly more males in the convex group. Although there was no
187	significant difference in smoking history between the two groups (Smoking history (+:-) Total
188	339:195, convex 85:44, non-convex 254:151, $p=$ 0.514), the convex group had more severe cases
189	when the GOLD classification was applied (GOLD classification (0:I:II:III:IV); total 397:86:39:9:3,
190	convex 79:24:15:8:3, non-convex 318:62:24:1:0, p<0.001) (Table1).
191	Furthermore, all the participants underwent CPET for symptomatic maximal. Moreover,
192	there were 129 patients in the convex group with decreased TV E-I during CPET and 405 patients in
193	the non-convex group. Although the rating of perceived exertion at the end of the exercise test
194	showed no difference in shortness of breath between the two groups, lower extremity fatigue was
195	significantly lower in the convex group.
196	
197	The indices of cardiopulmonary exercise testing
198	A list of typical CPET parameters is shown in Table 2. There were no significant
199	differences in the exercise tolerance indices between the two groups. Although there were no

200 differences in the VE/VCO₂ slope and Y-intercept between the two groups, the minimum VE/VCO₂

201 tended to be higher in the convex group.

202

203	The indices of spirometry testing
204	Ventilatory capacity (VC), tidal volume (TV), expiratory reverse volume (ERV) and
205	inspiratory reverse volume (IRV) did not differ significantly. However, the convex group had
206	significantly lower FEV1.0% and predictive rates for %FEV1.0, %PEF, and %MVV.
207	
208	Relationship between exhaled gas analysis index and spirometry testing
209	In the convex group, Y-intercept and FEV1.0% showed a significant negative correlation
210	(convex; r=-0.343 [-0.487 $\leq \rho \leq$ -0.181], p<0.001, non-convex; r=-0.090 [-0.186 $\leq \rho \leq$ 0.008],
211	p=0.070) (Figure 1 (A-1, 2)).
212	VE/VCO ₂ slope and minimum VE/CCO ₂ showed little correlation with FEV1.0%;
213	however, there was a significant negative correlation with the difference between VE/VCO_2 slope
214	and minimum VE/VCO ₂ (convex; r=-0.478 [-0.601 $\leq \rho \leq$ -0.333], p<0.001, non-convex; r=-0.137
215	$[-0.231 \le \rho \le -0.040]$, p=0.006) (Figure 1 (B-1, 2)).
216	

218 Discussion

219	This is the first study to examine the relationship between differences in respiratory
220	function and CPET indices based on the qualitative detection of DLH using CPET. DLH is a
221	physiological respiratory mechanism in which expiration occurs less than inspiration, with an
222	increased respiratory rate. Based on this theory, we showed in this study that DLH could be easily
223	detected and correlated with respiratory function by analyzing data from exhaled gas analyses.
224	
225	Respiratory function by spirometry testing
226	Respiratory functions, such as VC and TV, did not differ between the two groups; however,
227	FEV1.0%, %MVV, and %PEF were lower in the convex group. In the convex group, the mean value
228	of FEV1.0% was equivalent to the diagnostic criteria for obstructive ventilatory impairment. In
229	contrast, in the non-convex group, most cases did not meet the criteria for GOLD stage 1, and
230	several cases were not diagnosed as having obstructive ventilation impairment on spirometry testing.
231	Nevertheless, several patients in the convex group likely had DLH because of peripheral airway
232	obstruction (stenosis) or other factors, as they had less expiration than inspiration during the exercise.
233	Therefore, it is possible that respiratory function had already declined before the criteria for
234	diagnosis of DLH because of the obstruction of the small bronchioles and other organs. Furthermore,
235	it has already been shown that subclinical respiratory impairment may also affect cardiovascular

236 function and cardiovascular disease. Although this was a cross-sectional study and the outcome of 237 very mild cases is unknown, we believe that TV E-I may be a qualitative indicator of peripheral 238 airway obstruction. 239 240 Relationship between cardiopulmonary exercise testing indices and dynamic pulmonary 241 hyperinflation 242 Ventilatory efficiency decreases because of congestion caused by heart failure and 243 obstructive ventilation impairment [39]. For instance, in patients with heart failure, the minimum 244 VE/VCO₂ and VE/VCO₂ slope increase with disease severity; however, they are generally consistent 245 [40]. In contrast, in COPD, the VE/VCO₂ slope increases in mild disease but decreases in severe 246 disease [41, 42]. Furthermore, it has been reported that in COPD, the Y-intercept of the VE/VCO₂

slope is related to FEV1.0%, and the Y-intercept is higher [36]. Murata et al. reported that as COPD

248 progresses, the minimum VE/VCO_2 and VE/VCO_2 slopes may diverge, or the VE/VCO_2 slope may

become pseudo-negative, and the Y-intercept may be high [36, 43]. However, both indices only

250 report observational studies on COPD and do not examine the presence or absence of DLH or its

extent.

252 Although the convex group showed a trend toward a higher minimum VE/VCO_2 in this

study, there were no significant differences in these indices between the two groups, including the

254	Y-intercept and VE/VCO ₂ slope. However, even in such cases, FEV1.0% and the Y-intercept of the
255	VE/VCO2 slope showed a significant correlation in the convex group, similar to the results of
256	previous studies. Furthermore, FEV1.0% also showed a significant negative correlation with the
257	difference between the minimum VE/VCO2 ratio and the VE/VCO2 slope. In contrast, in the
258	non-convex group, the correlation between the difference in minimum $\ensuremath{\text{VE/VCO}_2}$ and $\ensuremath{\text{VE/VCO}_2}$
259	slope and FEV1.0% was very limited, indicating that a combined evaluation with TV E-I is crucial.
260	Although the study group had milder respiratory function impairment than those in
261	previous studies, it was suggested that the combined TV E-I and Y-intercept or the difference
262	between the minimum $\ensuremath{\text{VE/VCO}}_2$ and $\ensuremath{\text{VE/VCO}}_2$ slope during incremental exercise testing could
263	provide an index of respiratory function and an assessment of the severity of peripheral airway
264	obstruction in patients with stable cardiac disease.
265	
266	The usefulness of detecting dynamic lung hyperinflation using cardiopulmonary exercise test
267	Most participants in this study had stable heart disease and mild respiratory function
268	impairment. However, 63.4% of the patients had a smoking history, and more than 20% showed the
269	possibility of DLH on CPET. Interestingly, the prevalence of COPD is expected to decrease in
270	high-income countries as smoking declines; however, it will become a major social problem in
271	low-to-middle-income countries [44]. Thus, COPD causes chronic systemic inflammation, leading to

a decline in physical function and a worsening prognosis [45]. Moreover, DLH increases the

273	respiratory workload and restricts venous return [46], leading to exercise limitation and static lung
274	hyperinflation caused by COPD progression and a worsened prognosis [45,47,48].
275	We believe that capturing respiratory changes associated with increased exercise intensity
276	using CPET, as in this study, is a simple and qualitative method for detecting airway stenosis and
277	DLH at an early stage, even in patients with mild or asymptomatic symptoms. Furthermore, we
278	believe this will lead to early scrutiny, appropriate therapeutic interventions, and drug prescriptions,
279	thus, improving the quality of life and patient prognosis.

280

272

282 Limitations

- 283 There are several limitations to this study.
- 284 First, this was a cross-sectional study, and cardiopulmonary exercise and spirometry testing were not
- often performed at approximately the same time, possibly resulting in a selection bias (comorbidity
- of DLH). In addition, it is unclear about the course of the subjects in this study, whether there was
- 287 worsening shortness of breath and other factors, progressive decline in respiratory function, or a
- 288 diagnosis of COPD. Therefore, further studies are warranted.
- 289 Second, the study did not compare the results with those of the existing DLH assessment methods or
- 290 evaluate the response to bronchodilator use. Therefore, it is difficult to confirm the presence of DLH
- based on the results of this study alone.
- 292 Third, several participants in this study had relatively preserved respiratory function. Therefore, it is
- 293 uncertain whether a similar trend would be observed in patients with moderate-to-severe COPD who
- have already been diagnosed.
- Finally, it is currently difficult to determine the severity of DLH; therefore, developing appropriate
- analytical methods for TV E-I is desirable.
- 297

298 Conclusion

299 Evaluating data on differences in expiratory and inspiratory tidal volumes (TV E-I) during

- 300 cardiopulmonary exercise testing has proven useful for dynamic lung hyperinflation in patients with
- 301 stable heart disease. The combined evaluation of the TV E-I and Y-intercept of the VE/VCO₂ slope,
- 302 or the difference between the minimum VE/VCO₂ and VE/VCO₂ slopes in CPET, could detect cases
- 303 of potential respiratory impairment or peripheral airway obstruction.
- 304

305 Abbreviations

306	VAT: ventilatory anaerobic threshold; Inc-Ex: incremental exercise; CPET: Cardiopulmonary
307	exercise testing; VO2: Oxygen uptake; VCO2: carbon dioxide production; VE: ventilatory
308	equivalent; RPE: Rating of perceived exertion; RR: respiratory rate; VD/VT: dead-space gas volume
309	to tidal volume ratio; COPD: chronic obstructive pulmonary disease; DLH: dynamic lung
310	hyperinflation; TV: tidal volume; TV I: inspiratory tidal volume; TV E: expiratory tidal volume;
311	FEV: forced expiratory volume; FEV1.0: forced expiratory volume in 1 second; FEV 1.0%: forced
312	expiratory volume in 1 second as a percent of forced vital capacity; VC: vital capacity; IC:
313	inspiratory capacity;
314	
315	Acknowledgements
316	We would like to thank Editage for assistance with English language editing.
317	The results of the study are presented clearly, honestly, and without fabrication,
318	falsification, or inappropriate data manipulation, and the results of the present study do not constitute
319	an endorsement by the Journal of American Heart Association.
320	
321	Authors' contributions

322 KK, MM, and MA developed the study concept and were involved in its design and implementation.

- 324 MM acquired data. KK analyzed the data. KK and MM prepared the manuscript. KN, MN, KY, and
- 325 MA drafted the manuscript and approved the final draft. All the authors have read and approved the
- 326 final version of the manuscript.
- 327
- 328 Sources of Funding
- 329 This study did not receive any funding support.
- 330
- 331 Availability of data and materials
- 332 The dataset used in this study is available from the corresponding author upon request.
- 333

334 Ethics approval and consent to participate

The study was conducted following the principles outlined in the Declaration of Helsinki and was approved by the ethics committees of Hakodate National Hospital (approval number: R4-1114006) and the Gunma Prefectural Cardiovascular Center (approval number:2022020). The data obtained were delinked and anonymized, and this study was conducted using the

340 data for analysis and due consideration to the protection of the participants' personal information.

- 341 Consequently, the authors confirmed that none of the participants could be identified, and they were
- 342 fully anonymized. Furthermore, the authors affirm that all mandatory health and safety procedures
- 343 complied with the course of conducting the experimental work reported in this paper.

344

- 345 Consent for publication
- 346 Not applicable.
- 347

348 **Competing interests**

- 349 The authors declare that they have no competing interests.
- 350

352 References

- 353 1. Hawkins NM, Petrie MC, Jhund PS, Chalmers GW, Dunn FG, McMurray JJ. Heart failure and
- 354 chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology. *Eur J Heart Fail*.
- 355 2009;11:130-139.
- 356 2. Correale M, Paolillo S, Mercurio V, Ruocco G, Tocchetti CG, Palazzuoli A. Non-cardiovascular
- 357 comorbidities in heart failure patients and their impact on prognosis. Kardiol Pol.
- 358 2021;79:493-502.
- 359 3. Anker SD, Butler J, Filippatos G, Shahzeb Khan M, Ferreira JP, Bocchi E, Böhm M,
- 360 Brunner-La Rocca HP, Choi DJ, Chopra V, et al.; EMPEROR-Preserved Trial Committees and
- 361 Investigators. Baseline characteristics of patients with heart failure with preserved ejection
- fraction in the EMPEROR-Preserved trial. *Eur J Heart Fail*. 2020;22:2383-2392.
- 363 4. Okita K, Kinugawa S, Tsutsui H. Exercise intolerance in chronic heart failure--skeletal muscle
- dysfunction and potential therapies. *Circ J.* 2013;77:293-300.
- 365 5. Sekiguchi M, Adachi H, Oshima S, Taniguchi K, Hasegawa A, Kurabayashi M. Effect of
- 366 changes in left ventricular diastolic function during exercise on exercise tolerance assessed by
- 367 exercise-stress tissue Doppler echocardiography. *Int Heart J.* 2009;50:763-771.
- 368 6. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, Forman D, Franklin B, Guazzi
- 369 M, Gulati M, et al.; American Heart Association Exercise, Cardiac Rehabilitation, and

370		Prevention Committee of the Council on Clinical Cardiology; Council on Epidemiology and
371		Prevention; Council on Peripheral Vascular Disease; Interdisciplinary Council on Quality of
372		Care and Outcomes Research. Clinician's Guide to cardiopulmonary exercise testing in adults:
373		a scientific statement from the American Heart Association. Circulation. 2010;122:191-225.
374	7.	Pandey A, Shah SJ, Butler J, Kellogg DL Jr, Lewis GD, Forman DE, Mentz RJ, Borlaug BA,
375		Simon MA, Chirinos JA, et al. Exercise Intolerance in Older Adults With Heart Failure With
376		Preserved Ejection Fraction: JACC State-of-the-Art Review. J Am Coll Cardiol.
377		2021;78:1166-1187.
378	8.	Siasos G, Tsigkou V, Kokkou E, Oikonomou E, Vavuranakis M, Vlachopoulos C, Verveniotis A,
379		Limperi M, Genimata V, Papavassiliou AG, et al. Smoking and atherosclerosis: mechanisms of
380		disease and new therapeutic approaches. Curr Med Chem. 2014;21:3936-3948.
381	9.	Kamimura D, Cain LR, Mentz RJ, White WB, Blaha MJ, DeFilippis AP, Fox ER, Rodriguez CJ,
382		Keith RJ, Benjamin EJ, et al. Cigarette Smoking and Incident Heart Failure: Insights From the
383		Jackson Heart Study. Circulation. 2018;137:2572-2582.
384	10.	Suskin N, Sheth T, Negassa A, Yusuf S. Relationship of current and past smoking to mortality
385		and morbidity in patients with left ventricular dysfunction. J Am Coll Cardiol.
386		2001;37:1677-1682.
387	11.	van Oort S, Beulens JWJ, van Ballegooijen AJ, Handoko ML, Larsson SC. Modifiable lifestyle

388		factors and heart failure: A Mendelian randomization study. Am Heart J. 2020;227:64-73.
389	12.	Lu Y, Xu Z, Georgakis MK, Wang Z, Lin H, Zheng L. Smoking and heart failure: a Mendelian
390		randomization and mediation analysis. ESC Heart Fail. 2021;8:1954-1965.
391	13.	Johnson LS, Juhlin T, Engström G, Nilsson PM. Reduced forced expiratory volume is
392		associated with increased incidence of atrial fibrillation: the Malmo Preventive Project.
393		Europace. 2014;16:182-188.
394	14.	Chahal H, Heckbert SR, Barr RG, Bluemke DA, Jain A, Habibi M, Alonso A, Kronmal R,
395		Jacobs DR Jr, Lima JA, et al. Ability of Reduced Lung Function to Predict Development of
396		Atrial Fibrillation in Persons Aged 45 to 84 Years (from the Multi-Ethnic Study of
397		Atherosclerosis-Lung Study). Am J Cardiol. 2015;115:1700-1704.
398	15.	Li J, Agarwal SK, Alonso A, Blecker S, Chamberlain AM, London SJ, Loehr LR, McNeill AM,
399		Poole C, Soliman EZ, et al. Airflow obstruction, lung function, and incidence of atrial
400		fibrillation: the Atherosclerosis Risk in Communities (ARIC) study. Circulation.
401		2014;129:971-980.
402	16.	Engström G, Lind P, Hedblad B, Wollmer P, Stavenow L, Janzon L, Lindgärde F. Lung function
403		and cardiovascular risk: relationship with inflammation-sensitive plasma proteins. Circulation.
404		2002;106:2555-2560.
		Wang B, Zhou Y, Xiao L, Guo Y, Ma J, Zhou M, Shi T, Tan A, Yuan J, Chen W. Association of

406	lung function	n with cardiova	ascular risk: a	cohort study.	Respir Res.	2018;19:214.

- 407 18. Jacobs DR Jr, Yatsuya H, Hearst MO, Thyagarajan B, Kalhan R, Rosenberg S, Smith LJ, Barr
- 408 RG, Duprez DA. Rate of decline of forced vital capacity predicts future arterial hypertension:
- 409 the Coronary Artery Risk Development in Young Adults Study. Hypertension.
 410 2012;59:219-225.
- 411 19. Yang IA, Jenkins CR, Salvi SS. Chronic obstructive pulmonary disease in never-smokers: risk
- 412 factors, pathogenesis, and implications for prevention and treatment. *Lancet Respir Med.*
- **413** 2022;10:497-511.
- 414 20. Ramalho SHR, Shah AM. Lung function and cardiovascular disease: A link. *Trends Cardiovasc*
- 415 *Med.* 2021;31:93-98.
- 416 21. Kurosawa H, Kohzuki M. Images in clinical medicine. Dynamic airway narrowing. N Engl J
- 417 *Med.* 2004;350:1036.
- 418 22. O'Donnell DE, Hamilton AL, Webb KA. Sensory-mechanical relationships during
- 419 high-intensity, constant-work-rate exercise in COPD. J Appl Physiol (1985).
- 420 2006;101:1025-1035.
- 421 23. Stringer W, Marciniuk D. The Role of Cardiopulmonary Exercise Testing (CPET) in Pulmonary
- 422 Rehabilitation (PR) of Chronic Obstructive Pulmonary Disease (COPD) Patients. COPD.
- 423 2018;15:621-631.

424	24.	Fujimoto K, Kitaguchi Y, Kanda S, Urushihata K, Hanaoka M, Kubo K. Comparison of
425		efficacy of long-acting bronchodilators in emphysema dominant and emphysema nondominant
426		chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2011;6:219-227.
427	25.	Fujimoto K, Yamazaki H, Ura M, Kitaguchi Y. Efficacy of tiotropium and indacaterol
428		monotherapy and their combination on dynamic lung hyperinflation in COPD: a random
429		open-label crossover study. Int J Chron Obstruct Pulmon Dis. 2017;12:3195-3201.
430	26.	Fujimoto K, Yoshiike F, Yasuo M, Kitaguchi Y, Urushihata K, Kubo K, Honda T. Effects of
431		bronchodilators on dynamic hyperinflation following hyperventilation in patients with COPD.
432		Respirology. 2007;12:93-99.
433	27.	Kawachi S, Fujimoto K. Metronome-Paced Incremental Hyperventilation May Predict Exercise
434		Tolerance and Dyspnea as a Surrogate for Dynamic Lung Hyperinflation During Exercise. Int J
435		Chron Obstruct Pulmon Dis. 2020;15:1061-1069.
436	28.	Kawachi S, Fujimoto K. Efficacy of tiotropium and olodaterol combination therapy on dynamic
437		lung hyperinflation evaluated by hyperventilation in COPD: an open-label, comparative before
438		and after treatment study. Int J Chron Obstruct Pulmon Dis. 2019;14:1167-1176.
439	29.	Roesthuis LH, van der Hoeven JG, Guérin C, Doorduin J, Heunks LMA. Three bedside
440		techniques to quantify dynamic pulmonary hyperinflation in mechanically ventilated patients
441		with chronic obstructive pulmonary disease. Ann Intensive Care. 2021;11:167.

- 442 30. Satake M, Shioya T, Uemura S, Takahashi H, Sugawara K, Kasai C, Kiyokawa N, Watanabe T,
- 443 Sato S, Kawagoshi A. Dynamic hyperinflation and dyspnea during the 6-minute walk test in
- 444 stable chronic obstructive pulmonary disease patients. Int J Chron Obstruct Pulmon Dis.
- **445** 2015;10:153-158.
- 446 31. Alfonso M, Bustamante V, Cebollero P, Antón M, Herrero S, Gáldiz JB. Assessment of dyspnea
- 447 and dynamic hyperinflation in male patients with chronic obstructive pulmonary disease during
- 448 a six minute walk test and an incremental treadmill cardiorespiratory exercise test. Rev Port
- 449 *Pneumol* (2006). 2017;23:266-272.
- 450 32. Chen R, Lin L, Tian JW, Zeng B, Zhang L, Chen X, Yan HY. Predictors of dynamic
- 451 hyperinflation during the 6-minute walk test in stable chronic obstructive pulmonary disease
- 452 patients. J Thorac Dis. 2015;7:1142-1150.
- 453 33. Cordoni PK, Berton DC, Squassoni SD, Scuarcialupi ME, Neder JA, Fiss E. Dynamic
- 454 hyperinflation during treadmill exercise testing in patients with moderate to severe COPD. J
- 455 Bras Pneumol. 2012;38:13-23.
- 456 34. Shiraishi M, Higashimoto Y, Sugiya R, Mizusawa H, Takeda Y, Fujita S, Nishiyama O, Kudo S,
- 457 Kimura T, Chiba Y, et al. Diaphragmatic excursion correlates with exercise capacity and
- 458 dynamic hyperinflation in COPD patients. *ERJ Open Res.* 2020;6:00589-2020.
- 459 35. Vieira DSR, Mendes LPS, Alencar MCN, Hoffman M, Albuquerque ALP, Silveira BMF, Aguiar

460		SC, Parreira VF. Rib cage distortion and dynamic hyperinflation during two exercise intensities
461		in people with COPD. Respir Physiol Neurobiol. 2021;293:103724.
462	36.	Teopompi E, Tzani P, Aiello M, Ramponi S, Visca D, Gioia MR, Marangio E, Serra W, Chetta
463		A. Ventilatory response to carbon dioxide output in subjects with congestive heart failure and in
464		patients with COPD with comparable exercise capacity. Respir Care. 2014;59:1034-1041.
465	37.	Kominami K, Noda K, Minagawa N, Yonezawa K, Akino M. The concept of detection of
466		dynamic lung hyperinflation using cardiopulmonary exercise testing. Medicine (Baltimore).
467		2023;102:e33356.

- 468 38. Yoshiya I, Nakajima T, Nagai I, Jitsukawa S. A bidirectional respiratory flowmeter using the
- 469 hot-wire principle. J Appl Physiol. 1975;38:360-365.
- 470 39. Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsema KE, Sun X-G. Principles of
- 471 Exercise Testing and Interpretation: Including Pathophysiology and Clinical Application. 5th ed.
- 472 Philadelphia: Lippincott Williams & Wilkins; 2012.
- 473 40. Santoro C, Sorrentino R, Esposito R, Lembo M, Capone V, Rozza F, Romano M, Trimarco B,
- 474 Galderisi M. Cardiopulmonary exercise testing and echocardiographic exam: an useful
- 475 interaction. *Cardiovasc Ultrasound*. 2019;17:29.
- 476 41. Neder JA, Arbex FF, Alencar MC, O'Donnell CD, Cory J, Webb KA, O'Donnell DE. Exercise
- 477 ventilatory inefficiency in mild to end-stage COPD. *Eur Respir J.* 2015;45:377-387.

478	42.	Gargiulo P, Apostolo A, Perrone-Filardi P, Sciomer S, Palange P, Agostoni P. A non invasive
479		estimate of dead space ventilation from exercise measurements. PLoS One. 2014;9:e87395.
480	43.	Murata M, Kobayashi Y, Adachi H. Examination of the Relationship and Dissociation Between
481		Minimum Minute Ventilation/Carbon Dioxide Production and Minute Ventilation vs. Carbon
482		Dioxide Production Slope. Circ J. 2021;86:79-86.
483	44.	Adeloye D, Song P, Zhu Y, Campbell H, Sheikh A, Rudan I; NIHR RESPIRE Global

- 484 Respiratory Health Unit. Global, regional, and national prevalence of, and risk factors for,
- 485 chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling
- 486 analysis. *Lancet Respir Med.* 2022;10:447-458.
- 487 45. Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet.
- 488 2012;379:1341-1351.
- 489 46. Frazão M, Silva PE, Frazão W, da Silva VZM, Correia MAV Jr, Neto MG. Dynamic
- 490 Hyperinflation Impairs Cardiac Performance During Exercise in COPD. J Cardiopulm Rehabil
- 491 *Prev.* 2019;39:187-192.
- 492 47. Cavaillès A, Brinchault-Rabin G, Dixmier A, Goupil F, Gut-Gobert C, Marchand-Adam S,
- 493 Meurice JC, Morel H, Person-Tacnet C, Leroyer C, Diot P. Comorbidities of COPD. Eur Respir
- 494 *Rev.* 2013;22:454-475.
- 495 48. Ritchie AI, Wedzicha JA. Definition, Causes, Pathogenesis, and Consequences of Chronic

496 Obstructive Pulmonary Disease Exacerbations. *Clin Chest Med.* 2020;41:421-438.

497

499 Table 1. Data of participants' clinical characteristics

		Total n=534	Total n=534		Convex n=129		Non-convex n=405	
		Mean±S.D	95% CI	Mean±S.D	95% CI	Mean±S.D	95% CI	p value
Sex	M:F	369:165		104:25		265:140		0.002
Age	[years]	67.0±12.9	[65.9-68.1]	68.2±11.7	[66.2-70.3]	66.6±13.3	[65.3-67.9]	0.215
Height	[cm]	161.9±9.2	[161.2-162.7]	163.1±9.0	[161.6-164.7]	161.5±9.2	[160.7-162.4]0.087
Body weig	ght [kg]	62.5±14.6	[61.3-63.7]	64.6±15.3	[62-67.2]	61.8±14.3	[60.4-63.2]	0.059
BMI		23.7±4.4	[23.3-24.1]	24.2±4.6	[23.4-24.9]	23.5±4.3	[23.1-24.0]	0.169
Ischemic heart disea	ase	165 (30.9)		42 (32.6)		123 (30.4)		0.662
Valve disease		56 (10.5)		10 (7.8)		46 (11.4)		0.322
Chronic heart failu	ire	154 (28.8)		43 (33.3)		111 (27.4)		0.267

	fibrillation		22 ((0)		10 (7.9)		22 (5.4)		0 202			
			32 (6.0)	52 (0.0)		10 (7.8)			0.393			
			52 (9.7)		14 (10.9)		38 (9.4)		0.612			
	Normal		07 (10 0)						0.432			
	participants		97 (18.2)		20 (15.5)		77 (19.0)		0.432			
	LVEF [%]		55.8±14.4	[54.6-57.0]	55.8±13.5	[53.4-58.2]	55.8±14.7	[54.3-57.2]	0.927			
	BNP	[pg/dL]	150.4±247.6	[126.8-174.0]	136.1±162.4	4 [104.9-167.3]	154.2±267.9	[125.1-183.2]0.550			
	Smoking								0.521			
	history		339 (63.5)		85 (65.9)		254 (62.7)		0.531			
	GOLD				79:24:15:8:3		318:62:24:1:0					
	classificatio	-	7]397:86:39:9::	3					<0.001			
500	Data are pre	esented as mea	an \pm S.D. and 9	95% CI. The co	onvex group	had more male	s and significa	ntly				
501	more severe cases according to the GOLD classification. No significant differences in other clinical											
502	characteristics were observed between the two groups.											
503	CI: confider	nce interval, E	BMI: body mas	s index, LVEF,	Left ventrice	ular ejection fra	action, BNP: b	orain				
504	natriuretic p	natriuretic peptide, GOLD: Global Initiative for Chronic Obstructive Lung Disease										

505

507 Table 2 Cardiopulmonary exercise testing indices

		Total n=534		Convex n=129		Non-conve		
		Mean±S.D	95% CI	Mean±S.D	95% CI	Mean±S.D	95% CI	p value
RPE – leg		17.2±2.3	[17.0-17.4]	16.7±2.4	[16.3-17.1]	17.3±2.3	[17.1-17.5]	0.011
RPE - chest		15.9±2.6	[15.7-16.1]	16.0±2.5	[15.5-16.4]	15.9±2.7	[15.6-16.2]	0.755
Peak VO ₂	[ml/min]]1057±536	[1011-1102]	1122±764	[990-1254]	1036±439	[993-1079]	0.112
Peak HR	[bpm]	125.1±25.5	5 [123.0-127.3]	125.9±23.7	7 [121.8-130.0]	124.9±26.1	[122.3-127.4]]0.698
Peak RER		1.15±0.1	[1.14-1.16]	1.13±0.09	[1.11-1.14]	1.16±0.1	[1.15-1.17]	0.001
$\Delta VO_2 / \Delta WR$		8.8±1.9	[8.6-9.0]	8.7±1.9	[8.4-9.0]	8.8±1.9	[8.6-9.0]	0.540
VE/VCO ₂		35.5±9.5	[34.7-36.3]	35.1±8.8	[33.6-36.7]	35.2±7.5	[34.5-36.0]	0.923
slope								
Y-intercept		4.3±3.3	[4.0-4.6]	4.6±3.0	[4.1-5.1]	4.4±2.9	[4.1-4.6]	0.423
minimum VE/VCO ₂		38.6±9.1	[36.5-40.6]	42.0±10.6	[37.4-46.7]	37.5±8.3	[35.3-39.7]	0.056

rest RR	17.0±4.4	[16.6-17.4]	17.6±3.5	[17-18.2]	16.8±4.6	[16.3-17.2]	0.070
peak RR	34.5±8.7	[33.8-35.3]	33.3±7.4	[32.1-34.6]	34.9±9.1	[34.0-35.8]	0.074
rest VD/VT	0.42±0.06	[0.41-0.42]	0.43±0.06	[0.42-0.44]	0.41±0.06	[0.41-0.42]	0.061
peak VD/VT	0.34±0.05	[0.34-0.35]	0.34±0.05	[0.33-0.35]	0.34±0.05	[0.34-0.35]	0.793
rest VO ₂ /HR	2.9±0.8	[2.9-3.0]	3.0±0.7	[2.9-3.1]	2.9±0.8	[2.8-3.0]	0.391
Peak VO ₂ /HR	8.1±2.8	[7.8-8.3]	8.3±2.7	[7.8-8.8]	8.0±2.8	[7.7-8.3]	0.348

508 Data are presented as mean \pm S.D. and 95% CI. The rating of perceived exertion at the end of the

509 exercise test showed no difference in shortness of breath between the two groups. In contrast, lower

510 extremity fatigue was significantly lower in the convex group. Regarding the cardiopulmonary

511 exercise test indices, there were almost no differences between the two groups; however, the

512 minimum VE/VCO2 ratio tended to be higher in the convex group.

513 CI, confidence interval; RPE, rate of perceived exertion; VO2, oxygen uptake; VCO2, carbon

514 dioxide; HR, heart rate; RER, respiratory exchange ratio; WR, work rate; RR, respiratory rate;

515 VD/VT, deadspace gas volume to tidal volume ratio.

516

518 Table 3 Spirometry testing indices

		Total n=534		Convex n=129		Non-convex n=405		
		Mean±S.D	95% CI	Mean±S.D	95% CI	Mean±S.D	95% CI	p value
VC	[L]	3.12±0.84	[3.05-3.19]	3.18±0.81	[3.04-3.32]	3.10±0.86	[3.01-3.18]	0.363
%VC	[%]	103.2±18.7	[101.6-104.8]	104.6±18.6	[101.3-107.8]	105.6±18.7	[103.8-107.4]0.573
TV	[L]	0.91±0.37	[0.87-0.94]	0.94±0.45	[0.86-1.02]	0.90±0.34	[0.86-0.93]	0.246
ERV	[L]	0.96±0.48	[0.92-1.00]	0.95±0.44	[0.88-1.03]	0.96±0.49	[0.91-1.01]	0.872
%ERV	[%]	76.5±34.0	[73.6-79.3]	72.6±31.3	[67.2-78.0]	77.7±34.8	[74.3-81.1]	0.142
IRV	[L]	1.25±0.58	[1.20-1.30]	1.28±0.54	[1.19-1.37]	1.24±0.59	[1.18-1.30]	0.511
IC	[L]	2.16±0.64	[2.10-2.21]	2.22±0.63	[2.11-2.33]	2.14±0.64	[2.07-2.20]	0.207
FVC	[L]	3.06±0.85	[2.98-3.13]	3.11±0.83	[2.97-3.25]	3.04±0.85	[2.95-3.12]	0.395
%FVC	[%]	92.4±16.6	[91.0-93.8]	91.4±17.3	[88.5-94.4]	92.7±16.3	[91.1-94.3]	0.451
FEV1.0	[L]	2.26±0.72	[2.20-2.32]	2.17±0.74	[2.05-2.30]	2.28±0.71	[2.21-2.35]	0.130
%FEV1.0	[%]	101.5±23.4	[99.5-103.4]	96.2±28.0	[91.4-101.0]	103.1±21.5	[101.0-105.2]0.003

FEV1.0%	[%]	73.7±10.4	[72.8-74.6]	69.4±13.1	[67.1-71.6]	75.0±9.0	[74.2-75.9]	0.000
MMF	[L/s]	2.02±1.06	[1.78-2.27]	1.64±0.83	[1.26-2.03]	2.10±1.06	[1.82-2.38]	0.100
%MMF	[%]	68.7±28.5	[62.2-75.2]	58.3±28.1	[45.3-71.3]	70.3±25.1	[63.7-77.0]	0.091
PEF	[L/s]	6.33±2.34	[5.80-6.86]	5.54±2.15	[4.60-6.48]	6.61±2.36	[5.99-7.24]	0.079
%PEF	[%]	83.6±23.1	[78.4-88.8]	72.8±24.8	[61.9-83.7]	87.5±21.4	[81.9-93.2]	0.014
MVV	[L/min]	68.6±25.7	[66.1-71.0]	74.8±30.3	[69-80.6]	81.0±28.3	[77.9-84.0]	0.058
%MVV	[%]	84.7±24.7	[82.4-87.0]	92.2±31.2	[86.2-98.2]	103.2±27.1	[100.3-106.1]0.001

519 Data are presented as mean \pm S.D. and 95% CI. The measured values of forced expiratory volume in

520 1 s as a percentage of forced vital capacity (FEV1.0%), predicted values of forced expiratory volume

521 in 1 s (%FEV1.0), peak expiratory flow (%PEF), and maximal ventilatory volume (%MVV) were

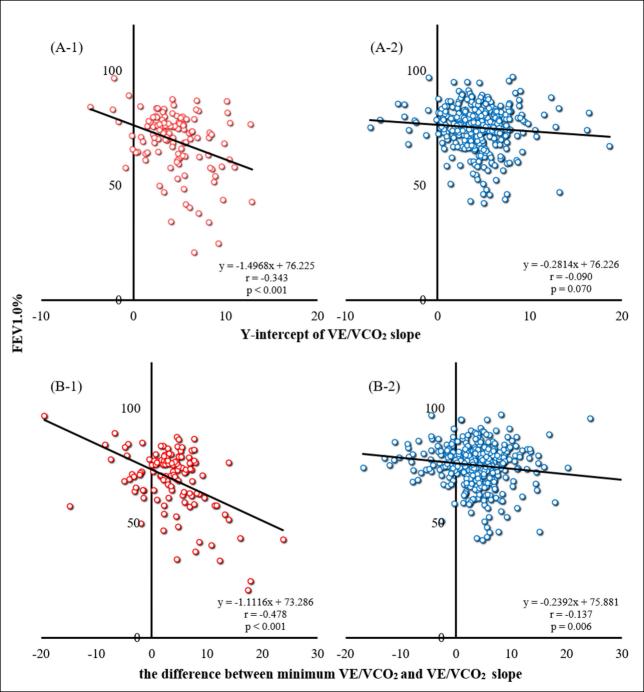
522 significantly lower in the convex group.

523 CI, confidence interval; VC, vital capacity; VT, tidal volume; ERV, expiratory reserve volume; IRV,

524 inspiratory reserve volume; IC, inspiratory capacity; FVC, forced vital capacity; FEV, forced

525 expiratory volume; FEV1.0, forced expiratory volume in 1 s; FEV1.0%, forced expiratory volume in

526 1 s as a percentage of forced vital capacity; MMF, maximal mid-expiratory flow; PEF, peak


527 expiratory flow; MVV, maximal ventilatory volume.

528

530 Figure legend

531

- 532 Figure 1 Correlation between respiratory function and CPET indies
- 533 The upper two panels show the relationship between FEV1.0% and the Y-intercept of VE/VCO_2 in
- 534 the convex group (A-1) and the non-convex group (A-2). The lower two panels show the
- 535 relationship between FEV1.0% and the difference between the minimum VE/VCO_2 and VE/VCO_2
- slopes in the convex group (B-1) and non-convex groups (B-2).

