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ABSTRACT 13 

Background: Healthcare-associated infection (HAI) remains a significant risk for hospitalized 14 

patients and a challenging burden for the healthcare system.  This study presents a clinical 15 

decision support tool that can be used in clinical workflows to proactively engage secondary 16 

assessments of pre-symptomatic and at-risk infection patients, thereby enabling earlier diagnosis 17 

and treatment. 18 

Methods: This study applies machine learning, specifically ensemble-based boosted decision 19 

trees, on large retrospective hospital datasets to develop an infection risk score that predicts 20 

infection before obvious symptoms present.  We extracted a stratified machine learning dataset 21 

of 36,782 healthcare-associated infection patients.  The model leveraged vital signs, laboratory 22 

measurements and demographics to predict HAI before clinical suspicion, which is defined as 23 

the order of a microbiology test or administration of antibiotics.  24 

Results:  We find that our best performing infection risk model achieves a cross-validated AUC 25 

of 0.88 at 1-hour before clinical suspicion and maintains an AUC>0.85 for 48-hours before 26 

suspicion by aggregating information across demographics and a set of 163 vital signs and 27 

laboratory measurements.  A second model trained on a reduced feature space comprising 28 

demographics and the 36 most frequently measured vital signs and laboratory measurements can 29 

still achieve an AUC of 0.86 at 1-hour before clinical suspicion.  These results compare 30 

favorably against using temperature alone and clinical rules such as the quick Sequential Organ 31 

Failure Assessment (qSOFA) score.  Along with the performance results, we also provide an 32 

analysis on model interpretability via feature importance rankings. 33 
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Conclusions: The predictive model aggregates information from multiple physiological 34 

parameters such as vital signs and laboratory measurements to provide a continuous risk score of 35 

infection that can be deployed in hospitals to provide advance warning of patient deterioration.  36 

 

KEYWORDS: Healthcare-associated infection (HAI), Machine Learning, Clinical Decision 37 

Support (CDS) 38 
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BACKGROUND 39 

Healthcare-associated infection (HAI), also referred to as nosocomial infection, remains a 40 

significant risk for hospitalized patients and a significant burden on healthcare systems.  It has 41 

been reported that approximately 1 in 31 hospital patients develop an HAI on any given day [1], 42 

and nearly 99,000 people in the U.S. die annually from HAIs [2].  Recent data shows that the 43 

incidence of HAI’s increased during the pandemic (2020) revealing the fragile nature of 44 

interventions aimed at prevention [3].  Over the last decade, the CDC has developed guidelines 45 

and strategies for the prevention of HAIs, focusing on improving clinical practice and antibiotic 46 

stewardship.  While this guidance has shown some utility in lowering the incidence across 47 

several types of HAI, improving the outcomes for those who become infected remains 48 

challenging, particularly for the critically ill.   49 

 

Early detection of de-novo infectious disease is critical for improving the outcomes of infected 50 

patients [4] [5], for the timely implementation of control measures critical to preventing its 51 

spread [6], and for reducing substantial healthcare cost associated with preventable HAIs [7].  52 

Hospitalized patients suffering from influenza, up to 20% of whom are nosocomial in origin, 53 

have better outcomes when treated with antiviral agents immediately after symptoms present [8].  54 

Antibiotic treatment has also been shown to be more effective in producing better outcomes for 55 

sepsis patients when administered early in the progression of the infection, particularly for 56 

mechanically ventilated patients [4] [5].   57 

 

Clinical decision support (CDS) tools have received a great deal of attention over the last decade, 58 

including those focused on the detection of infection [9] [10] [11].  Many of these CDS tools are 59 
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rule based and developed through physician consensus and guidelines.  These include more 60 

standardized solutions like the Acute Kidney Injury (AKI) eAlert that has been deployed in 61 

hospitals in Wales [12] [13] and the National Early Warning Score (NEWS) score that is 62 

standard for detecting general clinical deterioration in the UK [14]. While these approaches 63 

benefit from clinician experience, they are simplified to remain generalizable and fail to capture 64 

the complete clinical context required to discriminate difficult or atypical cases.  In addition, 65 

these approaches are not easily tailored or adapted, for example, to specific patient populations. 66 

More recently, several studies have suggested data-driven approaches to create physiological risk 67 

prediction algorithms, including in the areas of infection and sepsis prediction [9] [15] [16] [17].  68 

 

This study uses machine learning applied on large retrospective hospital datasets to develop a 69 

clinical decision support (CDS) algorithm for the early detection of infection in hospitalized 70 

patients.  By aggregating information across demographics and a set of 163 vital signs and 71 

laboratory measurements, we find our best-performing model can achieve a cross-validated AUC 72 

of 0.88 at 1-hour before clinical suspicion, and maintains an AUC>0.85 for the 48-hour period  73 

prior to clinical suspicion of infection.  By distilling the model down to a set of 36 most 74 

frequently measured vital signs, laboratory measurements and demographics, we can still 75 

maintain an AUC of 0.86 at 1-hour before clinical suspicion.  In the results, we further contrast 76 

our models against established clinical scoring systems – quick Sequential Organ Failure 77 

Assessment (qSOFA), and against tracking individual vital signs alone (e.g., temperature, etc.). 78 

 

METHODS 79 
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Description of data 80 

We combined clinical data from three large hospital datasets: the MIMIC-III (Medical 81 

Information Mart for Intensive Care III) database collected from 2001 to 2012 [18], the eICU 82 

dataset from Philips’ electronic ICU telemedicine business collected from 2003 to 2016 [19], and 83 

a dataset of electronic medical records from Banner Health collected from 2010 to 2015. In total, 84 

the combined dataset includes over 6.5 million patient encounters collected from more than 450 85 

hospitals. Supplemental Figure 1 indicates the types of data present in each hospital dataset. 86 

  

Ethical Approval 87 

The MIMIC-III project was approved by the Institutional Review Boards of Beth Israel 88 

Deaconess Medical Center (Boston, MA) and the Massachusetts Institute of Technology 89 

(Cambridge, MA). Use of the eICU data was approved by the Philips Internal Committee for 90 

Biomedical Experiments. Banner Health data use was a part of an ongoing retrospective 91 

deterioration detection study approved by the Institutional Review Board of Banner Health and 92 

by the Philips Internal Committee for Biomedical Experiments. Requirement for individual 93 

patient consent was waived because the project did not impact clinical care, was no greater than 94 

minimal risk, and all protected health information was removed from the limited dataset used in 95 

this study. 96 

 

Infection and control cohort extraction 97 

We define infection patients as those who 1) have a confirmed infection diagnosis, and 2) have 98 

data indicating clinical suspicion of infection.  Patients in the infection cohort were selected as 99 

those with confirmed infection diagnoses via ICD-9 and whose timing of clinical suspicion of 100 
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infection could be localized by a microbiology culture test order. Infection patients were then 101 

further screened into an HAI cohort if the timing of clinical suspicion of infection occurred at 102 

least 48 hours after admission.  Patients in the control cohort were selected as those who have 103 

neither an infection-related ICD-9 diagnosis code nor any microbiology culture tests ordered.  104 

Since the selection criteria identified a much larger set of control patients than HAI patients, we 105 

down-sampled the control cohort population to maintain a prior infection odds (prevalence) of 106 

12.5%.  This ensured that the training dataset would not be overly dominated by control patients, 107 

while still maintaining the HAI cohort as the minority class.   Figure 1 shows the general 108 

decision scheme behind this methodology. Curation of infection ICD-9 codes is described in 109 

detail in the Supplementary Materials.  110 

 

For a minority of hospitals, microbiology charting data was either missing, sporadic, or 111 

incomplete.  In such cases, the microbiology culture test criterion was replaced with 112 

administration of non-prophylactic antibiotics.  The cohort selection was otherwise the same: 113 

infection patients were those with at least one administration of non-prophylactic antibiotics and 114 

who had at least one ICD-9 code indicating infection, while control patients were selected as 115 

those who had neither an ICD-9 code nor any administration of non-prophylactic antibiotics. 116 

Clinical suspicion of infection (and screening for the HAI cohort) was then derived using the 117 

administration time of first non-prophylactic antibiotics.  We validated, in the MIMIC-III 118 

dataset, that the two criteria (microbiology culture test versus non-prophylactic antibiotics 119 

administration) yield a large overlap of the selected cohorts (see Supplementary Materials). 120 

Extraction of antibiotic records and non-prophylactic labelling details are also described in the 121 

Supplementary Materials. 122 
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For control patients, we generated a synthetic event time, such that clinical data used for 123 

prediction could be extracted in the same way as was done for the infection patients. To reduce 124 

bias, and to ensure sufficient data prior to event time for model building, we randomly assigned a 125 

time-point that is at least 48 hours after the patient’s first clinical measurement, and that precedes 126 

the end of the patient’s hospital stay as the synthetic event time. 127 

Figure 1: Cohort inclusion/exclusion criteria flow diagram 128 

 

Description of features and feature subsets used by the models  129 

The extracted features are comprised of three sets of information:  demographics (e.g., age, 130 

gender, height, weight), vital sign measurements (e.g., heart rate, blood pressure, temperature), 131 

and laboratory measurements (e.g., metabolic panels, complete blood count, and arterial blood 132 

gas). After feature extraction from each of the three hospital datasets, we applied an extensive 133 

preprocessing and cleaning pipeline to create a common and consistent dataset. A full list of the 134 

features is given in the Supplemental Materials in Table A1.  135 

 

 a 

es 
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For the purpose of training our machine learning algorithms, we defined an observation time as 136 

one hour before each patient’s clinical suspicion of infection (or randomly assigned event time 137 

for control patients). We then extracted the latest measured value of each feature leading up to 138 

the observation time and assembled these measurements into a physiological state vector for 139 

each patient.  This feature vector was then augmented with features characterizing temporal 140 

trends from vital sign measurements during the 48-hour window preceding the observation time. 141 

To mitigate sensitivity to outliers, we applied physiologic plausibility filters to the vital signs 142 

before calculating trends. Trend features on laboratory measurements were excluded since they 143 

tend to be measured aperiodically (e.g., daily).  We extracted five trend features for the for vital 144 

signs: Temperature, Heart Rate, Systolic, Diastolic, and Mean Blood Pressures, Oxygen 145 

Saturation1 (SpO2), and Respiration.  For example, these trend features for Heart Rate  are: 146 

Avg(Heart Rate): The average heart rate value over a 48-hour window 147 

� Min(Heart Rate): The minimum heart rate value over a 48-hour window 148 

� Max(Heart Rate): The maximum heart rate value over a 48-hour window. 149 

� Var(Heart Rate): The variance of heart rate over a 48-hour window 150 

� CoefVar(Heart Rate), or CV(Heart Rate): The coefficient of variation of heart rate over a 151 

48-hour window, defined as the standard deviation divided by the mean 152 

 

During the validation stage of our algorithm, we additionally applied the classifiers trained on 153 

the one-hour before observation time to earlier time windows in order to characterize predictive 154 

performance over time. In those instances, we extracted a physiological state vector at earlier 155 

observation times in an analogous manner. Figure S3 provides a visual summary of the feature 156 

extraction pipeline. 157 
                                                 
1
 Oxygen Saturation is predominantly from pulse oximetry measurements and in addition blood gas measurements 
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Description of algorithms used  158 

We employed two groups of algorithms: (a) linear classifiers, which identify a separating 159 

hyperplane in the original feature space; and (b) ensemble-based methods, which iteratively 160 

construct a powerful classifier from a set of “weak” nonlinear classifiers. We chose linear 161 

classifiers and ensemble-based methods over neural network techniques because we preferred to 162 

maintain interpretability of the trained model for clinical deployment, and to minimize the usage 163 

of computation resources to enable flexible applications. For linear classifiers we choose logistic 164 

regression, and for ensemble methods we benchmarked against Abstained Adaptive Boosting 165 

with univariate decision stumps [20] and Gradient Boosting of decision trees using the XGBoost 166 

algorithm [21]. Since our dataset is imbalanced in terms of infection prevalence, we employed 167 

stratified cross-validation, and we did this for each of the three hospital datasets separately: with 168 

stratification, both the ratio of control to infection patients, and the ratio of patients from 169 

different hospital datasets are maintained in both training and testing sets.  Information about 170 

imputation, hyperparameter tuning and performance evaluation is detailed in the Supplemental 171 

Materials. 172 

 

Description of model interpretation methods  173 

The Adaptive Boosting algorithm with decision stumps can be expressed as a generalized 174 

additive model of the form  where R(x) is the composite (ensemble) classifier, x1,x2,…,xp are the 175 

p feature inputs, and rj(xj), j=1,…,p are the “weak learner” classifiers learned for each feature.  In 176 

this case, infection patients are labeled as class 1 (controls are class -1), so that a larger value of 177 

R(x) indicates the classifier’s stronger confidence of the patient having infection.  As a result, 178 
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each rj(xj) can be interpreted as an infection risk function evaluated with respect to a single 179 

feature.  In order to control for the impact of feature missingness, we analyzed the relative 180 

importance of features through each rj(xj) in two ways:  (1) total feature importance, which 181 

evaluates a feature’s importance across the entire cohort; and (2) adjusted feature importance, 182 

which isolates the feature’s contribution on the subset of patients that have the feature measured.  183 

Therefore, total feature importance gives an indication of a feature’s effectiveness under typical 184 

hospital workflow conditions, while adjusted feature importance can identify discriminative 185 

features despite being less frequently measured.   186 

 

The Gradient Boosting algorithm can be interpreted using SHAP (Shapley Additive 187 

exPlanations) method [22].  SHAP assigns each feature an importance value for a particular 188 

prediction, therefore we can compare feature importance by examining the distribution of SHAP 189 

values which represent the impacts each feature has on the model output. 190 

 

RESULTS 191 

The cohort selection criteria resulted in a total training dataset size of 293,109 patients (256,327 192 

control patients; 36,782 HAI patients).  Of these patients, 63% are from the Banner Health 193 

dataset, 32% are from the eICU dataset, and 5% are from the MIMIC-III dataset.  The majority 194 

of these patients are treated under ICU or general ward settings.  Between the two infection 195 

cohort criteria (microbiology culture orders vs non-prophylactic antibiotics administration), 196 

26,599 HAI patients are identified from microbiology lab and ICD-9 code, while 10,183 197 

infection patients are identified from non-prophylactic antibiotic administration and ICD-9 code.   198 
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Model performance 199 

We compared machine learning algorithms in their ability to discriminate infection from control 200 

patients using clinical data acquired up to one hour before clinical suspicion of infection. Our 201 

results show that gradient boosting with two level decision trees yielded the best performance 202 

with a mean AUC of 0.88, Specificity of 0.93 and Sensitivity of 0.54 at the break-even point 203 

(where Sensitivity is approximately equal to positive predictive value (PPV), see Supplemental 204 

Materials), Sensitivity of 0.80 and 0.64 respectively for when Specificity is 0.80 and 0.90 (Table 205 

1: Xgboost). Abstained Adaptive Boosting with decision stump achieved a mean AUC of 0.85, 206 

Specificity of 0.92 and Sensitivity of 0.47 at break-even point, Sensitivity of 0.73 and 0.54 207 

respectively for when Specificity is 0.80 and 0.90 (Table 1: Abstained AdaBoost). Logistic 208 

regression performs poorly compared with ensemble algorithms, with a mean AUC of 0.77, 209 

Specificity of 0.91 and Sensitivity of 0.40 at break-even point, Sensitivity of 0.60 and 0.43 210 

respectively for when Specificity is 0.80 and 0.90 (Table 1: Logistic Regression). These results 211 

suggest that ensemble models are superior to linear models in predicting infection.   212 

 

Next, we asked if ensemble models perform better than established empirical rules and clinical 213 

scores in infection prediction. First, fever or high body temperature (>98.6 F) is one of the first 214 

symptoms that lead to clinical suspicion of infection. Therefore, we compared temperature 215 

measurements between the infection and control cohorts, and calculated the discriminative power 216 

of temperature at one hour before infection suspicion. Temperature by itself has an AUC = 0.59 217 

for detecting infection, which is far inferior to performance achieved with gradient boosting 218 

(AUC = 0.88). Second, qSOFA – quick Sequential Organ Failure Assessment – was introduced 219 

by the Third International Consensus Definitions for Sepsis and Septic Shock task force in 2016, 220 
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and is proposed as a quick assessment tool for identifying sepsis among patients with infection 221 

[23]. Based on the Sepsis-3 criteria, we extracted Glasgow Coma Score, Systolic Blood Pressure, 222 

and Respiratory Rate from the medical database, and derived qSOFA scores at one hour before 223 

clinical suspicion of infection. In total 111,651 qSOFA scores were extracted, 22,460 from 224 

infection cohort and 89,191 from control cohort (infection prevalence = 20.1%). We then 225 

calculated the area under ROC curve of infection prediction by using qSOFA alone. qSOFA by 226 

itself has an AUC = 0.59 when predicting infection at one hour before suspicion of infection. To 227 

ensure a fair comparison with ensemble models, we re-trained the Gradient Boosting algorithm 228 

using data from the subset of patient cohort that have qSOFA available. Gradient Boosting on the 229 

patient subset achieves an AUC of 0.83 which is substantially better than the performance of 230 

qSOFA. Overall our results suggest advantages of ensemble models over established clinical 231 

methods in infection prediction. 232 

Table 1: Performance of infection prediction at one hour before clinical suspicion of infection. 233 

Algorithm AUC 
Sensitivity (Spec) 

Break-Even Point 

Sensitivity  

@ Specificity=0.8 

Sensitivity 

@ 

Specificity=0.9 

GradientBoost 0.884 0.537 (0.934) 0.800 0.635 

Abstained 

AdaBoost 
0.852 0.469 (0.924) 0.731 0.536 

Logistic 

Regression 
0.772 0.399 (0.914) 0.597 0.431 
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GradientBoost – 

exclude lab 
0.810 0.415 (0.916) 0.622 0.449 

GradientBoost – 

reduced features 
0.862 0.499 (0.928) 0.750 0.574 

 

We further benchmarked ensemble model performance when feature sets are reduced. First, we 234 

excluded all lab measurements and focused on 14 vital signs and demographics factors (plus 50 235 

derived trend features), as they are continuously available and more predictably available than 236 

lab measurements. Gradient Boosting, re-trained from the feature space excluding labs, achieved 237 

a mean AUC of 0.81, Specificity of 0.92 and Sensitivity of 0.42 at break-even point, Sensitivity 238 

of 0.62 and 0.45 respectively for when Specificity is 0.80 and 0.90 at one hour before clinical 239 

suspicion of infection (Table 1: GradientBoost – exclude lab). Second, we excluded infrequently 240 

measured features that are available for less than 70% of the patient cohort. This produced a 241 

reduced feature space with 36 vitals, demographics and laboratory measurements (plus 32 242 

derived trend features). Gradient Boosting model, re-trained from frequently measured features, 243 

achieved a mean AUC of 0.86, Specificity of 0.93 and Sensitivity of 0.50 at break-even point, 244 

Sensitivity of 0.74 and 0.57 respectively for when Specificity is 0.80 and 0.90 at one hour before 245 

clinical suspicion of infection (Table 1: Xgboost – reduced features). These results suggest that it 246 

is possible to obtain good performance when reducing the total feature space by half. 247 

 

In addition, we investigated the infection prediction performance of ensemble models at earlier 248 

time points. We applied the most interpretable model (Abstained AdaBoost) and the best 249 

performing model (Gradient Boosting) to earlier observation windows to characterize predictive 250 
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performance over time using the full feature space (Figure 2).  Despite degraded model 251 

performance over time, Gradient Boosting maintains an AUC>0.85, while Adaptive Boosting 252 

maintains an AUC>0.81 for 48 hours before clinical suspicion. These results support an assertion 253 

that it is possible to predict hospital acquired infection earlier, up to 48 hours before clinical 254 

suspicion of infection. 255 

 

Figure 2: Predictive performance of AdaBoost and GradientBoost models relative to time of clinical suspicion 256 

 

Model interpretation 257 

To better understand the biomarkers leveraged by the ensemble-based models, we first analyze 258 

the AdaBoost algorithm with decision stumps since it is easier to interpret, and then contrast with 259 

feature importance scores on the GradientBoost algorithm with decision trees using the SHAP 260 

(Shapley Additive exPlanations) method [22]. 261 

 

We first examined the top 15 features ranked by total feature importance and adjusted feature 262 

importance derived from Abstained Adaptive Boosting model trained in the full feature space. 263 

(Table 2). As described in Methods, total feature importance evaluates a feature’s importance 264 

on 

ith 
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across the entire cohort, and adjusted feature importance isolates the feature’s contribution on 265 

the subset of patients that have the feature measured.  From both metrics, we found that the top 266 

15 features are a mix of laboratory measurements and vital signs. Adjusted feature importance, in 267 

particular, identifies discriminative features from laboratory measurements despite being less 268 

frequently measured.  269 

Table 2: Feature Importance Rankings from Abstained AdaBoost model (top 15). Total feature importance evaluates a feature’s 270 
importance across the entire cohort; adjusted feature importance isolates the feature’s contribution on the subset of patients that 271 
have the feature measured. 272 

Total Feature Importance Adjusted Feature Importance 

Rank Feature Rank Feature 

1 Albumin 1 Albumin 

2 Max(SpO2) 2 TIBC 

3 pH 3 Fibrinogen 

4 Min(SpO2) 4 Temperature 

5 Temperature 5 ESR 

6 Avg(SpO2) 6 PVRI 

7 Var(SpO2) 7 Max(Temperature) 

8 Lactate 8 Urinary RBC 

9 Bands 9 Avg(Respiration) 

10 Max(Temperature) 10 WBC 

11 Avg(Respiration) 11 BUN 

12 CV(SpO2) 12 CRP 

13 FiO2 13 Ferritin 

14 WBC 14 Neutrophils 

15 Bicarbonate 15 Var(Temperature) 
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The learned risk functions behave in clinically interpretable ways.  Figure 3 visualizes the risk 273 

functions (black) for a subset of the most important laboratory features, along with population 274 

distribution underlays for infection (red) and control (blue) populations.  The learned risk 275 

functions for these representative features are either monotonically increasing, suggesting that an 276 

elevation of the respective clinical measurement is associated with higher infection risk; or 277 

monotonically decreasing, suggesting that a decrease of the respective clinical measurement is 278 

associated with higher infection risk. During training, each risk function is assembled from a 279 

collection of decision stumps that identify key feature thresholds that distinguish levels of 280 

infection risk.  The scale of the risk function (the y-axis in Figure 3 plots) is unitless, but can be 281 

used to compare the relative importance of features (see Table 2 for further details on feature 282 

importance). 283 

 

Amongst laboratory measurements, a number of features associated with, but not necessarily 284 

specific to, inflammation were identified.  The top feature across both scoring metrics was 285 

associated with hypoalbuminemia (low albumin levels < 3 g/dL), which has been shown to 286 

correlate with inflammation, shock, and sepsis [24].  High RDW (>15%) was also a strong 287 

biomarker, with literature showing it correlated with inflammation markers CRP and ESR [14].  288 

With respect to the adjusted feature importance score, a number of infrequently measured 289 

features, but highly discriminative, were identified by the model, all of which show associations 290 

with inflammatory response:  low TIBC (<240 mcg/dL; prevalence=3%), elevated Fibrinogen 291 

(>325 mg/dL; prevalence=5%), and elevated ESR (> 45 mm/hr; prevalence=2%). 292 
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Many other laboratory values were also discriminative.  Increased risk is identified when 293 

Bicarbonate levels fall below approximately 24 mEq/L, which may be indicative of metabolic 294 

acidosis, in particular lactic acidosis (elevated Lactate levels above 1.5 mmol/L were also 295 

contributing to infection risk).  White blood cell concentrations were also strong indicators in the 296 

top 15 features, with elevated Bands and Neutrophil concentrations [25].  Other notable 297 

indicators are low HDL and LDL cholesterol levels [26], and increases in blood platelets, which 298 

is a sign of host defense and induction of inflammation and tissue repair in response to infection 299 

onset [27]. 300 

 

Although laboratory measurements play a significant role, the model also aggregates information 301 

from a number of vital signs.  The infection risk function based on temperature increases rapidly 302 

above 37.8C, although this accounts for a small percentage of infection patients (5105 out of 303 

40406 (~12.6%) of infection patients registered a fever >= 37.8C at the 1-hour window).  For 304 

controls, 5579 out of the 96505 control patients (~5.8%) exhibited a fever >= 37.8C.  Infection 305 

patients tend to have an elevated heart rate and macro variability, which is reported to be critical 306 

for the diagnosis and prognosis of infection by many studies [28] [29].  For blood pressure, 307 

patients tend to have a decreased blood pressure (systolic, diastolic, and mean), and this effect 308 

was often selected by the classifier.  Many trend variability features on vitals were selected 309 

across temperature, heart rate, blood pressure, oxygen saturation(SpO2), and respiration, as the 310 

infection cohort tends to exhibit a heavier right tail in feature variance measures. Changes in vital 311 

signs are also reported in the literature to accompany the development of infection [30] [31]. 312 
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Figure 3: AdaBoost risk functions (black) for a subset of the most important laboratory measurements, along with population 313 
distribution underlays for infection (red) and control (blue) populations 314 

 

We additionally applied SHAP analysis to extract feature importance rankings from the Gradient 315 

Boosting method (Figure 4).  We have observed overlaps in the selected features between the 316 

more interpretable AdaBoost model and Gradient Boosting, such as Albumin, SpO2, 317 

Bicarbonate, Temperature, Lactate and BUN. 318 
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Figure 4: Top 15 important features of the GradientBoost model from SHAP analysis.  Each dot is a patient; color indicates the 319 
value of the feature.  SHAP value is on the x-axis: large positive value - feature contributes strongly to predict infection; large 320 
negative value – feature contributes strongly to predict control 321 

 

Algorithm performance on infection subgroups 322 

Patients’ host responses to pathogens vary between pathogens and primary sites of infection 323 

which result in heterogeneous physiological changes. The extracted HAI cohort is mainly from, 324 

ranked by high to low prevalence, the following five infection types (defined by ICD-9 codes - 325 

see Supplementary Materials): pneumonia (17,224 patients), bloodstream infection (12,891 326 

patients), bone/joint/tissue/soft tissue infection (11,613 patients), sepsis (9,643 patients) and 327 

urinary system infection (9,118 patients). Note that these patients are primarily from ICUs or 328 
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general wards, and some patients can have more than one HAI. To compare detection 329 

performance on different infection types, we calculated recall (Sensitivity) from the model for 330 

patient subgroups of different infection types (Figure 5). We found that the infection model 331 

(Table 1: Xgboost) has the highest recall in predicting Sepsis (recall = 0.70) and bloodstream 332 

infection (recall = 0.67), followed by pneumonia (recall = 0.61), bone/joint/tissue/soft tissue 333 

infection (recall = 0.50) and urinary system infection (recall = 0.46). This result indicates that the 334 

infection model performs the best in predicting subgroups of patients that have high acuity. 335 

 

Figure 5: True positives and false negatives from GradientBoost model for the top five prevalence infection categories 336 

 
Impact of comorbidities on algorithm performance 337 

The previous section assessed true positive rates (recall/sensitivity) for various infection types.  338 

By the same token, we may also characterize true negative performance of the algorithm with 339 

respect to various chronic comorbidities exhibited by the control patient population.  To do so, 340 

we calculated the Elixhauser Comorbidity Index [32] for each control patient, which associates 341 

diagnostic ICD-9 codes (see Table 2 of [32]) with a set of 30 comorbidity categories.  Of the 342 

256,327 control patients, 194,364 (76%) exhibited at least one comorbidity – see Figure 6 for a 343 

he 
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summary of prevalence of each comorbidity category amongst control patients.  We then 344 

calculated the infection model’s true negative rate (TNR) on the control patient population that 345 

exhibited each of the 30 comorbidity categories.  In addition, we compared true negative rate for 346 

control patients with at least one comorbidity (76% of all control patients, labeled “With 347 

comorbidities”) to the true negative rate for control patients without any documented 348 

comorbidities (24% of all control patients, labeled “Without comorbidities”) – see Figure 7. 349 

 

The model performs better at ruling out infection on control patients without comorbidities than 350 

those with comorbidities (TNR=0.95 vs. TNR=0.925), suggesting that confounding chronic 351 

conditions contribute to the false positive rate of the model.  Interestingly, with respect to 352 

individual comorbidity categories, the model performs best at ruling out infection on control 353 

patients with neurological comorbidities (e.g., depression, psychoses), drug/alcohol abuse, and 354 

hypothyroidism; presumably since such conditions may have limited overlap in physiological 355 

biomarkers related to infection.  The worst performing comorbidity categories include 356 

fluid/electrolyte disorders, coagulopathy, weight loss, metastatic cancer, lymphoma, anemia, and 357 

AIDS.   358 
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Figure 6: Comorbidity prevalence amongst control patients 359 

 

Figure 7: True negative rates (specificity) by comorbidity category. X-axis: “With comorbidities” - control patients with at least 360 
one comorbidity; “Without comorbidities” - control patients without any documented comorbidities; 30 comorbidity categories 361 
are ordered by prevalence shown in Figure 6 to highlight that the differences in True Negative Rate are not simple reflections of 362 
prevalence. 363 

 

DISCUSSION 364 
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Our work addresses the fundamental problem of early prediction of HAI, to allow prompt 365 

treatment and prevention of infectious disease transmission. We presented a large-scale, 366 

retrospective big data machine learning study that provides a data-driven approach to the 367 

problem, which can be tailored and adapted to different populations of interest. Infection can be 368 

detected by our model with high accuracy in its pre-symptomatic state at 48-hours before clinical 369 

suspicion. 370 

 

Ensemble models proved to perform significantly better than both the established empirical rules 371 

and clinical scores, and logistic regression, with gradient boosting having the best performance. 372 

AdaBoost provided an interpretable model which allows us to map the feature importance to its 373 

relevance in clinical literature. For example, multiple laboratory values associated with 374 

inflammation ranked high in the feature importance metric, as well as features indicative of 375 

acidosis. High heart rate, high temperature and macro variability of vital signs were also 376 

indicative of infection, consistently with what has been reported in the literature [28] [29] [30] 377 

[31]. This characteristic of interpretability not only further validates our model, but also provides 378 

meaningful information in the clinical setting, quantifying the effect that appropriate action on 379 

each of these parameters would have in preventing HAI.  It is well known that interpretability of 380 

the decision support model is vital to the acceptance of such a predictor in the clinical setting 381 

[33]. 382 

 

One important finding of our study is that the high performance of the model is obtained only by 383 

aggregating multiple biomarkers. No single “superfeature” exists that allows superior 384 

classification. This likely reflects at the same time the variable etiology of the HAI, which can be 385 
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of different natures (respiratory, blood stream infection, sepsis, etc.), the individual variability in 386 

the response, and the multi-system nature of the effect of the infection on the patient’s 387 

physiology. On the other hand, it is still possible to obtain prediction performance that are 388 

clinically viable with a reasonable number of clinical measurements. We have showed that with 389 

a core set of 36 clinical measurements, the infection model performs at an AUC = 0.86 at one 390 

hour before clinical suspicion of infection.  391 

 

The algorithm presented in this work could be implemented in a hospital setting by leveraging 392 

the existing monitoring systems and infrastructure. When risk of infection is predicted in 393 

advance, knowledge of the contributing parameters provided by the transparency of the model 394 

would allow secondary assessment and prompt intervention.  While the best performing model 395 

employs a combination of laboratory test values and vital signs across 163 features, a model 396 

trained on 36 of the most frequently measured vital signs, labs and demographics achieves an 397 

AUC of 0.86 at 1-hour before clinical suspicion.  Moreover, a model trained with only vital signs 398 

and demographics still achieves an acceptable area under the curve, equal to 0.81. A similar 399 

model could be employed in a context that is outside of the hospital (e.g. home monitoring via 400 

wearable devices) or in other situations where laboratory values are not easily obtainable. 401 

 

CONCLUSION 402 

This study developed an algorithm for early identification of infection in hospitalized patients, 403 

using machine learning applied to large retrospective hospital datasets.  The model is able to 404 

identify patients who are infected with reasonable performance up to 48 hours before clinical 405 

suspicion of infection (AUC > .85). The trained models utilize ensembles of decision trees, 406 
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which are readily interpretable and provide ranked lists of feature importance.  The primary 407 

model leveraging all available (163) vital signs, laboratory measurements and demographics 408 

achieves the best performance; however, a secondary model limited to the 36 most commonly 409 

measured clinical measurements still achieves an AUC=0.86 at 1-hour before clinical suspicion.  410 

The models compare favorably to established clinical rules and show high potential for real-411 

world hospital deployment as a clinical decision support aid. 412 
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