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ABSTRACT (247 words) 

Identifying factors that are causes of disease progression, especially in neurodegenerative 

diseases, is of considerable interest.  Disease progression can be described as a trajectory of 

outcome over time  - for example, a linear trajectory having both an intercept (severity at 

time zero) and a slope (rate of change).  A technique for identifying causal relationships 

between one exposure and one outcome in observational data whilst avoiding bias due to 

confounding is two sample Mendelian Randomisation (2SMR). We consider a multivariate 

approach to 2SMR using a multilevel model for disease progression to estimate the causal 

effect an exposure has on the intercept and slope. We carry out a simulation study comparing 

a naïve univariate 2SMR approach to a multivariate 2SMR approach with one exposure that 

effects both the intercept and slope of an outcome that changes linearly with time since 

diagnosis.  The simulation study results for both approaches were similar and approximately 

unbiased (bias for intercept ranges from -1.6% to 1.5%  and the slope -0.7% to 4.1%) with 

appropriate coverage of the 95% confidence intervals (for intercept 94.1%-96.2% and the 

slope 94.7%-96.0%).  The multivariate approach gives a better joint coverage of both the 

intercept and slope effects (93.3%-95.8% for multivariate approach compared to 89.0%-

92.5% for the naïve approach).  We also apply our method to two Parkinson’s cohorts to 

examine the effect body mass index has on disease progression. There was no strong 

evidence that BMI affects disease progression, however the confidence intervals for both 

intercept and slope were wide.   
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1. INTRODUCTION 

Determining causality in observational cohort studies can be difficult due to problems with 

both measured and unmeasured confounding.  Two sample Mendelian Randomisation 

(2SMR) is a technique used to determine causal relationships in observational studies that 

leverages genetic data as instrumental variables. Mendel’s laws state that genes are randomly 

assigned at conception hence they are ideal candidates for instrumental variables. Under the 

three instrumental variable assumptions 2SMR allows us to determine the causal relationship 

between an exposure and an outcome that is unaffected by confounding and reverse 

causation.  This technique has gained popularity in recent years with the number of 

publications per year growing rapidly [1] and has mostly been used to determine relationships 

where the outcome is developing a disease (i.e. a binary outcome using logistic regression) 

[2, 3] or a health marker such as blood pressure (i.e. a continuous outcome using linear 

regression) [4-6].  Some research has also been carried out where the outcome is time to 

event [7],  but to our knowledge not where the outcome is the trajectory of disease 

progression over time. We are interested in causal inference where the outcome is a 

repeatedly measured trait in individuals with a particular condition.  

 

Neurodegenerative diseases like Parkinson’s disease (PD) and multiple sclerosis (MS) lead to 

disability that typically worsens over time.  Identifying factors that are related to disease 

progression could lead to developing new treatments and better counselling of patients at 

diagnosis. Disease progression in observational cohorts has been studied before in both PD 

[8]  and MS [9] using multilevel models (also called growth models, repeated measures 

models and random slope and intercept models). In these circumstances we are interested in 

the trajectory of some continuous trait over time which in the case of PD and MS is usually 
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related to the severity of motor disability. When working with a multilevel model we are 

often interested in both the intercept (disability at a time of zero) and the slope (rate of 

change in disability over time) and it is important to study the effect of the exposure on both 

the intercept and slope. 

 

This article presents a simulation study for a multivariate method to carry out 2SMR where 

we are interested in the causal effect an exposure has on both the intercept and slope in a 

model of disease progression.  This method uses multivariate meta-analysis which is often 

used in meta-analysis of diagnostic studies when researchers are interested in both the 

sensitivity and specificity of a test [10, 11]. Our aim is to examine bias and coverage of both 

separate and joint confidence intervals using this approach.  We also apply this method to two 

cohorts of individuals with PD where we are interested in the causal effect of body mass 

index (BMI) on severity at diagnosis (intercept) as well as disease progression (slope) using  

motor symptom severity measured by the Movement Disorder Society Unified Parkinson’s 

Disease Rating Scale (MDS-UPDRS) [12]. 
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2. METHODS 

2.1 Two sample Mendelian Randomisation 

2SMR is a technique to estimate the causal effect (𝛼) of an exposure on some outcome (y) 

using genetic data, usually single nucleotide polymorphisms (SNPs), as instrumental 

variables. The effect of each SNP on the exposure (𝛾𝑘 for the kth SNP) can be obtained from 

a genome-wide association study (GWAS). In the case of 2SMR the SNPs used should be 

independent. The effect of the SNPs on the outcome would come from a completely separate 

sample (hence the name two sample MR), for example they might come from some 

regression model with the following format. 

 𝑓(𝑦𝑖) =  𝛽0 + 𝛽1𝑘 ∙ 𝐺𝑖𝑘 (1) 

Where, 

𝐺𝑖𝑘 =The number of effect alleles (0, 1 or 2) for the ith individual and kth SNP 

𝑦𝑖= Outcome for the ith individual 

Using the data from these two samples the causal effect can be estimated from a weighted 

regression of the estimated effects of SNPs on the outcome (𝛽̂1𝑘) against the estimated effects 

of SNPs on the exposure (𝛾𝑘). This is weighted by the inverse of the variance of the effects of 

SNPs on the outcome (𝑣𝑎𝑟(𝛽̂1𝑘)). 

 
𝛽̂1𝑘 = 𝛼 ∙  𝛾𝑘, weighted by 

1

𝑣𝑎𝑟(𝛽̂1𝑘)
 

(2) 

 

This can also be thought of as a meta-regression or a meta-analysis of Wald ratios (in this 

example 𝛽̂1𝑘/𝛾̂𝑘) which are all identical mathematically. There are other approaches to 
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2SMR which relax the assumptions in some way the most common being the MR-Egger [13], 

Median [14], and Mode [15] approaches. None of these approaches require that the gene-

exposure association is linear, or that the model for the exposure is correctly specified [16]. 

 

2.2 Disease progression models 

We are focussing here on multilevel models (also called growth models, random slope and 

intercept models and hierarchical models). They are often used to model outcomes across 

time where repeated measurements are available and can easily accommodate unbalanced 

data (number of observations per individual differs and the time between observations is not 

constant).  They account for the non-independent nature of repeated measurements within an 

individual by incorporating random effects into a standard regression model.  A simple model 

with no covariates other than time where the relationship with time was linear would have the 

format  

 𝑦𝑖𝑗 =  𝛽0 + 𝑢0𝑖 + (𝛽1 + 𝑢1𝑖) ∙ 𝑡𝑖𝑗 + 𝜀𝑖𝑗 (3) 

 

i = 1, …, n (number of individuals) 

j = 1, … ,nj (number of observations per person) 

tij = time at the jth time point for the ith individual 

yij = outcome at the jth time point for the ith individual 

𝜀𝑖𝑗~𝑁[0, 𝜎2]  - this is the residual variation, also sometimes called level 1 variation in 

context of multilevel models assumed to be normally distributed 
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[
𝑢0𝑖

𝑢1𝑖
] ~ 𝑁 (0, [

𝜎0
2 𝜎01

𝜎01 𝜎1
2 ]) – these are the patient level random effects, assumed to be 

bivariate normally distributed. 

For simplicity in this paper we are assuming models with a continuous outcome, only linear 

time, no complex level 1 variation, and no informative drop-out however these models could 

easily be adapted as explained later in the discussion.  Within this paper we are assuming a 

particular directed acyclic graph (DAG), see figure 1.  That is the intercept does not cause the 

slope but the exposure causes some latent progression trait that causes both the intercept and 

slope. 

 

In the context of causal effect modelling and the DAG we would be interested in the effect 

that some exposure had on both the intercept and the slope.  If there was an effect on the 

intercept but not the slope then we could say that the exposure was related to disease severity 

at baseline and if there was an effect on the slope that the exposure was related to disease 

progression (or rate of change). If there was a single confounder of the effect the exposure 

has on the intercept and slope we would have the following longitudinal model 

 

𝑦𝑖𝑗 =  𝛼0 + 𝑢0𝑖 + 𝛼1 ∙ 𝑋𝑖 + 𝛼2 ∙ 𝐶𝑖 +  (𝛼3 + 𝑢1𝑖 + 𝛼4 ∙ 𝑋𝑖 + 𝛼5 ∙ 𝐶𝑖) ∙ 𝑡𝑖𝑗 + 𝜀𝑖𝑗 (4) 

 

Xi = the exposure for the ith individual 

Ci = the confounder for the ith individual 

Here 𝛼1 is the causal effect of the exposure on the intercept and 𝛼4 the causal effect of the 

exposure on the slope. 
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In the context of 2SMR we would then be fitting a multilevel model for each SNP such that 

𝑦𝑖𝑗 =  𝛽0𝑘 + 𝑢0𝑖 + 𝛽1𝑘 ∙ 𝐺𝑖𝑘 +  (𝛽2𝑘 + 𝑢1𝑖 + 𝛽3𝑘 ∙ 𝐺𝑖𝑘) ∙ 𝑡𝑖𝑗 + 𝜀𝑖𝑗 (5) 

and from the GWAS study we would know (in the case of a continuous exposure with linear 

regression) that for k SNPs  

𝑋𝑖 = 𝛾0𝑘 +  𝛾1𝑘 ∙ 𝐺𝑖𝑘 + 𝜀𝑖 (6) 

 If we insert equation 6 into equation 4 and compare the with equation 5 we can see that 

𝛼1 ∙ 𝛾1𝑘 = 𝛽1𝑘 and 𝛼4 ∙ 𝛾1𝑘 = 𝛽3𝑘 

 

A naïve approach to 2SMR would be to carry out a meta-regression of the 𝛽̂1𝑘 ‘s and 𝛾1𝑘’s to 

estimate 𝛼1 the causal effect of the exposure on the intercept. In a standard approach to 

2SMR this would be a fixed-effects meta-regression weighted by the inverse of the variance 

of the 𝛽̂1𝑘 ‘s. Under the assumption that these SNPs are independent then meta-regression 

would be a valid method to estimate 𝛼1. 

 

Then we could carry out a separate meta-regression of the 𝛽̂3𝑘 ‘s and 𝛾1𝑘’s to estimate 𝛼4 the 

causal effect of the exposure on the slope. Again this would be a fixed-effects meta-

regression weighted by the inverse of the variance of the 𝛽̂3𝑘 ‘s.    

 

This would be complicated by each SNP having an effect on both the intercept and the slope 

and those effects could be correlated.  Hence there is a covariance between the 𝛽̂1𝑘’s and the 

𝛽̂3𝑘’s whilst 𝛼1 and 𝛼4 could also be correlated.  Using multivariate meta-regression [17] we 

could estimate both 𝛼1and 𝛼4 jointly incorporating the covariance between the 𝛽̂1𝑘’s and the 
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𝛽̂3𝑘’s.  Multivariate meta-analysis and meta-regression is a likelihood based method that 

applies weights to the likelihood using the covariance matrix of the 𝛽̂1𝑘’s and the 𝛽̂3𝑘’s.  To 

be consistent with standard 2SMR we have used a fixed effects estimation.  Doing the 

estimation jointly allows us to estimate not only the effect an exposure has on the intercept 

and on the slope (along with the standard errors) but also the covariance between these two 

effects. 

 

2.3 Application of approach to Parkinson’s cohort 

We will motivate this 2SMR approach using two parallel cohorts of individuals with PD, the 

Oxford Discovery cohort and the Tracking Parkinson’s cohort [18, 19]. At recruitment 

individuals had to be within 3.5 years of diagnosis and are followed up every 18 months in 

both studies.  The Oxford Discovery cohort was recruited from 11 hospitals in the Thames 

Valley Region between 2010 and 2016. The Tracking cohort was recruited from 72 sites 

across the UK between 2012 and 2014.  We have previously carried out a genome-wide 

association study of motor and cognitive progression in these two cohorts [20].  Our analysis 

samples will be restricted to those with a probability of diagnosis of PD ≥ 90% as rated by a 

neurologist at the latest available visit.  This is an attempt to exclude individuals who were 

incorrectly diagnosed with PD as it has been shown previously that some individuals 

diagnosed with PD will turn out to have another disorder [21, 22].  More details about the 

individuals are included in the results. Informed consent was obtained from all individual 

participants included in both studies. 

   

The outcome (MDS-UPDRS part III) we are using consists of 33 questions rated on a  scale 

of 0-4 giving a total score that ranges from 0-132 [12].  This is the most common instrument 
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for motor symptom severity within the field of PD and is often used as the primary outcome 

in RCTs.  For people with PD it does not exhibit a floor or ceiling effect and although 

technically measured at an ordinal scale, its range is large enough that it can be considered 

approximately continuous.  We are using time since diagnosis as the time axis in our 

multilevel models. 

 

2.4 Simulation study 

For our simulation study we have used the ADEMP (aim, data, estimands, methods, 

performance) guidelines to inform the design and reporting [23]. 

Aim:  The aim of this study was to investigate different methods for two sample Mendelian 

Randomisation where the outcome is a multilevel model of disease progression. 

Data generating mechanism: We simulated data for 10,000 individuals. Our simulation was 

partially informed by the subsequent real-data application studying the effects of body mass 

index (BMI) on Parkinson’s disease. We generated genetic data based on the Locke BMI 

GWAS paper [24].  This paper reported on 97 GWAS hits.  The number of effect alleles for 

each individual was simulated from a binomial distribution with n = 2 and p = effect allele 

frequency from the BMI GWAS paper.  Using the beta-coefficients reported from the BMI 

GWAS paper we were able to create an exposure measurement for each individual by 

multiplying the simulated SNPs by their beta-coefficients (𝛾𝑘) and then adding on an 

additional residual variance term. We also simulated a continuous confounder (for the 

exposure and outcome) that would describe 50% of this residual variance in the exposure.  

This variance term and confounder were simulated for both an R2 of 2% and 10% to assess 

whether the variance explained by our genetic instruments affected the methods performance. 

To construct this variance term we calculated the expected variance of the 97 SNPs by the 
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sum of  𝛾𝑘
2*2*p*(1-p).  Note that in the BMI GWAS paper the SNPs actually explained 

2.7% of the variance of BMI.   

 

We then simulated balanced longitudinal data with 7 visits per person observed at times of 0, 

1, … to 6. The data was simulated under four different scenarios described below.   

 

After simulating the SNPs, the exposure and the confounder the longitudinal data was 

simulated under the following model with the same definitions as in equation 1 above. 

𝑦𝑖𝑗 =  𝛼0 + 𝑢0𝑖 + 𝛼1 ∙ 𝑋𝑖 + 𝛼2 ∙ 𝐶𝑖 +  (𝛼3 + 𝑢1𝑖 + 𝛼4 ∙ 𝑋𝑖 + 𝛼5 ∙ 𝐶𝑖) ∙ 𝑡𝑖𝑗 + 𝜀𝑖𝑗 (7) 

 

Fixed effects 

In scenarios 1, 3 and 4 we used the following parameter estimates.  

𝛼0 = 24, 𝛼1 = 2, 𝛼2 = 1, 𝛼3 = 2.25, 𝛼4 = 0.45, 𝛼5 = 0.225 

In scenario 2 we altered the effect the exposure and confounder had on the slope to change 

the relative effect of intercept vs. slope, such that  

𝛼4 = 0.25, 𝛼5 = 0.125 

The effect the exposure and confounder had on the intercept (𝛼1, 𝛼2) and the slope (𝛼4, 𝛼5) 

was based on the expected s.d. of the exposure and confounder. This was to ensure similarity 

of effect sizes when R2  was 2% and 10% since changing the variance term when simulating 

the exposure would also alter the variance of the exposure.  Note the direct effect the 

confounder has on the intercept and slope was 50% of the total effect the exposure had, 
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however there is also a substantial indirect effect as the confounder described 50% of the 

residual variance in the exposure. 

 

Random effects and residuals 

For scenarios 1 and 2 the patient level random effects were simulated from 

[
𝑢0𝑖

𝑢1𝑖
] ~ 𝑁 (0, [

88.9 −6.0
−6.0 4.6

]) 

In the third and fourth scenarios we altered the covariance of the random effects thus 

allowing us to alter the estimated covariance between the SNP-intercept and SNP-slope 

effects. In scenario 3 the covariance was adjusted to be positive (6.0) and in scenario 4 the 

covariance was adjusted to be twice as large as scenario 3 (12.0). The level 1 residuals were 

simulated from 

𝜀𝑖𝑗~N(0, 51.9) 

The random effects distribution (for scenarios 1 and 2) and the level 1 residual term were 

taken from an analysis on the PD Discovery cohort MDS-UPDRS III data (see section 2.4 

below). 

 

Finally we carried out a sensitivity analysis with a smaller sample size and unbalanced data 

with fewer observations.  This used the same approach as scenario 1 with an R2 of 10% but 

only 1,000 individuals (instead of 10,000)  and unbalanced data.  To create the unbalanced 

data each individual had 1 observation with 20% probability, 2 observations with 30% 

probability, 3 observations with 30% probability or 4 with 20% probability.  The baseline 

time was simulated from a uniform distribution between 0 and 3.5 and the time between each 

observation was simulated from a uniform distribution between 1.4 and 1.6. 
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For each scenario, 1,000 simulations were run. 

 

Estimands/targets of analysis: The estimand of interest is the effect the exposure (BMI) has 

on the intercept (𝛼1) and also the slope (𝛼4) in the model of disease progression (equation 4). 

 

Methods:  

For each SNP we fit a multilevel model of the following format 

 𝑦𝑖𝑗 =  𝛽0𝑘 + 𝑢0𝑖 + 𝛽1𝑘 ∙ 𝐺𝑖𝑘 +  (𝛽2𝑘 + 𝑢1𝑖 + 𝛽3𝑘 ∙ 𝐺𝑖𝑘) ∙ 𝑡𝑖𝑗 + 𝜀𝑖𝑗 (8) 

 

All other variables are as described above in section 2.2. 

 

After fitting one multilevel for each SNP we considered two different approaches.  The first 

is a naïve approach doing two separate 2SMR’s as described above in section 2.2 one for the 

intercept (using 𝛽̂1𝑘′𝑠) the other for the slope (using 𝛽̂3𝑘′𝑠).  

 

The second approach is a multivariate approach using multivariate meta-analysis techniques 

[17] which allows us to also incorporate the estimated covariance between 𝛽̂1𝑘 and 𝛽̂3𝑘 as 

described above in section 2.2 

 

.   
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Performance metrics: We are primarily interested in the bias and coverage of the 95% 

confidence intervals of the exposure-intercept and exposure-slope effects and also report the 

empirical SD and the mean of the model based standard errors. Finally we report the joint 

coverage of the confidence intervals for both the exposure-intercept and exposure-slope 

effect estimates. The multivariate approach can be used to construct a joint confidence region 

for the intercept and the slope; such a region will have an elliptic shape, as opposed to a box-

shaped region that is obtained by combining the two separate confidence intervals produced 

by the naïve approach. 

 

 

2.5 Computing 

This work was carried out using the computational facilities of the Advanced Computing 

Research Centre, University of Bristol – http://www.bristol.ac.uk/acrc/. All the simulations 

and analyses were carried out within STATA 17 and we used the mvmeta package for the 

multivariate meta-analysis [17]. 
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3 RESULTS 

 

3.1 Motivating example in Parkinson’s Disease 

 

The Discovery cohort analysis is based on 826 individuals with 2,851 observations (average 

3.5 ranging from 1 to 7)  over an average of 4.2 years follow-up.  The average age at 

diagnosis was 66.0 years (SD 9.6 years) with 538 (65.1%) males. Average disease duration at 

baseline was 1.2 years (SD 0.9).  In a multilevel model where the MDS-UPDRS III was the 

outcome the fixed effect for the intercept was 23.5 (95% CI: 22.6 to 24.3) and the fixed effect 

for the linear slope was 2.36 (95% CI: 2.14 to 2.60), i.e. the average outcome at diagnosis 

was 23.5 and the outcome increased at 2.36 points per year after diagnosis. 

 

The Tracking cohort is based on 1,517 individuals with 5,024 observations (average 3.3 

ranging from 1 to 6) over an average of 3.8 years of follow-up. The average age at diagnosis 

was 65.9 years (SD 9.2 years) with 987 (65.1%) males which is almost identical to the 

Discovery cohort. Average disease duration at baseline was 1.3 years (SD 0.9). In a 

multilevel model where the MDS-UPDRS III was the outcome the fixed effect for the 

intercept was 20.4 (95% CI: 19.6 to 21.1) and the fixed effect for the linear slope was 2.24 

(95% CI: 2.06  to 2.43). 

 

In table 1 we report the estimates for the effect the exposure has on the intercept and the slope 

within the two Parkinson’s cohorts and a meta-analysis of the two cohorts.  The meta-

analysis of the two cohorts for the naïve approach comes from two fixed effects meta-

analyses (one for the slope and another for the intercept. Whilst the meta-analysis of the two 

cohorts for the multivariate approach comes from a multivariate meta-analysis. The results 
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from the naïve and multivariate approaches are very similar. There is a large degree of 

uncertainty in these estimates (especially when compare to the average intercept and slope 

reported above) and despite the fact the estimates of the effect of exposure (BMI) on slope 

are in opposite directions in the two cohorts the 95% confidence intervals overlap with each 

other.  Given the uncertainty, which is probably due to the limited sample size (for genetic 

studies) along with the relatively small genetic effects, it is difficult to rule out either a 

protective or detrimental effect of BMI on disease progression.  Figure 2 (meta-analysis) and 

supplementary figure 1 (cohort specific effects) clearly shows that when plotting the effect 

that the exposure has on the outcome across time that using the naïve approach (and thus 

ignoring the covariance) there is a considerable difference to the confidence intervals.  

 

3.2 Simulation study 

The results from our simulation with R2 = 10% are displayed in table 2.  The results based on 

the naïve and multivariate approach were almost identical in this simulation and you 

generally had to look to the third significant figure to see any differences. In the four different 

scenarios the bias for the intercept ranged from -0.2% to 0.3% and for the slope from -0.3% 

to 0.7%.  The coverage of the 95% confidence intervals were also at nominal levels: the 

coverage for the intercept ranged from 94.2% to 96.1% and for the slope from 94.7% to 

95.8%. 

 

The results from our simulation with R2 = 2%, displayed in table 3, were similar. The bias for 

the intercept ranged from -1.6% to 1.5% and for the slope from -0.7% to 4.1%. The coverage 

of the 95% confidence interval for the intercept ranged from 94.1% to 96.2% and for the 

slope from 95.0% to 96.0%. 
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Table 4 shows the joint coverage for the two approaches.  For the naïve approach the joint 

coverage ranged from 89.0% to 91.5% when the R2 was 10% and from 89.9% to 92.5% when 

the R2 was 2%. This is not surprising, as the joint coverage of two separate 95% confidence 

intervals is approximately 0.95^2 = 0.9025.  Using the multivariate approach the joint 

coverage increased and ranged from 94.6% to 95.2% when the R2 was 10% and from 93.3% 

to 95.8% when the R2 was 2%. 

 

In our sensitivity analysis, see supplementary table 1, with a much reduced sample size and 

unbalanced data the naïve and multivariate approach still gave near identical results.  Not 

surprisingly the uncertainty in the estimates is much larger than observed in tables 2 and 3.  

The bias was still small approximately -0.15% for the intercept and approximately -1.35% for 

the slope. The coverage of the 95% CI was 94.8% and 95.0% for the intercept (using the 

naïve and multivariate approach respectively) and 94.4% and 94.3% for the slope (using the 

naïve and multivariate approach respectively).  The joint coverage for the sensitivity analysis 

was 92.5% for the naïve approach and 94.6% for the multivariate. 
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4. DISCUSSION 

Our simulations show that 2SMR gives unbiased estimates with good coverage when the 

outcome is a multilevel model of linear disease progression.  If an individual is interested in 

graphing the effect an exposure will have on an outcome over time then a multivariate meta-

analysis method that allows the estimation of a covariance term could give substantially 

different confidence intervals.  The multivariate meta-analysis method also allows for 

appropriate joint coverage of both the intercept and slope effects by drawing a confidence 

ellipse. 

 

In practice progression trajectories might be non-linear in time [9] and in these cases we 

would recommend deriving the difference in trajectories per additional copy of the effect 

allele at some time-point.  The chosen time-point will depend on both the length of follow-up 

in the data and what would be a meaningful time since onset/diagnosis in that particular 

disease.  Our multivariate meta-analysis approach could also easily be adapted to have 

multiple time terms and could be used to create a graph similar to that displayed in figure 2.  

Non-linearity could also be a problem in our PD data however the number of observations we 

have per-person (on average) is limited so there is little data to test and account for non-linear 

trajectories.   

 

The models we have used assume that there is measurement error in each observed measure 

of outcome, but these errors are unrelated and the variance is constant over time. The 

multilevel models can be modified to allow autocorrelation, or complex measurement error 

where the variance of the  level 1 residuals changes over time [9]. If there is an underlying 
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factor affecting measurement error in all measures for an individual – e.g. if individuals with 

impaired hearing tend to always score lower due to difficulties completing the questionnaire 

– then the measurement errors for all the measures will be correlated. However, this 

correlation will be subsumed into the effect of the “latent progression” factor, and thus also 

included in the model-based estimate of correlation between intercept and slope. This type of 

measurement error would not bias the MR in this example, because hearing loss would be 

essentially a confounder of different measures of outcome [25].  

 

Other problems in observational longitudinal data occur when the follow-up data is missing 

not at random (informative drop-out), for example where an individual’s disability becomes 

so severe they can no longer attend clinic visits which could bias trajectories towards the null.  

This could be explored using pattern-mixture models, selection models or other similar 

approaches [26-29] that under some untestable assumptions would be less biased than 

standard multilevel models.  We have used pattern-mixture models before to look at disease 

progression in PD which gave us similar results to a standard multi-level model providing 

some evidence that informative drop-out did not bias our results [8]. 

 

Allowing an exposure to have an effect on both the intercept and slope is possibly an over-

simplistic way to model progression in PD.  In reality there should be a true time zero where 

the individual has no impairment caused by the disease.  However in PD there is a long 

prodromal (prediagnostic) period [30] and by the time of diagnosis there is already 

considerable motor impairment and large variability in motor impairment between 

individuals [31]. Modelling the effect of the exposure on the intercept using disease duration 

from diagnosis as the time-axis reflects some period of prodromal progression.  The current 
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progression data that is available for most cohorts of individuals with PD does not allow us to 

observe this prodromal period. 

 

Another problem with carrying out 2SMR in a cohort of individuals who have disease is the 

index event bias phenomenon. Index event bias occurs when there are confounders of 

incidence and prognosis.  By conditioning on individuals who have developed the disease we 

condition on a collider and can induce bias which is explained in more detail here [32]. In the 

case of 2SMR, two methods to address this bias are Dubridge et al’s index event bias 

correction [33] and Slope-Hunter [34] which were both originally developed for genome 

wide association studies and would also require additional data from a genome-wide 

association study of developing the disease in question. A recent review of methods for 

addressing index event bias was conducted by Mitchell et al. [35] and we refer you to these 

papers for more details. 

 

A 2SMR package in STATA [36] by default forces the residual variance to be 1 when 

residual variance is less than one or freely estimates the residual variance when it is greater 

than one, thus allowing for overdispersion but not underdispersion.  Not allowing for 

underdispersion is intuitive since we are weighting by the inverse of the variance of each 

SNP and it would be strange to allow for an estimator that is more precise than the variability 

in our SNP-outcome measures. Unfortunately our multivariate meta-analysis approach will 

not allow for overdispersion so is the same as forcing the residual variance to be 1.  If there 

was overdispersion then our method could potentially result in an estimate that is overly 

precise.  
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Our approach is very similar in nature to a two-stage multivariate MR method for mixed 

outcomes (called MRMO) [37] which studies the effect of an exposure on multiple outcomes 

(which could be mixed such as binary and continuous).  MRMO also describes a procedure to 

estimate a p-value for whether the exposure has an effect on any of the outcomes by using a 

Wald test.  We could also estimate a Wald test using our estimates for the exposure-intercept 

and exposure-slope along with their covariance matrix. This would be a joint hypothesis test 

for whether the exposure-intercept is zero and the exposure-slope is zero and could be 

interpreted as whether the exposure has any effect on progression. However we would prefer 

to focus on confidence intervals and regions rather than p-values. 

 

Using our multivariate meta-analysis method it would be possible to carry out the MR-Egger 

approach by also estimating an intercept term allowing us to correct for directional 

pleiotropy. In future work we will explore whether other methods such as the median and 

mode approaches could be adapted for this purpose. Given the large uncertainty from the 

analysis presented here, large consortiums with many longitudinal PD cohorts will be 

required to have sufficient power to detect whether exposures are related to progression.  

 

 

This paper shows that is possible to use multivariate meta-analysis to carry out two sample 

Mendelian Randomisation when using an outcome that is repeatedly measured over time. The 

associations between an exposure and the intercept and linear slope of the repeatedly measure 

trait are unbiased with valid confidence intervals.  We hope this inspires more people to use 
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two sample Mendelian Randomisation to test hypotheses about exposures being related to 

disease progression in neurodegenerative diseases.  
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Table 1. Example 2SMR analysis on the Discovery and Tracking cohorts with BMI as the exposure and MDS-UPDRS IIIa as the outcome.  Data 

is estimate (95% CI); p-value 

 Discovery cohort Tracking cohort Meta-analysis of two cohortsb 

Analysis Intercept Slope Intercept Slope Intercept Slope 

naïve 

approach 

-2.43  

(-7.66, 2.79); 

p=0.36 

0.385  

(-1.014, 1.784); 

p=0.59 

-0.086  

(-4.41, 4.24); 

p=0.97 

-0.169  

(-1.28, 0.94); 

p=0.77 

-1.04  

(-4.37, 2.29);  

p=0.54 

0.045 

(-0.83, 0.92); 

p=0.92  

multivariate 

approach 

-2.47  

(-7.69, 2.75); 

p=0.35 

0.389  

(-1.011, 1.788); 

p=0.59 

-0.065  

(-4.39, 4,26); 

p=0.98 

-0.165  

(-1.28, 0.95); 

p=0.77 

-1.04  

(-4.37, 2.29); 

p=0.54 

0.054 

(-0.82, 0.92); 

p=0.90 

 Estimated (multivariate approach) 

correlation = -0.52 

Estimated (multivariate approach) 

correlation = -0.54 

Estimated (multivariate approach) correlation 

= -0.53 

aNote that higher scores on the MDS-UPDRS III are worse symptoms.  So, for example, a positive association with the intercept would reflect 

higher BMI being associated with worse symptoms at baseline. 

bWithin the naive approach to 2SMR the intercept and slope for the two cohorts are meta-analysed with a standard univariate approach. For the 

multivariate approach to the 2SMR the intercept and slope for the two cohorts are meta-analysed with a multivariate approach accounting for 

estimated the covariance.  
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Table 2.  Results from the simulation based on R2 of 10% 

  Intercept – naïve approach Intercept – multivariate approach 

Scenario 

(truth) 

Correlationa 

mean (sd) 

Estimate mean 

(sd) 

Mean model  

se 

Coverage 95% 

CI 

Mean 

relative 

Biasb 

Estimate 

mean (sd) 

Mean model 

based se 

Coverage 

95% CI 

Mean 

Relative 

Biasb 

1 (2) -0.35 (0.009) 2.00 (0.338) 0.341 94.8% -0.2% 2.00 (0.338) 0.341 94.8% -0.2% 

2 (2) -0.38 (0.008) 2.01 (0.349) 0.341 94.7% 0.3% 2.01 (0.349) 0.341 94.7% 0.3% 

3 (2) 0.076 (0.010) 2.00 (0.347) 0.341 94.2% 0.1% 2.00 (0.347) 0.341 94.2% 0.1% 

4 (2) 0.29 (0.009) 2.00 (0.328) 0.341 96.1% -0.2% 2.00 (0.328) 0.341 96.1% -0.2% 

  Slope – naïve approach Slope – multivariate approach 

Scenario 

(truth) 

Correlation 

(sd) 

Estimate mean 

(sd) 

Mean model 

based se 

Coverage 95% 

CI 

Mean 

relative 

Biasb 

Estimate 

mean (sd) 

Mean model 

based se 

Coverage 

95% CI 

Mean 

relative 

Biasb 

1 (0.45) -0.35 (0.009) 0.449 (0.081) 0.083 95.8% -0.3% 0.449 (0.081) 0.083 95.8% -0.3% 

2 (0.25) -0.38 (0.008) 0.251 (0.080) 0.081 95.4% 0.3% 0.251 (0.080) 0.081 95.4% 0.3% 

3 (0.45) 0.076 (0.010) 0.453 (0.081) 0.083 94.7% 0.7% 0.453 (0.081) 0.083 94.7% 0.7% 

4 (0.45) 0.29 (0.009) 0.449 (0.083) 0.083 94.7% -0.2% 0.449 (0.083) 0.083 94.7% -0.2% 

aEstimated average correlation from the covariance of SNP-intercept and SNP-slope effects 
b(observed estimate-true)/true 
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Table 3.  Results from the simulation based on R2 of 2% 

  Intercept – naïve approach Intercept – multivariate approach 

Scenario 

(truth) 

Correlationa 

mean (sd) 

Estimate mean 

(sd) 

Mean model  

se 

Coverage 95% 

CI 

Mean 

relative 

Biasb 

Estimate 

mean (sd) 

Mean model 

based se 

Coverage 

95% CI 

Mean 

relative 

Biasb 

1 (2) -0.35 (0.009) 2.03 (0.717) 0.764 96.2% 1.5% 2.03 (0.717) 0.764 96.2% 1.5% 

2 (2) -0.38 (0.008) 1.97 (0.778) 0.764 94.1% -1.6% 1.97 (0.778) 0.764 94.1% -1.6% 

3 (2) 0.077 (0.010) 2.00 (0.768) 0.764 95.0% 0.1% 2.00 (0.768) 0.764 95.0% 0.1% 

4 (2) 0.29 (0.009) 2.02 (0.769) 0.764 95.2% 0.8% 2.02 (0.769) 0.764 95.2% 0.8% 

  Slope – naïve approach Slope – multivariate approach 

Scenario Correlation 

(sd) 

Estimate mean 

(sd) 

Mean model 

based se 

Coverage 95% 

CI 

Mean 

relative 

Biasb 

Estimate 

mean (sd) 

Mean model 

based se 

Coverage 

95% CI 

Mean 

relative 

Biasb 

1 (0.45) -0.35 (0.009) 0.447 (0.181) 0.185 95.7% -0.7% 0.447 (0.181) 0.185 95.7% -0.7% 

2 (0.25) -0.38 (0.008) 0.260 (0.182) 0.181 95.1% 4.1% 0.260 (0.182) 0.181 95.1% 4.1% 

3 (0.45) 0.077 (0.010) 0.465 (0.188) 0.185 95.0% 3.3% 0.465 (0.188) 0.185 95.0% 3.3% 

4 (0.45) 0.29 (0.009) 0.449 (0.178) 0.185 96.0% -0.3% 0.449 (0.178) 0.185 96.0% -0.3% 

aEstimated correlation from the covariance of SNP-intercept and SNP-slope effects 
b(observed estimate-true)/true 
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Table 4.  Joint coverage of the intercept and slope. For the naïve approach we used the two confidence intervals (essentially drawing a box) 

whilst for the multivariate approach we have drawn a confidence ellipse. 

 R2 of 10% R2 of 2% 

Scenario Coverage of naïve 

approach 95% CI 

Coverage of multivariate 

approach 95% CI 

Coverage of naïve 

approach 95% CI 

Coverage of multivariate 

approach 95% CI 

1 91.5% 94.9% 92.5% 95.5% 

2 90.6% 94.9% 89.9% 93.3% 

3 89.0% 94.6% 90.5% 94.5% 

4 91.3% 95.2% 91.5% 95.8% 
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Figure 1. Assumed Directed Acyclic Graph for the effect of exposure on disease progression. 
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Figure 2.  Absolute change in the MDS-UPDRS III for a one point increase in the exposure. Estimated model from the meta-analysis of the two 

cohorts including the 95% confidence intervals for both the naïve and multivariate approach  
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Supplementary Table 1.  Results from the simulation with a reduced sample size and unbalanced data (between 1-4 observations per person) 

  Intercept – naïve approach Intercept – multivariate approach 

Scenario 

(truth) 

Correlationa 

mean (sd) 

Estimate mean 

(sd) 

Mean model  

se 

Coverage 95% 

CI 

Mean 

relative 

Biasb 

Estimate 

mean (sd) 

Mean model 

based se 

Coverage 

95% CI 

Mean 

relative 

Biasb 

1 (2) -0.65 (0.019) 2.00 (1.54) 1.52 94.8% -0.2% 2.00 (1.54) 1.52 95.0% -0.1% 

  Slope – naïve approach Slope – multivariate approach 

Scenario Correlation 

(sd) 

Estimate mean 

(sd) 

Mean model 

based se 

Coverage 95% 

CI 

Mean 

relative 

Biasb 

Estimate 

mean (sd) 

Mean model 

based se 

Coverage 

95% CI 

Mean 

relative 

Biasb 

1 (0.45) -0.65 (0.019) 0.444 (0.454) 0.446 94.4% -1.4% 0.444 (0.454) 0.446 94.3% -1.3% 

 Joint coverage - naïve approach Joint coverage - multivariate approach 

 92.5% 94.6% 

aEstimated correlation from the covariance of SNP-intercept and SNP-slope effects 
b(observed estimate-true)/true 
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Supplementary Figure 1.  Absolute change in the MDS-UPDRS III for a one point increase in the exposure. 1a shows the estimated model from 

the Oxford Discovery cohort including the 95% confidence intervals for both the naïve and multivariate approach and 1b the same from the 

Tracking cohort. 
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