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Abstract22

The effective reproductive number Rt has taken a central role in the scientific, political, and public23

discussion during the COVID-19 pandemic, with numerous real-time estimates of this quantity routinely24

published. Disagreement between estimates can be substantial and may lead to confusion among decision-25

makers and the general public. In this work, we compare different estimates of the national-level effective26

reproductive number of COVID-19 in Germany in 2020 and 2021. We consider the agreement between27

estimates from the same method but published at different time points (within-method agreement) as28

well as retrospective agreement across different approaches (between-method agreement). Concerning29

the former, estimates from some methods are very stable over time and hardly subject to revisions, while30

others display considerable fluctuations. To evaluate between-method agreement, we reproduce the31

estimates generated by different groups using a variety of statistical approaches, standardizing analytical32

choices to assess how they contribute to the observed disagreement. These analytical choices include the33

data source, data pre-processing, assumed generation time distribution, statistical tuning parameters,34

and various delay distributions. We find that in practice, these auxiliary choices in the estimation of Rt35

may affect results at least as strongly as the selection of the statistical approach. They should thus be36

communicated transparently along with the estimates.37

∗ Correspondence to: E. K. Brockhaus (elisabeth.brockhaus@student.kit.edu), J.Bracher (johannes.bracher@kit.edu)38

1 Introduction39

The definition of the effective reproductive number Rt as the “the expected number of new infections caused40

by an infectious individual in a population where some individuals may no longer be susceptible” (Gostic41

et al., 2020) has become widely known even outside of the scientific community during the COVID-1942

pandemic. Values above 1 imply epidemic growth, while values below 1 correspond to a decline. Public43

health agencies and academic groups from around the world have been publishing Rt values in a daily44

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.27.23289109doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

elisabeth.brockhaus@student.kit.edu
johannes.bracher@kit.edu
https://doi.org/10.1101/2023.04.27.23289109
http://creativecommons.org/licenses/by-nc-nd/4.0/


rhythm since the beginning of the pandemic. In the political debate on the tightening or loosening of45

intervention measures, these numbers have been routinely cited. Likewise, numerous scientific works on the46

efficacy of control measures have attempted to link the development of Rt to specific policy choices (e.g.,47

Haug et al. 2020; Brauner et al. 2021; Knock et al. 2021).48

A major difference between Rt and other epidemiological indicators is that it is not directly observable in49

practice. While numbers of confirmed cases or occupied hospital beds come with their own problems, they50

are data, i.e., observed values. The effective reproductive number, on the other hand, requires estimation51

unless the complete transmission chain is observed, which is unrealistic in most settings. Estimation is based52

on statistical models which combine data and epidemiological assumptions, leading to a considerable number53

of analytical choices to be made. Usually, various defensible options exist, which will influence the results.54

Estimates produced by different groups of researchers can therefore differ, as is illustrated in Figure 1. The55

top panel shows estimates of the effective reproductive number of COVID-19 in Germany from January 1,56

2021, to June 10, 2021, as published by eight different research teams on July 10, 2021. When taken at face57

value, these numbers often imply disagreement even on whether Rt was above or below 1. The widths of58

95% uncertainty intervals, shown in the bottom panel, vary considerably, and for some pairs of methods,59

they hardly overlap. In this article, we are concerned with how these discrepancies come about and how60

they are shaped by different analytical choices.61
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Figure 1: Estimates for the effective reproductive number of COVID-19 in Germany published by eight
different research teams on July 10, 2021 (July 11, 2021, for HZI). Top: point estimates (only available for
the last 15 weeks for epiforecasts); bottom: 95% uncertainty intervals (not available for HZI).

The pronounced differences between estimates of the effective reproductive number have been pointed62

out recently by Wagenmakers et al. (2022). In an illustration of different estimates of Rt in the United63
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Kingdom from early October 2020, they found the variability between different estimates to exceed the64

width of the respective uncertainty intervals. Occasionally, the disagreement between estimates has also65

spurred confusion in the public debate. For example, on October 27, 2020, Bavarian governor Markus Söder66

cited an effective reproductive number of 0.57 for his state, which led representatives of the parliamentary67

opposition to demand a loosening of restrictions (RedaktionsNetzwerk Deutschland, 2020). This number,68

however, differed substantially from the value of 0.9 reported for Bavaria on the same day by Robert Koch69

Institute (RKI 2020a), the German federal public health agency. As clarified subsequently by the Bavarian70

State Office for Health and Food Safety, Söder had cited an estimate from Helmholtz Centre for Infection71

Research (HZI, Khailaie and Mitra et al. 2020). The statement detailed that the Bavarian authorities72

monitored estimates from RKI and HZI in parallel, but did not always state the respective source in public73

communications. The situation is further complicated by the fact that estimates referring to the same day74

and based on the same method often evolve over time, which has likewise been subject to public debate.75

As an example, in Fall 2020 it was pointed out that the estimates by RKI were often corrected upwards76

retrospectively (Lauck, 2020).77

Given these challenges, a systematic comparative evaluation of Rt estimates is desirable. This, however, is78

hampered by several conceptual difficulties. Firstly, there is leeway in the technical definition of the effective79

reproductive number (Funk et al., 2022), and different approaches may not actually refer to the exact80

same estimand. Secondly, the effective reproductive number remains a latent quantity even in hindsight.81

Systematic comparison of estimates and true values is thus only feasible on synthetic data (e.g., Gostic et al.82

2020, O’Driscoll et al. (2021)). Simulation results, however, will necessarily depend on which model is used83

to generate data, and it is unclear to what degree they translate to the real world. It has been argued84

that Rt estimates can be evaluated based on derived short-term forecasts (Teh et al., 2022); this, however,85

is challenging as e.g., errors in the estimated Rt and the assumed generation time distribution may cancel86

out so that even bad Rt estimates can yield acceptable forecasts. In this work, we take a complementary87

approach to simulation and forecasting studies by describing discrepancies between real-world Rt estimates88

and relating them to underlying analytical choices. A somewhat similar approach has previously been taken89

by Pasetto et al. (2021), who compared Rt estimates based on an SEIR model and the method by Cori et al.90

(2013). We will analyze Rt estimates for COVID-19 in Germany to study the following aspects:91

• Within-method temporal coherence: We assess to which degree estimates based on the same method92

and referring to the same date, but published at different times, vary. In particular, we analyze the93

agreement of consolidated point estimates with the uncertainty intervals published near-real-time.94

• Between-method agreement of retrospective estimates: We retrospectively compare estimates across95

different estimation methods. Reproducing the results published by different groups and harmonizing96

analytical decisions, we gain insights into how they contribute to the observed discrepancies.97

With our analysis we intend to enable readers to critically assess published Rt estimates and make informed98

decisions when implementing an estimation scheme themselves. The remainder of the paper is structured99

as follows. Section 2 provides an overview of the different choices an analyst needs to make to estimate100

Rt. Moreover, different estimation approaches applied in real-time to German surveillance data during the101

COVID-19 pandemic are described. In Section 3 we explore within-method temporal coherence, before102

turning to the between-method agreement in Section 4. Section 5 concludes with a discussion.103

2 Estimating Rt: The agony of choice104

Estimating Rt requires numerous decisions by the analyst, ranging from the definition of Rt and the statistical105

approach to epidemiological parameterizations and the choice of the data set (see also Vegvari et al. 2022).106

In this section, we review these dimensions and contrast the decisions underlying various routinely published107

estimates of Rt of COVID-19 in Germany. Table 1 provides an overview of the research groups whose108

estimates we consider. Most systems were launched throughout the year 2020 (starting with epiforecasts109

in early March), and some have in the meantime been retired. Table 2 provides an abridged summary of110

the model characteristics. For all methods, estimates (and in most cases, analysis codes) were shared in111

machine-readable format and under open licences in dedicated repositories, see Supplement S1.112
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Table 1: Overview of the groups who regularly published Rt estimates for Germany during the COVID-19
pandemic. Descriptions of the respective methodology are provided in Section 2.2. Note that web domains
provided in footnotes may be discontinued at some point; the links to the repositories provided in Supplement
S1 are likely to be more stable.

Institution Abbrev. Reference Active period
ETH Zurich1 ETH Huisman et al. (2022a) since 2020-05-01
Robert-Koch Institute2 RKI an der Heiden and Hamouda (2020) since 2020-06-04
Technische Universität Ilmenau3 Ilmenau Hotz et al. (2020) since 2020-04-22
Swiss Data Science Center and Institut de SDSC Krymova et al. (2022) since 2020-10-01
Santé Globale, Université de Genève4

epiforecasts group / LSHTM5 epiforecasts Abbott et al. (2020b) 2020-03-02 - 2022-03-31
Forschungszentrum Jülich6 rtlive Systrom et al. (2020) 2020-09-24 - 2021-07-31
globalrt7 globalrt Arroyo-Marioli et al. (2021) 2021-02-15 – 2023-01-06
Helmholtz Centre for Infection Research8 HZI Khailaie and Mitra et al. (2021) since 2020-04-29

2.1 Definition of Rt113

There are at least two ways of formalizing the concept of the (time-varying) effective reproductive number114

(Gostic et al., 2020). The case reproductive number, Rcase
t , quantifies how many new infections individuals115

who became infected at time t will cause on average. It is thus forward-looking and compares these individuals116

to the following generation of infected. The instantaneous reproductive number, Rinst
t , on the other hand, is117

backward-looking and compares them to the previous generation. Specifically, it is given by the expected118

number of infections occurring at t, divided by the number of previously infected individuals, each weighted119

by their relative infectiousness at time t. A simple discrete-time display of the recursive relationship between120

infections Xt occurring on days t = 1, 2, . . . can help to understand this distinction (White et al., 2021). For121

the instantaneous reproductive number, the recursion, also called the renewal equation, is given by122

E(Xt | Xt−1, . . . , X1) = Rinst
t ×

t−1∑
i=1

wiXt−i, (1)

where wi is the probability that the generation time (i.e., the time between primary and secondary infection)123

equals i time units. Here, the index t in Rt refers to the time of secondary infection. For the case reproductive124

number the recursion is125

E(Xt | Xt−1, . . . , X1) =

t−1∑
i=1

Rcase
t−i wiXt−i, (2)

the index t− i in Rt−i thus referring to the time of primary infection. We note that Rcase
t−i can be seen as a126

convolution of Rinst
t and the generation time distribution. In the absence of sudden changes, shifting Rcase

t127

back by the mean generation interval m usually leads to good agreement with Rinst
t (i.e., Rcase

t−m and Rinst
t128

can be expected to be similar; Gostic et al. 2020).129

2.2 Modelling and estimation approaches130

Numerous statistical approaches exist to estimate Rt from data. We do not provide a comprehensive review,131

but focus on methods various research teams have employed in real time to estimate Rt of COVID-19 in132

Germany (see Table 1). Descriptions are kept concise and we point to the respective references for details.133

1https://ibz-shiny.ethz.ch/covid-19-re-international/
2https://www.rki.de/DE/Content/InfAZ/N/Neuartiges Coronavirus/Situationsberichte/COVID-19-Trends/COVID-19-

Trends.html
3https://stochastik-tu-ilmenau.github.io/COVID-19/germany
4https://renkulab.shinyapps.io/COVID-19-Epidemic-Forecasting/
5https://epiforecasts.io/covid/, previously at https://cmmid.github.io/topics/covid19/global-time-varying-transmission.

html
6https://rtlive.de
7http://www.globalrt.live/
8https://gitlab.com/simm/covid19/secir/-/wikis/Report
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Variations and extensions of the Cori method. Four groups made use of the method by Cori et al.134

(2013), but with different parameterizations and data pre-processing. This method uses formulation135

(1) combined with a Poisson distribution for new cases. Estimation of Rt is then carried out for sliding136

windows of a width chosen by the analyst. In the widely used R package EpiEstim (Cori et al., 2020)137

inference is based on a Bayesian approach.138

RKI (an der Heiden and Hamouda, 2020; RKI, 2020b). First, sampling-based nowcasting139

is applied in order to impute missing symptom onset dates in incidence data and to correct recent140

values for reporting delays. Next, the method by Cori et al. (2013) is applied to each sampled time141

series, using a fixed generation time and frequentist inference. Uncertainty intervals result from142

the spread of the Rt estimates across different nowcasting samples. The estimation of uncertainty143

from the Cori method is not taken into account. The window size is set to either 4 or 7 days. We144

focus on the latter which has been used more widely.145

ETH (Huisman et al., 2022a). Local polynomial regression (LOESS) is applied to the time146

series of reported cases to account for weekday effects. The smoothed time series is deconvo-147

luted using various types of delay distribution to reconstruct the time series of infections. Rt is148

then estimated using the EpiEstim package and a window size of 3 days. Uncertainty intervals are149

obtained by combining the credible intervals and a block bootstrapping approach. The bootstrap-150

ping step was only added on January 26, 2021, and led to a widening of intervals (leaving point151

estimates unaffected). The ETH team published four estimates in parallel (based on confirmed152

cases as used here, as well as on new hospitalizations, death, and test positivity percentages). We153

focus on the Rt estimates referred to as “sliding window” (the default in the ETH dashboard).154

SDSC (Krymova et al., 2022). The case time series is smoothed via a LOESS-based seasonal-155

trend decomposition prior to estimation using the EpiEstim package. The window size is set to 4156

days. The proposed extension is focused on the point estimates from the Cori method and does157

not involve the computation of uncertainty intervals. The provided intervals correspond to those158

returned by the EpiEstim package.159

Ilmenau (Hotz et al., 2020). The effective reproductive number is estimated in a frequentist160

fashion using equation (1) and a window size of one day. Wald-type confidence intervals are based161

on newly derived asymptotic standard errors of the employed estimator.162

epiforecasts (Abbott et al., 2020b). The estimation of Rt is based on a Bayesian latent variable ap-163

proach, implemented in the R package EpiNow2 (Abbott et al., 2020a). The infection dynamics are164

modeled as in equation (1) and linked to the observed case time series via convolutions with the165

assumed incubation time and reporting delay distributions. The observation model is given by a166

negative-binomial distribution. A zero-mean Gaussian process with a Matérn kernel is used for the167

first-order temporal differences of the effective reproductive number with the magnitude and length-168

scale estimated jointly with other parameters. Like for ETH, estimates based on hospitalizations and169

deaths were available, too, but we focus on estimates based on case incidences.170

rtlive (Systrom et al., 2020; Osthege et al., 2021) Estimates are based on relationship (2), which is171

combined with a delay process from infection to detection and a re-scaling of case numbers with inverse172

testing volumes. Inference is conducted in a Bayesian fashion. Similarly to the epiforecasts approach,173

a negative binomial observation model is used and Rt is assigned a random walk prior.174

globalrt (Arroyo-Marioli et al., 2021). This approach exploits a relationship between the epidemic175

growth rate and the effective reproductive number which holds under the SIR (susceptible-infected-176

removed) model. The effective reproductive number is assumed to follow a random walk and estimation177

from observed growth rates is done via a Kalman filter or smoother. We here focus on the smooth-178

ing version, which corresponds to a case reproductive number, as this was displayed in the public179

dashboard. The generation time distribution is assumed to be exponential as in the SIR model.180

HZI (Khailaie and Mitra et al., 2021; Knabl, Mitra and Kimpel et al., 2021) A deterministic SE-181

CIR (susceptible - exposed - carrier - infected - recovered) model with time-varying parameters is fitted182

to cumulative case and death numbers, with certain parameters fixed to or varied around literature183

estimates. Estimates of Rt are computed from the model parameters, which are estimated for sliding184
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10-day windows. We use estimates which in addition were smoothed using a 7-day moving average, as185

shown in the HZI dashboard.186

2.3 Epidemiological assumptions and parameterization187

All described approaches require some parameterization, i.e., specification of epidemiological assumptions.188

In particular, the distributions of the following durations and delays need to be chosen.189

• The generation time (GT), i.e., time between primary and secondary infection. The impact of the190

chosen generation time distribution on Rt estimates is well-studied (Wallinga and Lipsitch, 2007). The191

longer the assumed mean generation time, the greater the amplitude of estimates away from 1 (i.e.,192

estimates are increased if R̂t > 1 and decreased if R̂t < 1 for a prolonged period of time). The variance193

of the GT has a more subtle effect. If Rt is time-constant, Rt estimates are further from 1 the smaller194

the variance (Wallinga and Lipsitch, 2007); for time-varying Rt, the assumed variance also influences195

the smoothness of the estimated trajectories.196

• The incubation period (IP), i.e., time from infection to symptom onset.197

• The reporting delay (RD) between symptom onset and reporting. Changing the mean incubation time198

and reporting delay shifts Rt estimates in time. The impact of the variance is not well-studied, but it199

likely affects the smoothness of estimates.200

Table 2 summarizes the distributions used by the different groups. The means and standard deviations201

of the generation time distribution are moreover displayed in Figure 2. To illustrate that the variability in202

assumed values is not limited to the German context we added values used by various European public health203

agencies (see Supplement S2 for sources). Note that the values for HZI are not explicitly provided in the204

manuscript by Khailaie and Mitra et al. (2021), but have been computed by us based on model parameters205

reported there (see Supplement S3.1). The globalrt dashboard allowed users to select a mean generation206

time between five and ten days; we here use the default setting of seven days.207

Figure 2: Scatter plot of mean generation time and corresponding standard deviation used by different
research groups. The red rhombus represents a “consensus value” chosen for further analysis, see Section
4.1. epiforecasts accounted for uncertainty in the generation time distribution by assuming independent
normal priors for the mean and standard deviation; we illustrate the respective 95% uncertainty intervals
by a cross. For context, we also show values used by public health agencies of other European countries.
In the Netherlands (due to the transition to the Omicron variant) and Austria (due to a data update) the
parameterization was revised. For details and references see Supplement S2.
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Table 2: Methodological characteristics and parameterizations of the compared estimation approaches. The
table follows the structure of Sections 2.1–2.5. The consensus model is introduced in Section 4.1 By condi-
tional distribution of Xt we refer to the distribution of new cases Xt in formulation (1) or (2). The concept
of “revision due to smoothing” is discussed in Section 3.3. Abbreviations: GT = generation time; IP =
incubation period; RD = reporting delay.

Panel A: Methods based on Cori et al. (2013) and a consensus parameterization used in Section 4.

ETH RKI Ilmenau SDSC1 consensus
type of Rt instantaneous instantaneous instantaneous instantaneous instantaneous

underlying epidemic model Cori et al. Cori et al. Cori et al. Cori et al. Cori et al.
regularization/prior on Rt sliding window sliding window sliding window sliding window sliding window
cond. distr. of Xt Poisson Poisson Poisson Poisson Poisson
inference Bayesian max. lik. max. lik. Bayesian Bayesian
preprocessing smooth. + deconv. nowcast – smoothing –
window size 3 7, 4 1 4 7
rev. due to smoothing yes no no yes no

GT distribution type gamma constant ad hoc gamma exponential
mean GT (sd) 4.8 (2.3) 4.0 5.6 (4.2) 4.8 (2.3) 4 (4)
source of GT Nishiura et al. – – Nishiura et al. Figure 2
mean IP (sd) 5.3 (3.2) 1.0 5.0 – 0
mean RD (sd) 5.5 (3.8) 3.4 2.0 7.0 7

incidence data source RKI, by RKI, by RKI, by JHU RKI, by
onset date onset date test date test date

Panel B: Other Methods

epiforecasts rtlive globalrt HZI1

type of Rt instantaneous case case instantaneous

underlying epidemic model Abbott et al. Systrom et al. Arroyo-Marioli et al. Khailaie & Mitra et al.
regularization/prior on Rt Gaussian process random walk random walk sliding window
cond. distr. of Xt negative binomial negative binomial Gaussian2 deterministic
inference Bayesian Bayesian Kalman smoother literature est., least squares
preprocessing – – – –
window size – – – 10 & 7
rev. due to smoothing yes yes yes no

generation time distr. gamma log-normal exponential mixt./conv. of exponentials
mean GT (sd) 3.6 (3.1)3 4.7 (2.9) 7 (7) 10.3 (7.6)
source of GT Ganyani et al. Nishiura et al. – –
mean IP (sd) 5.4 (2.2)3 5.0 – 5.2
mean RD (sd) 5.9 (14.6)3 7.1 (5.9) – 3.7

incidence data source WHO RKI, by JHU RKI, by
test date test date

1 Some statements were derived for the present study or retrieved from analysis codes rather than the referenced paper; for details on HZI see Appendix S3.
2 The globalrt model operates on the scale of daily growth rates rather than incidences but implies a conditional Gaussian distribution for the latter.
3 The epiforecasts team was the only one to account for uncertainty in the GT, IP and RD distributions; see also Figure 2.

2.4 Methods-specific tuning parameters and prior distributions208

The standardized display of analytical choices in Table 2 neglects that in each modeling approach, some209

additional decisions arise. Bayesian estimation as employed by several teams requires choosing prior dis-210

tributions. The HZI approach takes into account numerous epidemiological characteristics other than the211

generation time, which are informed by literature estimates. The SDSC and ETH approaches involve data212

smoothing and deconvolution, which require fixing various tuning parameters. These aspects cannot be213

standardized across methods, and we refrain from analyzing them in detail. Instead, we pragmatically leave214

them at the values specified by the respective teams wherever needed.215

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.27.23289109doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.27.23289109
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.5 Input data sources216

While Rt can also be estimated from death or hospitalization counts (Sherratt et al., 2021; Huisman et al.,217

2022a), we focus on estimates based on COVID-19 case numbers. In Germany and during the considered218

time period (April 2020 – July 2021), such data were regularly released by RKI (2020a), the World Health219

Organization (WHO; 2022), and the Center for Systems Science and Engineering at Johns Hopkins University220

(JHU; Dong et al. 2020). The WHO and JHU data were aggregated by the time cases first appeared in the221

respective data set. The RKI data were in a line list format containing a reference date called theMeldedatum222

(“reporting date”) and for a subset of cases the symptom onset date. The Meldedatum denoted when a local223

health authority digitally registered a case and usually corresponded to the date of the positive test. The224

Ilmenau, HZI, and rtlive groups aggregated the RKI data by this date. RKI and ETH used the date of225

symptom onset where available. While RKI completed missing onset dates via multiple imputation, ETH226

used the reporting date when the symptom onset date was not available and adjusted the reporting delay227

in the deconvolution accordingly. rtlive additionally used (not publicly available) data on testing volumes.228

Figure 3 shows the different time series for January through June 2021. The series denoted “RKI, positive229

test” is aggregated by the date of the positive test using the implementation from rtlive. “RKI, symptom230

onset” is the time series by symptom onset date as reconstructed by RKI. The series by symptom onset is231

shifted to the left compared to the others; the WHO data are somewhat shifted to the right, while the JHU232

and RKI data by test date are largely aligned. All series display within-week seasonality, with a smaller233

amplitude for the RKI data by onset date. The JHU data occasionally display spikes absent in the other234

series. A last relevant aspect, going beyond Figure 3, is the temporal stability of the data. While the WHO235

and JHU data were only rarely subject to revisions, the last 3–5 entries in the RKI case data were typically236

still updated retrospectively.237
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Figure 3: Case incidence time series used by different research groups. To enhance visibility we only display
the period January through June 2021 (data version: November 23, 2021).

3 Within-model temporal coherence of real-time estimates238

We now move to the analysis of Rt estimates based on the methods and parameterizations described before.239

Estimates were typically updated each day in an automated fashion. Oftentimes these updates also concerned240

estimates for the past, which are revised in light of new data. Consequently, for each target date, i.e., the date241

to which an estimate refers, a multitude of estimates issued on different publication dates are available. This242

raises the question of temporal coherence of estimates. By this, we mean that estimates issued at various243

times should not differ more than implied by the respective uncertainty intervals. Temporal coherence is a244

necessary, though not sufficient, prerequisite for reliable estimation. After all, if subsequent estimates from a245

method are incompatible, agreement with the underlying truth is necessarily limited. Our analyses are based246

on real-time estimates obtained from the repositories referenced in Supplement S1. We do not explicitly247

take into account possible modifications of methods during the considered time period; strictly speaking, we248
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thus assess the coherence of estimation systems, which may evolve over time, rather than uniquely defined249

methods with fixed parameterizations.250

3.1 Illustrating the evolution of Rt estimates over time251

Figure 4 illustrates how real-time Rt estimates from different methods evolved over time. For each method252

and a 70-day period, it overlays real-time estimates and an estimate made six months later (black line)253

when all data and results can be expected to have stabilized. Where available, 95% uncertainty intervals1254

are shown as shaded areas. We display estimates published on Thursdays where available and published on255

neighboring days otherwise. Dates of publication are indicated by vertical lines. Note that most teams do256

not provide estimates up to the publication date, i.e., the Rt trajectories do not reach the vertical line in the257

respective color. Moreover, some teams (epiforecasts, Ilmenau, SDSC) marked estimates for recent dates as258

“based on partial data” or ”forecast”, which we indicate by dashed and dotted lines, respectively.259

Some patterns can be discerned in how and how strongly estimates are revised. While the HZI estimates260

hardly changed, for RKI and Ilmenau recent values tended to be corrected upwards. The ETH estimates,261

on the other hand, were mostly corrected downwards for the displayed period. rtlive, epiforecasts and (to a262

lesser degree) globalrt estimates tended to be corrected upwards when Rt was increasing and downwards in263

periods when Rt was decreasing. For SDSC, there were some pronounced corrections, but without a clear264

pattern. Moreover, the approaches differed in the width of the uncertainty intervals. While those from SDSC265

and Ilmenau were very narrow, those of rtlive and globalrt were so wide that they almost always included266

the threshold value of 1. For most methods, uncertainty increased for recent dates, leading to funnel-shaped267

bands. This was particularly prominent for epiforecasts, whereas the SDSC intervals were of almost constant268

width. As mentioned in Section 2.2, the ETH method was revised in early 2021; this change explains why269

the consolidated intervals are wider than those from Fall 2020. The HZI estimates were published in the270

form of samples, but it is unclear whether they can be seen as an uncertainty quantification. As estimates271

were displayed without uncertainty bands on the HZI website, we likewise omit them.272

3.2 Systematic assessment of temporal coherence273

To substantiate these observations, we assess the temporal coherence of estimates quantitatively. Unlike in274

Figure 4 we do not use estimates made at a single later time point as the consolidated ones. Instead, for each275

target date we use estimates generated 70 days later. This ensures that the time during which the estimates276

could be revised is the same for all target dates. Based on this definition we computed the following.277

• The fraction of instances in which the 95% uncertainty intervals issued in real-time covered the respec-278

tive consolidated point estimate.279

• The average width of 95% uncertainty intervals.280

• The mean absolute difference (MAD) between real-time and consolidated point estimates. This reflects281

the volatility of real-time estimates relative to the consolidated ones.282

• The mean signed difference (MSD) of real-time and consolidated estimates. This reflects if revisions are283

systematically in one direction. We orient this such that positive values indicate upwards corrections.284

Figure 5 summarizes the results for estimates published between October 1, 2020, and July 22, 2021. Not all285

models were operated during the entirety of this period, but we consider it a reasonable overlap (see Table286

1 and Supplementary Figure S15 on when methods were operated). This period includes two full waves of287

infections (Figure S16) so that effects caused by rising or falling case numbers should largely cancel out.288

Results are shown as a function of the number of days between the publication date and the target date. E.g.,289

“10d back” means that the estimate refers to the date ten days before the time of estimation. We here stuck290

to the labeling of estimates by the respective research teams. As they assumed different incubation periods291

and reporting delays (Table 2), estimates from different methods are not necessarily aligned. Notably, the292

estimates (and thus curves in Figure 5) by epiforecasts, rtlive, and ETH are shifted to the left relative to293

the others, as longer incubation periods and reporting delays were assumed. In Supplementary Figure S17294

1epiforecasts reported 90% rather than 95% uncertainty intervals, along with a standard deviation. As the 90% intervals
agreed well with the Gaussian approximation mean ± 1.645× sd, we approximated the 95% intervals as mean ± 1.96× sd.
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Figure 4: Rt estimates published between October 1, 2020, and December 10, 2020, and a consolidated
estimate published 6 months later (epiforecasts: 15 weeks later). Note the different scales of the y-axes for
HZI and Ilmenau, and the different time periods for Ilmenau and globalrt (which were not operated during
the period shown for the other models). The consolidated ETH intervals are wider than those issued in real
time due to a revision of methodology. The line type represents the label assigned to the estimate by the
respective team: solid: “estimate”, dashed: “estimate based on partial data”, dotted: “forecast”. Shaded
areas show 95% uncertainty intervals.
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Figure 5: Temporal coherence of Rt estimates. Panels: A Proportion of 95%-uncertainty intervals issued
in real-time which contained the consolidated estimate. B Mean width of 95%-uncertainty intervals. C
Mean absolute difference of the real-time and consolidated estimates. D Same as C, but signed rather than
absolute differences. All indicators are shown as a function of the time between the target date (as stated
by the teams) and the publication date. Averages refer to the period October 1, 2020 – July 22, 2021 (see
Figure S15 for exact periods during which methods were operated). The consolidated estimate corresponds
to the one published 70 days after the respective target date. For ETH two additional lines are included
in the top row differentiating between intervals obtained from the old procedure before January 26, 2021
(n = 95), and from the new bootstrap approach afterward (n = 171; see model description in Section 2.2).

we provide a display where curves are aligned to improve comparability. The respective shifts have been295

determined in a data-driven way, see Section 4.1 and Supplement S4.296

Panel A shows the coverage fractions of the 95% uncertainty intervals as defined above. These were297

in the order of 95% for rtlive and consistently 100% for globalrt. For epiforecasts, coverage was close to298

nominal less than 4 and more than 14 days back, while there was a moderate dip in between (this concerned299

mostly estimates marked as “based on partial data”). RKI and Ilmenau achieved close to complete coverage300

for dates further back in the past, starting from 9 and 14 days back, respectively. For more recent values,301

however, coverage dropped. This was particularly pronounced for Ilmenau, with coverage falling to 0%302

at 8 days back. ETH overall achieved coverage values of 40% to 75% during the period examined in this303

paper. As can be seen from the additional lines labeled “old” and “new”, coverage was considerably higher304

for estimates published after January 26, 2021, when the computation of intervals was revised (with the305

explicit goal to account for more sources of uncertainty, see Huisman et al. 2022b). The coverage of the306

SDSC (default EpiEstim) intervals was around 25% for values labeled as “observed” and dropped to roughly307

10% for values labeled “predicted”. Panel B shows the average width of the 95% uncertainty intervals. The308

funnel-shaped character of the confidence intervals of globalrt, rtlive, epiforecasts, and RKI is reflected in309

the upward shape of the respective curves. As already visible in Figure 4, the uncertainty intervals issued310

by globalrt and rtlive were considerably wider than those from the other groups. SDSC and Ilmenau issued311

the most narrow intervals. Prior to the change in methodology in January 2021, the ETH intervals were312
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similarly narrow but became wider afterward.313

Panels C and D display the mean absolute and mean signed difference between real-time and consolidated314

estimates, respectively. For all methods, the mean absolute difference was the largest for recent values. A315

particularly striking picture is seen for the Ilmenau estimates, where the average correction of estimates 8316

days back was 0.31. For some methods the MAD approached zero after a few days (HZI, RKI, Ilmenau,317

globalrt), indicating that the estimates stabilized. For the remaining models, the average corrections were318

clearly non-zero even 20 days back, with epiforecasts and SDSC showing a flat pattern from around 12 days319

back. Panel D shows that for most methods estimates tended to be corrected upwards, especially recent320

ones. As already visible from Figure 4, this includes RKI and Ilmenau. For ETH the picture is somewhat321

difficult to interpret, as the sign of the average correction flips at 16 days back. It should be noted that322

for most models the mean signed differences were much lower than the mean average differences, indicating323

that corrections in both directions occurred.324

To assess the sensitivity of these results to the definition of the consolidated estimates, we compared325

estimates published 50 and 70 days after the target date. As shown in Supplementary Figure S18, these326

agree closely. The exact definition of the consolidated estimates is thus not crucial for our results.327

3.3 Interpretation of observed patterns328

We now provide some interpretation of the identified patterns, pointing out possible connections to modeling329

choices. Retrospective revisions of Rt estimates can stem from two main mechanisms. Firstly, past incidence330

values can be revised in the input data, which will lead the same estimation method to produce different331

results when re-run. The RKI data were subject to such revisions, which affected in particular the last few332

days. The JHU and WHO data, on the other hand, were rarely revised. Data revisions were typically upward333

as delayed reports were added. It seems likely that the strong upward corrections in the Ilmenau estimates334

stem from this aspect as reporting delays were not accounted for explicitly. The RKI method included a335

nowcasting step to account for delays, but the correction seems to have been slightly too weak. The rtlive336

model accounted for revisions by an empirically determined reporting delay distribution. However, it also337

relied on testing volume data which was more prone to data revision.338

In the Cori and the HZI methods, the length of the estimation window moderates how strongly results339

can change due to data revisions. The Ilmenau model, which used a one-day window, was strongly affected340

as estimation hinged purely on the rather unstable last data point. The HZI model, on the other hand,341

used a ten-day window for estimation and additionally smoothed the consolidated estimates via a trailing342

seven-day moving average. The consolidated estimates were thus based on a 16-day window (with some343

weighting). As the revisions of the RKI data only concerned a small part of this window, the resulting344

revisions of estimates were negligible. We illustrate this in Supplementary Figure S13, which shows that345

without the additional smoothing step slightly more pronounced revisions of estimates occurred.346

The second reason why estimates may change is smoothing during the estimation process. This can347

enter either via data pre-processing (ETH, SDSC) or model assumptions on the Rt trajectory (Gaussian348

process assumption in epiforecasts, random walk in rtlive and globalrt). Via smoothing, a new data point349

can influence how the model treats previous data, and thus impact the results for preceding target dates.350

We note that smoothing is a planned feature of the approaches in question. Indeed, estimates up to the351

day of estimation as available from epiforecasts would not be feasible without a generative assumption352

implying some smoothness. The trade-off is that near-real-time estimates are increasingly extrapolations353

of the previous Rt trajectory, and likely to change once more data become available. This explains why354

estimates from epiforecasts, globalrt, and rtlive were often corrected upwards when Rt was on the rise and355

downwards when it was on the fall. For methods based on trailing estimation windows (RKI, Ilmenau, HZI)356

revisions cannot arise from this aspect, even though window sizes larger than one also imply some smoothing.357

Lastly, how well uncertainty intervals cover consolidated estimates depends on how wide the former are.358

By issuing wide intervals, globalrt and rtlive achieved high coverage despite substantial revisions. While we359

defer a discussion of the overall interval widths to Section 4, we provide some remarks on the widening of360

intervals for target dates close to the publication date. This funnel-like pattern was particularly pronounced361

for epiforecasts, globalrt, and rtlive. These methods provided estimates closest up to the publication date,362

which as mentioned before, got less and less constrained by data. In the Bayesian framework, this translated363

naturally to wider uncertainty intervals. In the case of rtlive, this was reinforced by hard-coded assumptions364

on the variability of the random walk. In the RKI approach, the uncertainty from the nowcasting step was365
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forwarded to the Rt estimation, leading to similarly expanding intervals. For both epiforecasts and RKI, this366

widening was not quite pronounced enough, however, and interval coverage fell below the minimum desired367

level of 95%. The Ilmenau, ETH, and SDSC (default EpiEstim) approaches showed little to no widening of368

intervals. The likely reason is that the uncertainty about the recent data points was not forwarded to the369

Rt estimation from earlier preprocessing steps (see the discussion section of Hotz et al. 2020 on additional370

sources of uncertainty). In all three cases, this led to a drop in 95% interval coverage below 50%.371

4 Between-method agreement of retrospective estimates372

We now turn to the agreement across estimates by different research groups, which as shown in Figure 1 can373

differ substantially. Our approach is to standardize analytical choices in order to assess their contribution374

to the overall disagreement. This is inspired by the vibration of effects framework (Klau et al., 2020), which375

for observational studies serves to assess the sensitivity of effect estimates to aspects like model choice and376

measurement errors. While e.g., the impact of the assumed generation time distribution on estimates is well-377

understood at a theoretical level (see Section 2.3), we aim to answer an empirical question: What differences378

arise in practice when different researchers independently take the necessary analytical decisions?379

4.1 Sequential standardization and individual variation of analytical choices380

As visible from Table 2, the available Rt estimates are not only the results of different statistical methods381

but also of different parameterizations and input data. Isolating the contributions of these aspects requires382

standardizing the remaining dimensions as far as possible. In what follows we describe a “consensus setting”383

which we implement for each of the represented methods (see also Panel A of Table 2, last column).384

• Incidence data: We use RKI data, which are the most common choice among teams. We use data by385

test date as aggregated by rtlive for all methods requiring a simple time series. Models making use of386

information on symptom onset dates (RKI, ETH) or test positivity percentages (rtlive) can keep using387

these as we consider this an integral part of their method.388

• Epidemic model: We employ the Cori et al. (2013) method, a common building block in the considered389

approaches, in its basic form without any pre-processing steps.390

• Window size: When applying the Cori et al. (2013) method we use a window size of 7 days. This is a391

common choice as it reduces fluctuations arising from within-week reporting patterns.392

• Generation time distribution: We assume an exponential distribution with rate 1/4, i.e., mean and393

standard deviation equal to 4 days. While an exponential distribution may not be the most common394

choice to match the epidemiology of COVID-19, this enables us to include the globalrt model, which395

can only accommodate an exponential GTD.396

• Incubation period and reporting delay: These aspects are challenging to standardize across methods,397

as variation in delays is an integral part of some methods (e.g., epiforecasts) but incompatible with398

others (e.g., Ilmenau, SDSC). Temporal misalignment resulting from these aspects is therefore handled399

pragmatically by shifting estimates in time. As the consensus setting, we assume that the reporting400

delay and incubation period sum up to seven days and shift estimates accordingly.401

• Definition of Rt: By using the Cori et al. (2013) method, we estimate instantaneous reproductive402

numbers. Based on the notion that Rinst
t−i typically lags behind Rcase

t−i by one mean generation time (see403

Section 2.1), we again resort to shifting estimates of case reproductive numbers in time.404

In practice, it proved challenging to determine exactly how estimates needed to be shifted to account for405

differing assumptions on incubation periods, reporting delays, and type of Rt. Following Alvarez et al.406

(2021), we therefore adjust temporal shifts for each method in a data-driven way by minimizing the mean407

absolute difference to the consensus estimates (see Supplement S4 for details and additional analyses based408

on reported delay distributions).409

We moreover note that while all other approaches can be reproduced with standardized settings, some410

compromises are necessary for the HZI model. The input data already correspond to the consensus choice and411
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the various delay distributions are handled by shifting estimates (as for all other models). The generation time412

distribution, however, cannot be set directly to the consensus setting, as it is not an independent parameter413

in the HZI model. Instead, it arises from the interplay of numerous other parameters. We therefore opt414

to transform the published estimates using a relationship linking the generation time distribution and Rt415

estimates from Wallinga and Lipsitch (2007, see Supplement S3.2).416

It is not practically feasible to assess all combinations of standardizing or not standardizing the different417

analytical choices. We, therefore, vary them in two specific fashions. In the first procedure, we start from418

the original settings used by different teams. Then, in the above order, we standardize all analytical choices419

apart from the statistical estimation approach (including possible pre-processing steps). We refer to this as420

sequential standardization. The second procedure starts from the consensus model (i.e., a simple application421

of the Cori et al. 2013 approach) and subsequently varies the different analytical choices one by one. We refer422

to this as individual variation. An advantage of individual variation is that it does not require specifying423

an order in which the various dimensions are aligned. The sequential approach, on the other hand, helps to424

illustrate the compounding of the various effects.425

As some of the considered approaches are computationally costly (in particular the Bayesian hierarchical426

models by epiforecasts and rtlive) it is not feasible to re-run the estimations under different parameterizations427

for all considered estimation dates. We, therefore, refrain from mimicking a real-time setting and assess428

between-method agreement retrospectively for a single estimation date. Specifically, we consider estimates429

for the period April 1, 2020, until June 10, 2021, based on data as available on July 10, 2021.430

4.2 Results for point estimates431

Figure 6 shows how the agreement between methods improves step by step in the sequential standardization432

of analytical choices. The visual impression of closer and closer alignment from the left column is confirmed433

by the matrices of mean absolute differences in the right column. These range from 0.03 (epiforecasts vs.434

ETH vs. SDSC) up to 0.32 (Ilmenau vs. HZI) for the original versions of the estimates, with an average435

pairwise value of 0.15. This is a substantial difference given that the estimates are mainly between 0.75436

and 1.25. Once all analytical choices other than the estimation method and data pre-processing are aligned,437

mean absolute differences range from 0.01 (ETH vs SDSC) to 0.07 (epiforecasts vs rtlive). Particularly438

strong improvements result from standardizing the window size where applicable and the generation time439

distribution. Aligning the window size removes the periodic fluctuations in the Ilmenau estimates, which are440

based on a very short window of just one day. Standardizing the generation time distribution has a strong441

impact on the HZI estimates, which are based on a long mean generation time of 10.3 days.442

As can be seen from the improvement between steps 3 and 4, temporal shifting of estimates is necessary443

to achieve good alignment. This shift, which is determined in a data-driven way, accounts for differences444

arising from the assumed incubation periods and reporting delays as well as the choice between case and445

instantaneous reproductive numbers. In almost all cases the shifts agree well with what would be expected446

based on the respective model descriptions, see Supplementary Table S3. An alternative display where shifts447

are determined based on these descriptions is available in Supplementary Figure S14.448

Results for the individual variation approach are shown in Figure 7. Here, we also vary the data pre-449

processing step separately; this corresponds to nowcasting for RKI, smoothing for SDSC, and a combination450

of nowcasting, smoothing, and deconvolution for ETH. Pre-processing as well as the choice of data source451

impact the smoothness of the estimates, but in terms of mean absolute deviations play a limited role. The452

window size and generation time distribution have a more substantial impact on the results. The resulting453

mean absolute differences are in fact more pronounced than when varying the estimation approach (bottom454

panel). As implied by theory, the estimates are fanned out away from Rt = 1 when longer mean generation455

times are used. In particular, the HZI parameterization with a mean generation time of 10.3 days stands456

out. Concerning the window length in the Cori approach, choices that are not multiples of 7 lead to periodic457

fluctuations in the estimates. We note, however, that the ETH and SDSC teams, who use widths of 3 and458

4 days, employ data pre-processing steps to suppress this behavior.459
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Step 0: Estimates as published on July 10, 2021 (Figure 1).
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Step 1: Standardize input data to RKI by Meldedatum.
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Step 2: Standardize window size in Cori et al. (2013) method to 7 days.
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Step 3: Standardize GTD to a gamma distribution with mean 4 and standard deviation 4.
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Step 4: Data-driven temporal alignment.
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Figure 6: Step-by-step alignment of analytical choices to the consensus specifications. The left column shows
the resulting Rt estimates for a subset of the considered time period. The right column shows the mean
absolute differences between point estimates obtained from the different approaches. In the bottom panel
all considered aspects other than the estimation method (incl. data pre-processing) are aligned.
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Varying the input data source.
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Varying the data pre-processing step.
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Figure 7: Individual variation of analytical choices in the consensus model. Left column: Rt estimates for a
subset of the considered time period. Right column: mean absolute differences between point estimates. The
values over which the respective quantities are varied correspond to those chosen by the different teams. For
the generation time distribution, we adopt the notation mean (standard deviation). Note that the bottom
panel is identical to the one of Figure 6

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.27.23289109doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.27.23289109
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.3 Some remarks on uncertainty intervals460

An analog display of the bottom panels of Figures 6 and 7 showing 95% uncertainty intervals can be found461

in Figure 8. Here, all analytical choices have been standardized apart from the estimation method and462

data pre-processing. While similarly to the point forecasts, the intervals are more aligned in terms of their463

temporal course, considerable differences in their widths remain. Rather narrow intervals are produced by464

the Ilmenau, SDSC, RKI, and ETH approaches (based on the updated version of the method). The intervals465

obtained from the epiforecasts, globalrt, and rtlive methods are wider. This divide coincides with variations466

of the Cori et al. (2013) method on the one hand, and more complex hierarchical approaches on the other.467
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Figure 8: 95% uncertainty intervals corresponding to Figure 6, Step 4.

One particularity of the Cori et al. (2013) approach compared to the three others is that it combines468

equation (1) with a conditional Poisson distribution of observed case counts. The epiforecasts and rtlive469

approaches assume a negative binomial distribution and globalrt implicitly assumes a Gaussian distribution.470

These distributions, unlike the Poisson distribution, have a free parameter steering the degree of dispersion.471

It is known that in generalized regression, assuming a Poisson distribution can lead to an underestimation of472

standard errors when the data are actually over-dispersed (Dean and Lundy, 2016). To assess whether this473

aspect plays a role in the observed patterns we re-ran the Cori et al. (2013) method swapping the Poisson for474

a negative binomial distribution. As can be seen from Figure 9, this results in considerably wider uncertainty475

intervals, comparable to those from globalrt.476

0.8

1.2

1.6

Jan Feb Mar Apr May Jun
date

R

estimation method EpiEstim/Poisson GLM NegBin GLM

Figure 9: Comparison of 95% uncertainty intervals of the Cori method (consensus settings) with a Poisson
(light) and negative binomial distribution (dark). The uncertainty intervals under the Poisson distribution
are hardly discernible from the line representing the point estimate.

We note that the negative binomial version of the Cori et al. (2013) method needed to be newly im-477

plemented. For technical ease and to avoid having to specify prior distributions we performed frequentist478

estimation via the function glm.nb from the R package MASS. The overdispersion parameter of the negative479

binomial distribution was estimated jointly with Rt (under the assumption of a constant value over the480

7-day estimation window); see Supplement S6 for details. As an analog implementation of the Poisson ver-481

sion yielded almost identical results to EpiEstim we consider the use of a frequentist rather than Bayesian482

implementation unproblematic.483
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Another potentially relevant difference between the Cori et al. (2013) approach and the three others484

involves the assumptions on the process governing Rt. While the former assumes Rt to be constant on a485

certain time window, the others assume truly generative models, specifically random walks or a Gaussian486

process. Both serve to stabilize estimates. However, it is difficult to assess their impact, as replacing these487

assumptions would be a fundamental change to the respective models.488

5 Discussion489

In this paper, we assessed temporal coherence and between-method agreement of Rt estimates for COVID-19490

in Germany. We found that for most considered methods, the real-time estimates for dates close to the pub-491

lication date were subject to substantial revisions. In many cases, these were more pronounced than implied492

by the accompanying uncertainty intervals. Some methods were able to avoid temporal incoherence but at493

the cost of wide uncertainty intervals. In our retrospective assessment of the between-method agreement, we494

found that while the choice of estimation method led to some discrepancies, surrounding analytical choices,495

e.g., on the generation time distribution, were at least as influential.496

Our assessment of temporal self-coherence highlights the importance of continuously tracking the real-497

time behavior of Rt estimates. If these are overly fluctuating or subject to systematic corrections, this may498

lead to a loss in user trust. However, the stability of estimates is not the only relevant goal, and there is a499

trade-off with the timeliness of estimates. Rt estimates are quickly outdated, and results for recent days are500

the most relevant for public health purposes. These are unavoidably subject to increased uncertainty. This501

needs to be acknowledged by users, and uncertainty needs to be quantified and communicated appropriately.502

We believe that analyses of temporal coherence as presented in our work can be a useful tool to this end.503

In our between-methods comparison of estimates, we found that in particular the assumed generation504

time distribution and the choice of window sizes drove differences between estimates published by different505

research teams. These decisions and their potential impact should thus be communicated transparently.506

The approach taken by globalrt, where users can vary the mean generation time, is promising, though some507

contextualization on which values are well-supported by the state of research may be helpful. Temporal508

shifts arising from different assumptions on incubation periods and reporting delays proved relevant, too,509

as they shift Rt estimates in time. This is of particular importance when linking the latter to intervention510

measures. The respective delay distributions should thus be chosen with care.511

It has been argued that to reduce the dependence on specific assumptions, different estimates could be512

combined into a consensus Rt value or range. While in the United Kingdom meta-analysis techniques have513

been applied to this end (Maishman et al., 2022), this is not without pitfalls. Unlike in classical meta-514

analysis, different estimates are typically obtained from the same data and thus inherently dependent. As515

pointed out by Nicholson et al. (2022), this leads to estimators with unclear statistical properties. Moreover,516

when merging estimates based on different assumptions, the estimand becomes unclear, as do the assumptions517

underlying the consensus estimate. To combine estimates of the basic reproductive number R0, an appealing518

approach where information is pooled separately for the generation time distribution and the epidemic growth519

rate has been suggested by Park et al. (2020). This could likely be translated to Rt estimation.520

In the present work, we focused exclusively on estimates based on national-level case incidence data. We521

did not take into account regional or age stratification, which can be incorporated e.g., in compartmental522

epidemiological models to estimate Rt (Knock et al., 2021). Reproductive numbers can also be estimated523

from other data streams including hospitalizations, deaths (Sherratt et al., 2021; Huisman et al., 2022a),524

wastewater surveillance (Huisman et al., 2022b) and PCR cycle threshold data (Hay et al., 2021). While these525

may resolve some of the issues of case incidences, e.g., their sensitivity to testing strategies, the dependence526

of estimates on analytical choices remains largely the same. Nonetheless, considering estimates based on527

various data streams may yield a more comprehensive picture. More generally, we underscore that the Rt528

value should not be interpreted in isolation, but in conjunction with other epidemiological indicators like529

the overall case and hospitalization numbers or genetic data on the prevalence of different variants.530

Data and code availability531

Data and code to reproduce the presented results can be found at https://github.com/ElisabethBrockhaus/532

Rt estimate reconstruction and https://github.com/KITmetricslab/reproductive numbers.533
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S1 Repositories from which real-time estimates were obtained683

• epiforecasts: https://github.com/epiforecasts/covid-rt-estimates684

• ETH: https://github.com/covid-19-Re/dailyRe-Data685

• globalrt: https://github.com/crondonm/TrackingR686

• HZI: https://gitlab.com/simm/covid19/secir/-/tree/master687

• Ilmenau: https://github.com/Stochastik-TU-Ilmenau/COVID-19/tree/gh-pages688

• RKI: https://github.com/robert-koch-institut/SARS-CoV-2-Nowcasting und -R-Schaetzung689

• rtlive: https://zenodo.org/record/5683308, https://github.com/michaelosthege/rtlive-global690

• SDSC: https://renkulab.io/gitlab/covid-19/covid-19-forecast/-/tree/master691

S2 Sources for generation time distributions shown in Figure 2692

We here provide the sources for the generation time distributions used by European public health agencies693

as displayed in Figure 2.694

• Austria: Richter, Schmid and Stadlober: Methodenbeschreibung für die Schätzung von epidemio-695

logischen Parametern des COVID19 Ausbruchs, Österreich. https://www.ages.at/fileadmin/Corona/696

Epidemiologische-Parameter/Methoden zur Sch%C3%A4tzung der epi Parameter.pdf. The Cori et al.697

(2013) method is used for estimation. The generation time distribution was initially set to a gamma698

distribution with mean 4.46 days and standard deviation 2.63 days. Later this was revised to 3.37 and699

1.83 days, respectively.700

• Belgium: Sciensano: COVID-19 Bulletin épidémiologique hebdomadaire (19 mai 2022), https://covid-701

19.sciensano.be/sites/default/files/Covid19/COVID-19 Weekly%20report 20220519%20-%20FR.pdf.702

The Cori et al. (2013) method is used for estimation. The generation time distribution is set to a703

gamma distribution with mean 4.7 days and standard deviation 2.9 days (source of parameterization:704

personal correspondence).705

• Czech Republic: Majék et al (2020): Modelling the first wave of the COVID-19 epidemic in the706

Czech Republic and the role of government interventions. medRxiv, https://doi.org/10.1101/2020.09.707

10.20192070. The generation time distribution is a discrete uniform over {4, 5, 6, 7}, implying a mean708

of 5.5 and standard deviation of 1.2.709

• Denmark: Statens Seruminstitut: COVID-19 i Danmark: Epidemiologisk trend og fokus: kontakttal,710

11. juni 2020 (2020). https://files.ssi.dk/COVID19-epi-trendogfokus-11062020. The generation time711

distribution from Nishiura et al. (2020) is used in the Cori et al. (2013) method, which corresponds to712

a mean of 4.7 and a standard deviation of 2.9 days.713

• France: Santé Publique France (2021): COVID-19 – Point épidémiologique hebdomadaire no 71 du 08714

juillet 2021. https://www.santepubliquefrance.fr/content/download/358653/document file/COVID19-715

PE 20210708 signets.pdf. The Rt estimates are obtained using the method by Cori et al. (2013) with716

a window size of 7 days. The mean and standard deviation of the generation time distribution are not717

reported, but using trial and error could be reconstructed as approximately 7 and 4.5 days, respectively.718
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• Italy: Guzzetta and Merler (2020): Stime della trasmissibilità di SARS-CoV-2 in Italia. Istituto719

Superiore di Sanità / EpiCentro. https://www.epicentro.iss.it/coronavirus/open-data/rt.pdf. The720

method by Cori et al. (2013) is applied; the generation time distribution is a gamma distribution with721

mean 6.7 days and standard deviation 4.9 days.722

• Netherlands: Rijksinstituut voor Volksgezondheid en Milieu (2021): Covid-19 reproductiegetal. https:723

//data.rivm.nl/meta/srv/eng/catalog.search;jsessionid=1B3A9B193CB3B1946836BCA3D1BF3A11.724

The Wallinga-Lipsitch method as implemented in the EpiEstim R package (Cori et al., 2020) is used.725

For pre-Omicron variants, the mean and standard deviation of the generation time are se to 4 and 2726

days, respectively. For Omicron, 3.5 and 1.75 days are used (source for standard deviations: personal727

correspondence).728

• Portugal: Instituto Nacional de Saúde (2022): COVID-19 – curva epidmeica e parâmetros de trans-729

misidade, 18.05.2022. https://www.insa.min-saude.pt/category/areas-de-atuacao/epidemiologia/covid-730

19-curva-epidemica-e-parametros-de-transmissibilidade/. The mean and standard deviation of the731

generation time are set so 3.96 and 4.74 days, respectively (based on Du et al, https://wwwnc.cdc.732

gov/eid/article/26/6/20-0357 article).733

• Scotland: Scottish Government (2020): Coronavirus (COVID-19): modeling the epidemic in Scotland734

(Issue No. 24). https://www.gov.scot/binaries/content/documents/govscot/publications/research-735

and-analysis/2020/10/coronavirus-covid-19-modelling-epidemic-issue-no-24/documents/coronavirus-covid-736

19-modelling-epidemic-scotland-issue-no-24/coronavirus-covid-19-modelling-epidemic-scotland-issue-no-737

24/govscot%3Adocument/coronavirus-covid-19-modelling-epidemic-scotland-issue-no-24.pdf. Estima-738

tion is based on the model by Flaxman et al. (2020), which uses a gamma distribution with mean 6.5739

and standard deviation 4.11 days (see their Supplementary Information, page 13).740

• Sweden: Folkhälsomyndigheten (2022): Skattning av det momentana reproduktionstalet, 18/05/2022.741

Mean and standard deviation of the generation time are set to 4.8 and 2.3 days, respectively. Unfor-742

tunately, the respective document is no longer available online.743

• Slovenia: Rok Blagus, Manevski and Pohar Perme (2020): Estimation of the reproductive number and744

the outbreak size of SARS-CoV-2 in Slovenia. Slovenian Medical Journal, http://dx.doi.org/10.6016/745

ZdravVestn.3068. As for Scotland, the model and assumed generation time corresponds to the one746

from Flaxman et al. (2020).747

S3 Additional remarks on the HZI approach748

S3.1 Determining the generation time distribution749

The generation time distribution is not an independent parameter in the SECIR model applied by Khailaie750

and Mitra et al. (2021) but results from the interplay of several other parameters. The generation time751

distribution of the model has no closed form. As it arises from the transitions between different compartments752

in a classic compartmental model, it corresponds to a mixture of convolutions of exponential distributions.753

For the purposes of our study, we obtain the mean and standard deviation via simulation. Figure S10754

shows compartments of the model, the transitions between which are governed by the following rates and755

probabilities (see also Knabl, Mitra and Kimpel et al. 2021, particular Supplementary Material p12–13):756

• α = 0.22, i.e. a 78% probability of entering the state CI (carrier who will move on to infected) after757

exposure.758

• R2 = 1/3.2 and R3 = 1/2 imply a mean incubation period of 5.2 days.759

• R4 = 1/7, i.e., a mean time to recovery of seven days for undetected infected.760

• µ = 0.085 is the probability of detection for any infected individual. This value has been taken from761

the code repository2 rather than the manuscript.762

2https://gitlab.com/simm/covid19/secir/-/raw/master/codes/settings/param random.csv
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Figure S10: Compartmental structure of the SECIR model by HZI. Compartments relevant to the generation
time distribution are shown in black, the remaining compartments in grey. This figure reproduces Figure 1
from Khailaie and Mitra et al. (2021).

• R11 = 1/3.7, i.e., on average it takes 3.7 days to move from IH to HU . R6 is chosen such that 1/R6763

and 1/R11 sum to 4.25 days, which is the assumed time to hospitalization since symptom onset. This764

implies R6 = 1/0.55.765

• ρ = 0.13, i.e., the probability that a detected infected patient requires hospitalization (moves to IH)766

rather than recovering (moving to IR). This value has been taken from the code repository.767

• φ = 0.47, i.e. a hospitalization probability of 47% for individuals reaching the IH state (but this value768

is irrelevant for the generation time distribution).769

• R12 = 1/3.3, i.e., the average time left to full recovery for individuals who have already arrived in IR770

is 3.3 days.771

• The remaining parameters are not relevant for the computation of the generation time distribution772

and are thus omitted here.773

Moreover, Khailaie and Mitra et al. (2021) assume that individuals in the CI , CR, IX , and I compartments774

have the same infectiousness, while infectiousness in the IH and IR compartments is reduced by a factor of775

0.15. We note that we here only use the assumed mean values of the different parameters and simplifyingly776

neglect that they are randomly varied around these values in Khailaie and Mitra et al. (2021). To obtain777

the generation time distribution numerically we then proceed as follows.778

1. For a total of 5000 individuals we first sample the path the individual takes through the different779

compartments from E onwards (e.g., E → CR → RX or E → CI → I → IH → HU ). This involves780

the probabilities α, µ, ρ and φ.781

2. We then sample the duration of stay in each of the compartments from exponential distributions with782

the respective transition rates.783

3. For the time spent in infectious compartments (CI , CR, I, IX , IH , IR) we sample times of secondary784

infections from Poisson processes with suitably chosen rates (with diminished intensity for the IH and785

IR compartments). In practice, this is done by first sampling the total number of events from a suitable786

Poisson distribution and then sampling the respective event times from a uniform distribution over the787

time spent in the compartment.788

4. For each infection event we compute the total time since the entry of the infecting individual in the E789

compartment. This corresponds to the realized generation time.790

We then evaluate the empirical distribution of these generation times. The resulting histogram is shown in791

Figure S11. The mean and standard deviations are given by 10.3 and 7.6, respectively.792

Code to reproduce these results is available in https://github.com/ElisabethBrockhaus/Rt estimate793

reconstruction/blob/main/HZI.794
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Figure S11: Histogram of sampled generation times from the HZI model.

S3.2 Transformation of estimates to standardize generation time distribution795

The HZI results proved to be technically challenging to reproduce, and due to the setup of the model, the
generation time distribution cannot be manipulated directly in the model. Rather than re-running the model
with a different generation time distribution, we, therefore, opted to transform the available estimates to
approximate how they would have looked under a different generation time distribution. We employ the
following relationship from Wallinga and Lipsitch (2007, Equation 3.6):

R =
r∑n

i=1 yi{exp(−rai−1)− exp(−rai)}/(ai − ai−1)
.

Here, R is the reproductive number, r is the growth rate, a0, a1, . . . , an are the category bounds of a796

histogram, and y1, y2, . . . , yn the respective relative frequencies. By plugging in the distribution from Figure797

S11 and samples from the consensus distribution Exp(1/4), we can obtain mappings from the growth rate to798

estimated reproductive numbers under the two generation time distributions (we here use bins of width 0.01799

for the histogram). Combining these two, we can map the reproductive numbers computed by HZI under the800

generation time distribution from Figure S11 to reproductive numbers under the consensus generation time801

distribution. This mapping is displayed in Figure S12. As one would expect, values of 0 and 1 are mapped802

to themselves, while otherwise, the values under the consensus distribution (which has a considerably lower803

mean) are closer to 1.804
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Figure S12: Mapping of R-values under the generation time distribution used by HZI to R-values under the
consensus generation time distribution Exp(1/4).

S3.3 Comparison of estimates with and without additional smoothing805
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Figure S13: Comparison of real-time estimates from the HZI model with and without an additional smoothing
step (7-day trailing moving average). Similarly to Figure 4 estimates issued at different dates are overlaid so
that retrospective revisions become visible. It can be seen that the additional smoothing step considerably
reduces the (typically upwards) retrospective revisions.
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S4 Details on the handling of temporal shifts806

To handle differing assumptions on the incubation period and reporting delay as well as the exact definition
of Rt (case vs. instantaneous), we align estimates via simple shifting. We do this in a data-driven way,
where for each method we minimize the mean absolute distance to the consensus model. Denoting the days
in the considered period by indices t = 1, . . . , T , we thus obtain the shift sm for each model m as

sm = argmins∈{−14,−13,...,14}

T∑
t=1

|R̂m
t−s − R̂consensus

t |.

Here we denote by R̂m
t estimates from model m and by R̂consensus

t estimates from the consensus model. This807

approach is based on Alvarez et al. (2021). We note that this is a pragmatic approach and does not minimize808

the divergence for each pair of methods nor the sum of all divergences.809

In Table S3, we compare the optimal shifts determined this way by shifts which we can compute from810

the employed mean incubation periods and reporting delays as provided in the respective manuscripts or811

code bases. Apart from the HZI model, these agree quite well.812

Table S3: Shift which minimizes the mean absolute error to the consensus model and explanatory features.

Method incubation period reporting delay type of Rt shift for Rcase
t resulting optimal shift

expected shift (data-driven)
ETH 5.3 (3.2) 4.4 (3.4) instant. 0 10 10
RKI 1 3.4 (0.4) instant. 0 4 4
Ilmenau 5 2 instant. 0 7 7
SDSC (sum to 7) instant. 0 7 7
epiforecasts 5.4 (2.2) 5.9 (14.6) instant. 0 11 10
rtlive 5 7.1 (5.9) case 4 16 19
globalrt 0 0 case 4 4 3
HZI 5.2 3.7 instant. 0 9 -3
consensus (sum to 7) instant. 0 7 7 (fixed)

.

Step 4a: Shift estimates by the mean of the incubation period and reporting delay distribution.

0.50

0.75

1.00

1.25

1.50

Jan Feb Mar Apr May Jun
date

R

method epiforecasts
ETH

globalrt
Ilmenau

RKI
rtlive

SDSC

0.04
NA
NA
NA
NA
NA

0.07
0.05
NA
NA
NA
NA

0.05
0.03
0.05
NA
NA
NA

0.06
0.05
0.05
0.04
NA
NA

0.08
0.05
0.06
0.06
0.06
NA

0.04
0.02
0.04
0.02
0.04
0.05

(b) (c) (d) (e) (f) SDSC

epiforecasts

ETH

globalrt

Ilmenau

RKI

rtlive

Step 4b: Shift case reproductive number by mean generation time distribution.
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Figure S14: Alternative display on the temporal alignment of estimates as in Figure 6, based on information
on generation times, incubation periods, and type of Rt from Table S3. We split this into two steps and
omit HZI as the temporal labeling of estimates obviously does not agree with our reasoning.
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S5 Supplementary Figures on temporal coherence813
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Figure S15: Dates for which estimates were published by the research groups. The shaded areas correspond
to estimates which are included in the averages in Figure 5. This does not include estimation dates which
are only used as consolidated estimates.
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Figure S16: Incidence over the time period considered in Section 3 (RKI, positive test).
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Figure S17: Same display as in Figure 5 but with curves shifted by the “optimal shift” from Section 4.
Unlike in Figure 5, the horizons are thus approximately aligned, which facilitates comparison.
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Figure S18: Real-time estimates as published 1, 14, 50, and 70 days after the target date.
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S6 Extension of the Cori method to a conditional negative bino-814

mial distribution815

We provide some details on the extension of the Cori et al. (2013) approach to a conditional negative binomial816

distribution as used in Section 4.3. As in equation (1) we assume that817

E(Xt | Xt−1, . . . , X1) = λt = Rinst
t ×

t−1∑
i=1

wiXt−i. (3)

In the classical Cori et al. (2013) approach this is combined with a conditional Poisson assumption

Xt | λt ∼ Pois(λt).

Instead, we now use a negative binomial distribution

Xt | λt ∼ NegBin(λt, ψ),

which we parameterize by its mean λt and an overdispersion parameter ψ, which we assume to be time-818

constant. This implies that819

Var(Xt | Xt−1, . . . , X1) = λt + ψλ2t .

This parameterization is used, e.g., in the endemic-epidemic modeling framework (Held et al. 2007) for820

infectious disease count time series.821

To fit this model to data (specifically, data from a time window of length w), we construct a covariate

At =
t−1∑
i=1

wiXt−i,

such that
E(Xt | At) = Rinst

t ×At.

Inference for this negative binomial generalized linear model with an identity link and no intercept can be822

conducted using the function glm.nb from the R package MASS:823

glm.nb(X -1 + A, link = identity)824

This estimates the parameters Rinst
t and ψ simultaneously using maximum likelihood inference, providing825

confidence intervals for both parameters. The practical implementation underlying Figure 9 can be found in826

the file https://github.com/ElisabethBrockhaus/Rt estimate reconstruction/blob/main/otherFiles/epiestim827

vs glm.R in the GitHub repository accompanying this paper.828

Reference:829

Held, L., Höhle, M. and Hofmann M. (2005): A statistical framework for the analysis of multivariate830

infectious disease surveillance counts. Statistical Modelling, 5: 187–199.831
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