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Abstract 

BACKGROUND. Delayed cerebral ischaemia (DCI) following aneurysmal subarachnoid 

haemorrhage (aSAH) is a major cause of complications and death. Here we set out to 

identify high-performance predictive biomarkers of DCI and its underlying metabolic 

disruptions using metabolomics and lipidomics approaches.  

METHODS. This single-centre retrospective observational study enrolled 61 consecutive 

patients with severe aSAH requiring external ventricular drainage between 2013 and 2016. 

Of these 61 patients, 22 experienced a DCI and were classified as DCI+ and the other 39 

patients were classified as DCI-. A further 9 patients with other neurological features were 

included as non aSAH controls. Blood and cerebrospinal fluid (CSF) were sampled within the 

first 24 h after admission. We carried out LC-MS/MS-based plasma and CSF metabolomic 

profiling together with total lipid fatty acids analysis. 

RESULTS. We identified a panel of 20 metabolites that together showed high predictive 

performance for DCI (area under the receiver operating characteristic curve: 0.968, 

specificity: 0.88, sensitivity: 0.94). This panel of metabolites included lactate, cotinine, 

salicylate, 6 phosphatidylcholines, and 4 sphingomyelins. Analysis of the whole set of 

metabolites to highlight early biological disruptions that might explain the subsequent DCI 

found peripheral hypoxia driven mainly by higher blood lactate, arginine and proline 

metabolism likely associated to vascular NO, dysregulation of the citric acid cycle in the 

brain, defective peripheral energy metabolism and disrupted ceramide/sphingolipid 

metabolism. We also unexpectedly found a potential influence of gut microbiota on the 

onset of DCI.  
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CONCLUSION. We identified a high-performance predictive metabolomic/lipidomic 

signature of further DCI in aSAH patients at admission to a NeuroCritical Care Unit. This 

signature is associated with significant peripheral and cerebral biological dysregulations. We 

also found evidence, for the first time, pointing to a possible gut microbiota/brain DCI axis, 

and proposed the putative microorganisms involved. 

Clinical trial registration: Clinicaltrials.gov identifier: NCT02397759 
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Non-standard abbreviations and acronyms 

WFNS: World Federation of Neurological Surgeons  

IVH: intraventricular haemorrhage 

PCA: principal component analysis   

PLS-DA: partial least squares–discriminant analysis  

GOSE: Glasgow Outcome Scale Extended 

VIP: variable importance in projection coefficient 

FDR: false discovery rate 

HILIC: hydrophilic interaction liquid chromatography 

RP: reverse-phase chromatography 
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Introduction 

Delayed cerebral ischaemia (DCI) occurs in about 30% of patients with aneurysmal 

subarachnoid haemorrhage (aSAH) within the first 2 weeks after the haemorrhage (1). DCI is 

responsible for increased morbidity and mortality (2). It is crucial to identify patients at risk 

of developing DCI after aSAH in order to develop targeted therapies for treating or 

preventing this potentially life-threatning complication. However, there is still no established 

biomarker for predicting DCI. Furthermore, there is a broader need to more clearly establish 

the early biological disruptions that ultimately lead to DCI, as only hypotheses have so far 

been put forward. DCI was long thought to be caused by cerebral vasospasm, but recent 

studies support the notion it is a multifactorial pathophysiology that includes cerebral 

vascular dysregulation, microthrombosis, cortical spreading depolarisation, and 

neuroinflammation (3).  

Metabolomics and its subfield lipidomics are powerful tools for identifying putative 

biomarkers in various different contexts, from disease diagnostics (4) and disease risk 

analysis (5,6) to prediction of therapeutic response (7). Moreover, changes in metabolome 

provide a molecular snapshot of cellular activity and thus provide important clues to 

understanding functional changes in the metabolic pathways that drive disease risk.  

Modifications of some metabolites and lipid levels have been reported in the context of DCI 

or vasospasm associated with aSAH. Elevated CSF levels of ceramides (8), arachidonic acid, 

linoleic acid and palmitic acid (9), elevated lactate/pyruvate ratio (10) and taurine in cerebral 

microdialysis samples (11), high blood lactate levels and glucose levels (12), and elevated 

plasma taurine levels (13) have all been reported in aSAH patients who later develop 
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cerebral vasospasm and/or DCI. Nevertheless, there is no consensual biomarkers accepted 

for routine use in clinical practice (14). 

In a previous paper, we reported an early increase in CSF MMP-9 concentrations in patients 

who later developed DCI (15). Here we carried out both LC-MS/MS-based plasma and CSF 

metabolomic profiling and gas-chromatography total lipid fatty acids analysis in our cohort 

of patients presenting aSAH with and without DCI. Our objectives were to identify predictive 

biomarkers of DCI and to decipher the early underlying metabolic pathway disruptions 

leading to DCI. 

 

Methods 

The study complies to the STROBE and Machine Learning Predictive Models guidelines 

Study population and retrospective study setting 

After obtaining written informed consent from next of kin, we enrolled 61 consecutive 

patients with spontaneous aSAH who met the inclusion criteria. To be eligible for inclusion, 

patients had to be over 18 years old and admitted to the NCCU of La Timone university 

hospital (Marseille) within 24h post-bleeding, and their conditions had to require clinically 

indicated external ventricular drainage. A full description of the inclusion and exclusion 

criteria, data collected, radiographic characteristics, criteria used for cerebral vasospasm and 

DCI determination can be found in supplemental methods. A further 9 patients without 

aSAH admitted to the NCCU for other neurological disorders (see Table S1) were included as 

controls (n=9). Blood and CSF were sampled in the first 24 h post-aSAH. CSF samples were 

collected from the external ventricular drain into anticoagulant-free sterile tubes. Blood 
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samples were collected in sterile citrate tubes. Samples were centrifuged for 10min at 2500g 

at 4°C then immediately transferred to cryotubes and stored at -80°C until analysis.  

 

Sample preparation 

For metabolomics analysis, 100 µL of CSF or plasma samples was protein-precipitated with 

400 µL cold methanol (-20°C). For lipidomics analysis, compounds were extracted using the 

conventional Folch extraction method by adding 800 μL of ice-cold chloroform:methanol 

(1:1 v/v) to 100 μL of plasma or CSF (see supplemental methods for details).  

 

LC–MS conditions and informatics processing for metabolomics and lipidomics analysis 

LC–MS analyses were performed on a Dionex Ultimate 3000 (Thermo Fisher Scientific, San 

Jose, CA) ultra-performance liquid chromatography (UPLC) system coupled with a Thermo Q 

Exactive Plus mass spectrometer (MS) (see supplemental methods for details). After LC–MS 

acquisition, data was processed using the R package XCMS 

(https://bioconductor.org/packages/release/bioc/html/xcms.html). Polar metabolites were 

annotated using an internal database and lipids were identified using LipidSearch 4.1 

software (Thermo Fisher Scientific, San Jose, CA). 

Total lipid fatty acid quantification 

Total lipid plasma and CSF fatty acid composition were analysed using a gas chromatography 

system with flame ionisation detection. The method is described in full in supplemental 

methods. 
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Statistical analysis 

Full details of all the statistical methods used can be found in supplemental methods. 

Statistical analyses, univariate and multivariate regressions, hierarchical PLS-DA modelling, 

and pathway enrichment analysis were performed using MetaboAnalyst 5.0 

(http://www.metaboanalyst.ca), SIMCA P12 (Umetrics, Umea, Sweden) and LION 

(http://www.lipidontology.com). Venn plots were constructed using the Venny 2.0.2 online 

tool (bioinfogp.cnp.csic.es/tools/venny). Partial correlations were calculated with the R 

package GeneNet, and network visualisation was performed using Cytoscape. The biomarker 

identification process only used data from 50 patients, as CSF plus plasma data was not 

available for 11 patients. A DCI+ score equation to predict the clinical status of each patient 

was calculating using the partial least squares (PLS) algorithm combining all the individual 

discriminating variables, as described elsewhere (5,16). 

 

Results 

Clinical features of the studied population  

Among all the patients with aSAH admitted to our NCCU between 2013 and 2016, 61 

patients met the inclusion criteria. Of these 61 patients, 22 developed DCI (DCI+ group) 

whereas 39 did not (DCI- group). Patient-sample characteristics are reported in 

supplemental Table 2 and supplemental Figure S1. The only significant between-group 

difference in demographic variables was for patient age: DCI+ patients were significantly 

younger than DCI- patients. The DCI+ group tended to have more smokers and more cases 

with migraine. Vasospasm was identified in 90.1% of DCI+ patients but none in DCI- patients 

(p<0.001). 
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Feature detection in metabolomics and lipidomics analysis and fatty acid content 

A total of 180 and 153 annotated metabolites and 166 and 290 annotated lipids were 

identified in CSF and plasma, respectively. In addition to metabolomics and lipidomics, 27 

fatty acids were quantified in CSF and plasma by a targeted method. A unique data matrix 

featuring 843 variables was built with all these compounds and used for further statistical 

analyses. Missing values (4 in plasma and 16 in CSF) for fatty acids were replaced by an 

estimate based on Bayesian principal component analysis.  

 

Biomarker selection and validation 

As both CSF and plasma were not available for 6 and 5 patients, respectively, the biomarker 

identification process only used data from 50 patients of our cohort (33 DCI- and 17 DCI+). 

To select and validate a set of biomarkers, we applied an iterative workflow with randomly 

left-out patients in multiple predictive PLS-DA models (5,16). PLS regression also allowed to 

predict class assignments for unknown patients. A list of 20 metabolites was selected based 

on the most commonly shared variables found in 8 consecutively constructed PLS-DA 

training models in which four DCI- patients and two DCI+ patients were repeatedly and 

randomly left out. In each model, the variables were selected based on the shift in the PLS 

variable importance in projection score (VIP) from the normal distribution. The accuracy, 

goodness-of-fit R2 and goodness-of-prediction Q2 of the final PLS-DA model comprising all 

the individuals and based on these 20 selected metabolites were 0.89, 0.69 and 0.55, 

respectively (Figure 1A). All these 20 metabolites were significantly different between DCI- 

and DCI+ on univariate t-test (FDR adjusted p-values < 0.05): 12 of these metabolites were 
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relatively higher in abundance and 8 were relatively lower in abundance in DCI+ patients, 

and only 3 of them came from CSF (Figure 1B). 

The selected metabolites were subsequently combined to generate a meaningful clinical 

composite score for each individual. This predictive score was calculated from the PLS 

algorithm using the PLS partial correlation coefficients applied to each metabolite, with DCI 

status used as the predicted variable (Figure 1C). Working up from this equation, we 

calculated a predictive DCI score for each individual and tested each score using a receiver 

operating characteristic curve (Figure 1D). Area under the curve was 0.968, specificity was 

0.88, sensitivity was 0.94, and the cut-off threshold score above which DCI+ individuals 

distinguished from DCI- ones was 0.415 (Figure 1D). When using the strict cut off value, 86% 

(29/33) of aSAH patients without DCI and 94% (16/17) of aSAH patients with DCI were 

correctly assigned. Using a 99% CI and a 95% CI, 28% and 22%, respectively, were not 

defined, and no false-negative patients were found (Figures 1E-F). We validated our 

algorithm by also predicting the left-out patient samples of the 8 training sets described 

above. Only 6 out of the 48 excluded patients were classified in the wrong groups: 5 DCI+ 

and 1 DCI-. Of these 6 patients, three DCI+ patients were not determined using 95% CI, and 2 

DCI+ patients were correctly classified when considering DCI score calculated on all patients. 

In addition, a retrospective power calculation indicated that 100% confidence at FDR of 0.05 

can be achieved with a sample size of 17 patients per group (Figure S2). 

Finally, the predictive algorithm was challenged against control patients who had been 

admitted to the NCCU but were diagnosed with other neurological disorders (Table S1). Our 

model correctly classified all but one of these patients as DCI-, as expected (Figure 2). 
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Multiblock analysis 

We performed a multiblock analysis on all the data from the entire cohort (n=61). Annotated 

metabolites detected in CSF and plasma were clustered into 47 and 81 functional biological 

blocks, respectively, as described in the method section (5,16) (Tables S3 and S4). Lipids 

were blocked according to statistical proximity using hierarchical clustering analysis into 14 

and 15 different blocks for CSF and plasma, respectively (5,16) (Figure S3 and supplemental 

Tables S5-6).  

Each functional block was then analysed using a hierarchical PLS-based approach 

(hierarchical PLS). We tested the effectiveness of the blocking procedure to ensure it did not 

distort the mapping of observations in the PLS space, by comparing the PLS-DA score plots of 

the weighted block against the original unblocked data (5,16) (Figure S4).  

Using a statistical multi-test procedure, we found a set of 14 biological functions and 8 lipid 

clusters in both plasma and CSF that were differentially regulated between DCI+ and DCI- 

patients (Figure S5). 

We then set out to hierarchise metabolic functions and lipid clusters that had most impact in 

predicting the DCI phenotype. For that purpose, we first arbitrarily used the t-test p-values 

of the 14 biological functions and 8 lipid clusters previously selected (Figure 3). 

Given that the metabolic regulations rarely occurred independently (17), we calculated a 

pairwise partial correlation network integrating all the functions and clusters (Figure 4). This 

allowed to highlight nodes with important connectivity by calculating the coefficient of 

betweenness centrality, which represents the degree to which nodes stand between each 

other. A node with higher betweenness centrality would have more control over the 

network, and thus over the metabolic system. Thus, besides the statistical significance, this 
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dimension of the network topology also affords a way to gauge how far specific metabolic 

regulations influence a biological system (18).  

Finally, we merged both information by plotting for each cluster and function the 

betweenness centrality coefficient and the p-value. This allows us to highlight the 

regulations that most influence the metabolic systems related to the development of DCI 

(Figure 5). 

Based on this dual filtering analysis (p-value and betweenness centrality), the miscellaneous 

score value appeared to have greater importance for determining patient DCI status. The 

miscellaneous cluster gathers all the metabolites left that cannot constitute functional sets 

(at least 3 metabolites per set). The miscellaneous score was mainly driven by both higher 

plasma cotinine and higher plasma lactate in DCI+ patients (Figure 5 and Figure S6).  

The metabolic disorder function comprising 32 metabolites was associated with a 

dysregulation of important metabolic pathways such as arginine and proline metabolism, 

branched-chain amino-acids availability, and tyrosine and phenylalanine metabolism. Energy 

metabolism (comprising 8 metabolites) also emerged as important, and was related to 

carnitine synthesis and purine metabolism. Also, part of sphingolipid metabolism appeared 

to be associated to further DCI occurrence in aSAH patients.  

We also found that microbiota metabolism score calculated from 18 plasma metabolites 

differed according to DCI status. These metabolites can be produced by 23 different bacterial 

species, whose metabolism possibly varies according to patient DCI status. We also found 

functions in CSF that were relevantly associated to the further clinical outcome but that 

were different to those found in plasma. Tricarboxylic acid cycle regulation appeared 

different between the two patient outcomes, as did two lipid clusters related to ether lipids 
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and glycerophosphocholines lipid species. Note that a cluster comprising xenobiotics in CSF 

scored differently according to patient DCI status, and was mainly driven by higher CSF 

salicylate in DCI+ patients. 

 

DISCUSSION 

DCI is one of the worst complications of aSAH, but also one of the most common: it occurs in 

approximately 30% of patients, usually between post-bleed day 5 and 14, and is associated 

with poor outcomes (19). DCI has a highly complex set of underlying mechanisms that 

include cerebral vascular dysfunction, microthrombosis, cortical spreading depolarisation, 

and neuroinflammation (3).  

Identifying early predictive biomarkers of DCI at hospital admission would mark a huge step 

forward for managing aSAH patients in neurological critical care. A deeper understanding of 

the biological dysregulations associated DCI could lead to novel therapeutic strategies. 

To address these challenges, this study had two main goals: i) to identify a shortlist of 

predictive biomarkers of DCI in patients admitted to the NCCU with spontaneous aSAH in 

blood and CSF sampled in the first 24h post-aSAH; ii) to identify early metabolic 

deregulations that lead to this life-threatening complication. To our knowledge, this study is 

the first to report the results of metabolomics and lipidomics approaches on both plasma 

and CSF in patients with aSAH. 

We identified a set of 20 metabolites from both plasma and CSF that are putative predictive 

biomarkers of DCI. These metabolites were combined into an equation that generated a per-

patient score that was sufficiently sensitive and selective (0.94 and 0.88, respectively, at 
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100% power from 17 patients per group) (Figure 1). This kind of strategy has proven valuable 

in other studies for defining a biomarker that is less affected by inter-individual variation or 

uncontrolled environmental influences (16). The multiplex biomarker score at the 99% CI 

was not associated with false-negative results and can therefore identify patients who are 

not at risk for developing DCI (Figure 1). Of interest is that independent control patients with 

neither aSAH nor DCI were quite confidently assigned as no-DCI cases, as expected. This 

substantially consolidates the relevance of our metabolite panel and score for improving DCI 

prognosis. Furthermore, our new multiplex biomarker shows better performance than the 

sole MMP-9 biomarker we previously used (15). This important key step raises prospects for 

replicating our findings in a multicentric study and for precisely quantifying each selected 

metabolite to generalise the results. 

This panel of 20 metabolites is composed of 14 lipids and 6 polar metabolites. Here we 

found that blood lactate has the greatest discriminant power in the panel of metabolites. 

Nevertheless, other studies have yielded inconsistent results for blood lactate: like here, 

some showed that blood lactate correlates to aSAH outcomes (12,20,21), whereas others did 

not (22). This highlights the risk of using a single biomarker approach to predict DCI, as it can 

be influenced by orthogonal events.  

Cigarette smoking is one of the biggest risk factors for aSAH (23–26) and for recurrent aSAH 

after aneurysm repair (24), and it has also been associated with symptomatic vasospasm 

after aSAH (27,28). Our results are consistent with these findings, as vasospasm is one of the 

factors contributing to DCI pathophysiology, and 90.1% of the DCI+ patients in our study 

experienced a vasospasm. Cotinine is a nicotine metabolite that is widely used as a 

biomarker of cigarette smoking. Here we found a higher level of cotinine in DCI+ patients, 
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whereas the reported smoking status by interview appeared less obvious (Table S2). This 

could be due to underreporting by patients or to passive smoking. 

The reduced set of the 20 metabolites identified through this biomarker approach remains 

insufficient to provide a mechanistic explanation for complex disease phenotypes. 

Therefore, in order to push forward and decipher the metabolic dysregulations associated 

with DCI, we employed multiblock analysis and enrichment analysis that together make it 

possible to summarise complex metabolite profiles into meaningful functions or pathways as 

well as to plot the relationships of each set of functions and clusters in an interaction 

network. Then, crossing the statistical impact of the functions/clusters with the interaction 

network topology helped to hierarchise the impact of each biological module on DCI 

occurrence (Figure 3). For instance, the “miscellaneous” cluster of metabolites had the best 

statistical power associated to the influence of metabolic system (betweenness centrality) 

for defining DCI status. Since this cluster was mainly driven by plasma cotinine and plasma 

lactate, it again highlights the major influence of early peripheral tissue hypoxia together 

with smoking status for predicting a poor-prognosis DCI event, as observed elsewhere (12). 

Note that the xenobiotics cluster in CSF was significantly predictive of DCI status, and much 

of this predictive power was driven by higher CSF salicylate in DCI+ patients. Salicylate likely 

arose from aspirin intake and its subsequent deacetylation (29), which would be higher in 

DCI+ patients and may well represent a surrogate marker of frequency of headache at aSAH 

onset. It could be important to monitor aspirin intake and the underlying reasons for aspirin 

use in aSAH patients. 

Enrichment analysis of lipid species in specific relevant lipid clusters pointed to a lower level 

of some subspecies of sphingomyelins in plasma and a higher level of some 

phosphatidylcholine subspecies and derivatives in both plasma and CSF in DCI+ patients 
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(Figures S7-8). It is not possible at this stage to establish whether a metabolic deregulation of 

a specific lipid directly drives DCI or is only a surrogate mechanism. However, as 

sphingomyelins are metabolised in ceramides (CER) by sphingomyelinase (SMase), a lower 

level of sphingomyelins could be a consequence of a higher SMase activity. Testai et al. (8) 

found an elevated level of ceramides, particularly C18:0, within 48 hours post-bleed in the 

CSF of patients with symptomatic vasospasm. CER are important mediators of apoptosis, and 

several studies have described increased CER levels in stroke patients (30). Moreover, 

SMase-driven CER production induces IL-6 expression (8,31) and triggers the vasoconstrictive 

properties of sphingolipids (32,33). Further studies are needed to determine whether lower 

plasma levels of specific sphingomyelins in DCI+ patients are linked to enhanced ceramide 

production and occurrence of vasospasm.  

The metabolites in three biological functions, namely metabolic disorders and energy 

metabolism in plasma, and tricarboxylic acid cycle (TCA) in CSF, can be translated into 

metabolic pathways using enrichment analysis. These functions related specifically to 

arginine and proline metabolism, phenylalanine and tyrosine metabolism, branched-chain 

amino-acid degradation, carnitine synthesis, and purine metabolism. Greater TCA cycle 

deregulation in the brain might well be related to the hypoxia described by high plasma 

lactate levels, reflecting a greater global impairment of aerobic respiration, with 

mitochondria as the main target (34). This global impairment might be also related to the 

difference in energy metabolism attached to carnitine and purine metabolism and measured 

in plasma between the future DCI+ and DCI- cases. Other impairments also applied to the 

metabolic deregulations observed in plasma that were related to arginine and proline, 

phenylalanine and tyrosine, and branched-chain amino-acid metabolisms. NO bioavailability 

is central to controlling brain perfusion in DCI (35) and is related to arginine metabolism. 
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Phenylalanine and tyrosine metabolism is related to catecholamine synthesis, and high 

plasma catecholamine levels were found to be related to poor aSAH outcomes (35). Our 

observation further highlights the relationships between aSAH catecholamine mediated 

stress with high circulating lactate hypothesised by Van Donkelaar et al. (12). Note that rat 

studies have found a relationship between aberrant branched-chain amino acid metabolism 

and ischemic stroke. This relationship was due to a dysregulation of the microbiota–gut–

brain axis (36). No such mechanism associating BCAA and microbiota has yet been reported 

for aSAH and DCI, but our finding that BCAA metabolism is linked to microbiota metabolism 

potentially involving bacterial species is consistent with (36). Most previous studies on aSAH 

and DCI have focused on brain metabolic issues. Most of them, with the exception of (12), 

have largely ignored the relationship of brain metabolic impairments with peripheral 

metabolism. It is established that such relationship greatly influences the incidence and 

severity of ischemic stroke and can impact post-ischemic stroke outcome (37). Our results in 

aSAH patients also pointed such interaction and integration between peripheral and cerebral 

metabolism, as touched on elsewhere (12). How this peripheral impairment would affect DCI 

occurrence remains unknown. It could also be a reflection in plasma of metabolic 

deregulation in the brain following disruption of the blood–brain barrier (34), and could be 

specific to poor DCI outcome.  

The advantage of our approach is that it is possible to hierarchise the importance of each of 

the above-discussed events and metabolic deregulations associated to DCI outcome, as 

illustrated in Figure 4. This hierarchisation confirms that smoking status and peripheral 

hypoxia are the main risk factors, followed by peripheral metabolic deregulations likely 

associated to NO, catecholamine and BCAA metabolism, but also impairment of the 

tricarboxylic acid cycle in cerebral mitochondria and some phosphorylcholine lipids. Finally, 
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other factors also emerged as slightly less important determinants of DCI, such as some 

aspects of peripheral sphingolipids metabolism and energy metabolism, gut microbes, and 

possibly also aspirin intake.  

 

In conclusion, we identified a high-performance predictive metabolomic/lipidomic multiplex 

biomarker of future DCI in aSAH patients at admission into neurological critical care. The 

integrative approach adopted here also highlighted important biological (both peripheral 

and cerebral) deregulations associated to DCI occurrence, including peripheral hypoxia 

(blood lactate), specific lipid metabolism alterations, and deregulation of important 

metabolic functions. Analysis also pointed to possible exogenous causes of DCI, such as 

smoking and aspirin intake. Furthermore, our results importantly point for the first time to a 

possible gut microbiota–brain axis of DCI. The exploratory research reported here is based 

on a single-centre study. This important first step lays the foundations for a multi-centric 

study to validate our results in different populations. 
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Figures and figure legends 

 

 

Figure 1. DCI predictive score and biomarker analysis. 

A: PLS-DA 2D scores plot showing distribution of DCI+ and DCI- patients according to 

principal components 1 and 2. B: VIP scores plot of the 20 metabolites selected in the final 

PLS-DA model. P and CSF prefixes for metabolite names indicate that the corresponding 

metabolites were detected in plasma and cerebrospinal fluid, respectively. C: Equation of 

the composite score for prediction of DCI status. P and CSF prefixes indicates if the 

corresponding metabolites are detected respectively in plasma or CSF. D: Receiver operating 

characteristic curve associated with DCI predictive score. The red point represents the best 

cut-off according to sensitivity and specificity. AUC: area under the curve. E: DCI predictive 
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scores plot. The red line represents the test cut-off (0.415). The shaded area represents the 

95% confidence interval (CI) grey zone. F: DCI status prediction according to DCI predictive 

score when applying no CI, 95% CI, and 99% CI. ND: not determined. Number of patients in 

each observed DCI status group is given in the corresponding rows. Number of patients in 

each predicted DCI status group is given in corresponding columns. 
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Figure 2. Predictive performance of the multiplex biomarker on control patients with no 

diagnosed aSAH. Panel A, DCI+ (red dots) and DCI- (black squares) are used as a PLS-DA 

training model to visualise control patients with no aSAH and no DCI using the multiplex 

biomarker. Panel B, confusion matrix and class assignment probability calculated by the 

NIPALS algorithm from the PLS-DA model in panel A. Panel C, class assignment of control 

patients calculated by the ROC. 
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Figure 3. Influence of each metabolic function and lipid cluster in determining DCI status 

from analyses performed at t0 (first 24h post-aSAH). The variables are sorted according to 

their p-value after –log10 transformation (where low p-values indicating high significance 

correspond to high log-transformed values). Right inset, the heatmap score value of the 

corresponding functions and clusters for each patient. See Tables S3-6 for full details on 

metabolic function and lipid cluster compositions.  
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Figure 4. Minimum pairwise partial correlation network integrating all the metabolic 

functions and lipid clusters in DCI+ patients, and cleaned up from the edges of DCI- patients. 

The significant functions and clusters of Figure 4 are mapped in the network, with red nodes 

for plasma and green nodes for cerebrospinal fluid. Edge size is proportional to the p-value 

of the pairwise relationships. Node size relates to the value of the betweenness centrality 

coefficients calculated in Cytoscape. These coefficients used for selection of the 22 

significant nodes are also reported in decreasing order in the right insight. 
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Figure 5. Betweenness centrality plotted against statistical t-test p-value for the 22 selected 

metabolic functions and lipid clusters. The most relevant variables for both P-value and 

betweenness centrality coefficient are highlighted in the upper-right region of the plot. The 

individual components of each function and cluster are analyzed using the enrichment tool 

where appropriate, or else in relation to their main individual variable driver 

(CSF_xenobiotics and P_miscellaneous) when enrichment was not appropriate. The putative 

bacteria producing metabolites of the P_microbiota metabolism function are reported. Links 

between metabolites and gut bacteria are indicated in Table S7. 
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