
   
 

 1 

New insights into the genetic etiology of 57 essential and 
non-essential trace elements in humans 
Marta R. Moksnes1,*, Ailin F. Hansen1, Brooke N. Wolford1, Laurent F. Thomas1,2,3,4, 
Humaira Rasheed1,5,6,, Anica Simić7, Laxmi Bhatta1, Anne Lise Brantsæter8, Ida Surakka9, 
Wei Zhou10,11,12, Per Magnus13, Pål R. Njølstad14,15, Ole A. Andreassen16,17, Tore Syversen18, 
Jie Zheng19,20,21, Lars G. Fritsche22,23, David M. Evans24,25,26, Nicole M. Warrington1,24,25,26, 
Therese H. Nøst1,27, Bjørn Olav Åsvold1,28,29, Trond Peder Flaten7, Cristen J. Willer1,30,31,32,†, 
Kristian Hveem1,28,†, Ben M. Brumpton1,28,33,*,† 
 
1 K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University 
of Science and Technology, Trondheim, Norway 
2 Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, 
Norway 
3 BioCore – Bioinformatics Core Facility, NTNU – Norwegian University of Science and Technology, Trondheim, Norway 
4 Clinic of Laboratory Medicine, St. Olav’s hospital, Trondheim University Hospital, Trondheim, Norway 
5 MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, 
UK 
6 Division of Medicine and Laboratory Sciences, University of Oslo, Oslo, Norway 
7 Department of Chemistry, NTNU - Norwegian University of Science and Technology, Trondheim, Norway 
8 Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, 
Norway 
9 Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA 
10 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA 
11 Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA 
12 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA 
13 Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway 
14 Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway 
15 Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway 
16 NORMENT Centre, University of Oslo, Oslo, Norway 
17 Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway 
18 Department of Neuroscience, NTNU – Norwegian University of Science and Technology, Trondheim, Norway 
19 Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin 
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 
20 Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic 
Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor,State Key 
Laboratory of Medical Genomics Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 
21 MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield 
Grove, Bristol, BS8 2BN, United Kingdom  
22 Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA 
23 Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA 
24 Institute for Molecular Biosciences, The University of Queensland, Brisbane, Australia 
25 Frazer Institute, The University of Queensland, Woolloongabba, Australia 
26 Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK 
27 Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway 
28 HUNT Research Centre, Department of Public Health and Nursing, NTNU – Norwegian University of Science and 
Technology, Levanger, Norway 
29 Department of Endocrinology, Clinic of Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, 
Norway 
30 Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA 
31 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA 
32 Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA 
33 Clinic of Medicine, St. Olav’s hospital, Trondheim University Hospital, Trondheim, Norway 
 
*Corresponding authors:  marta.r.moksmes@ntnu.no, ben.brumpton@ntnu.no 
† These authors contributed equally and should be regarded as shared last authors. 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 27, 2023. ; https://doi.org/10.1101/2023.04.25.23289097doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.04.25.23289097
http://creativecommons.org/licenses/by-nc/4.0/


   
 

 2 

Abstract 

Trace elements are important for human health but may exert toxic or adverse effects. 

Mechanisms of uptake, distribution, metabolism, and excretion are partly under genetic 

control but have not yet been extensively mapped. Here we report a comprehensive multi-

element genome-wide association study (GWAS) of 57 essential and non-essential trace 

elements. We performed GWA meta-analyses of 14 trace elements in up to 6580 

Scandinavian whole-blood samples, and GWASs of 43 trace elements in up to 2819 samples 

measured only in the Trøndelag Health Study (HUNT). We identified 11 novel genetic loci 

associated with blood concentrations of arsenic, cadmium, manganese, selenium, and zinc in 

genome-wide meta-analyses. In HUNT, several genome-wide significant loci were also 

indicated for other trace elements. Using two-sample Mendelian randomization, we found 

several indications of weak to moderate effects on health outcomes, the most precise being a 

weak harmful effect of increased zinc on prostate cancer. However, independent validation is 

needed. Our new understanding of trace element-associated genetic variants may help 

establish consequences of trace elements on human health. 
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Introduction 

Trace elements are present in living organisms at low concentrations, often defined as 

concentrations below 100 parts per million (ppm) or less than 100 µg/g1. Essential trace 

elements are vital for growth, development and normal physiology and biochemistry, and 

external sources are necessary as the body is unable to synthesize them. Other trace elements 

are classified as non-essential or toxic2. The major sources of exposure to trace elements in 

the general population are food, water, and air. Trace elements therefore often show 

considerable geographical variations3. Essential trace elements may also be toxic at elevated 

concentrations, and their uptake and metabolism are generally tightly regulated in the body4–

6. 

 

The mechanisms underlying variation in trace element concentrations between individuals 

are far from fully understood. Variations in trace element concentrations have previously 

been considered to be governed mainly by dietary intakes of food items with elevated 

concentrations7 and environmental exposure (e.g. geochemical variations, work-related 

exposure and anthropogenic pollution)8,9, but genetic variation may also be an important 

factor10–16. A well-known example is body iron, where protein-altering mutations in the HFE 

gene cause a severe iron overload condition, hemochromatosis17. Knowledge about genetic 

factors controlling trace element concentrations may shed light on the biological pathways of 

trace elements in the body. 

 

Few genome-wide association studies (GWAS) have investigated trace element 

concentrations and no previous studies have examined a comprehensive multielement panel 

of trace elements. Early twin studies have shown evidence for heritable variation in humans 

for copper, selenium, zinc, arsenic, cadmium, lead and mercury10,18 and recent GWASs have 

reported genetic associations with blood concentrations of manganese, copper, selenium, 

zinc, lead, cadmium and mercury12–16,19. However, many of the previous studies were limited 

by sample size or investigated only one or a few trace elements. Among the trace elements 

we investigate here, no published GWAS was found for 39 of them as of today. 

 

Essential as well as non-essential trace elements have been linked to several health-related 

outcomes in humans, including neurodegenerative disorders20–32, autoimmune diseases33–35, 
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endocrinological diseases36–40, cancers41–43 and bone health44–47. However, there is 

inconsistent and sometimes conflicting evidence for a protective or harmful effect of the trace 

elements on different diseases. Most of these studies have been observational and so the 

findings may have been influenced by confounding factors. Mendelian randomization (MR) 

methods have been developed to obtain an additional level of evidence for causal 

relationships. The potential causality of increased trace element levels on various diseases 

may be explored using genetic instruments for the individual elements. Trace elements have 

been measured in whole blood in two large Norwegian population-based studies: the 

Trøndelag Health Study (HUNT)8,48–51, and the Norwegian Mother, Father, and Child Cohort 

Study (MoBa)7,52–54. Further, genetic variants have been genotyped genome-wide and 

imputed using the Haplotype Reference Consortium reference panel (v1.1) in both cohorts55. 

GWASs of trace elements have also been reported in other cohorts, including the Swedish 

Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study15. The main 

aim of the current study was to identify genetic variants associated with whole blood trace 

element concentrations, and to explore potential causal associations between trace elements 

and cancers, neurodegenerative, autoimmune, endocrinological and bone related health 

outcomes. We therefore performed GWASs in HUNT and MoBa followed by a meta-analysis 

with the PIVUS study15. Further, we used the genetic associations for causal inference with 

Mendelian randomization, thereby estimating effects of circulating trace elements on health-

related outcomes highlighted in previous literature. 

 

Results  

Genetic loci associated with trace elements 

We identified 20 independent genetic loci (among 21 associations) that reached the genome-

wide significance threshold (p-value < 5×10–8) in the meta-analyses of blood-concentrations 

of 14 trace elements measured in the HUNT (14 trace elements, sample size N=2819), MoBa 

(11 trace elements, N=2812) and PIVUS (11 trace elements, N=949) studies (Supplementary 

Table 1). The loci were consistently associated (i.e. same direction of the effect) with 

concentrations of essential (copper [number of variants, n=1], manganese [n=10], selenium 

[n=2], and zinc [n=3]) and toxic (arsenic [n=1], cadmium [n=3], and lead [n=1]) trace 

elements across the meta-analyzed cohorts (Table 1, Supplementary Tables 2 and 3, 

Supplementary Figures 1-14). Ten of these associations had previously been reported12–16,56,57 
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(one locus was associated with both manganese and cadmium levels), and 11 had not. 

Additionally, in HUNT alone we analyzed 43 additional trace elements that we could not 

meta-analyze because they had not been measured or the associated genetic variants were not 

tested in any other cohort. Here, we identified 27 genetic loci for 12 trace elements in the 

analysis (Supplementary Table 2, Supplementary Figures 15-38). Among these, we observed 

a common variant in MORC4 with strong evidence of association with strontium 

concentrations (minor allele frequency (MAF) =0.19, p-value=2.0×10–16), and a common 

variant in HK1 that was associated with magnesium concentrations (MAF=0.14, p-

value=2.2×10–8). One locus in SLC18A2 was associated with selenium in HUNT 

(MAF=0.27, p-value=3.8×10–8), but the index (lowest p-value) variant was not tested in 

MoBa, and none of the tested proxy variants (in high linkage disequilibrium (LD) in HUNT, 

i.e. correlation r2HUNT>0.8 with the index variant) were associated with selenium 

concentrations in MoBa. Most of the other variants from HUNT only were low-frequency 

(MAF<5%) or rare (MAF<0.5%) and given that they were only tested for association in one 

cohort, they were more likely to be false positive findings. Sensitivity analyses correcting for 

fish intake (arsenic, selenium), smoking status (arsenic, cadmium, copper, lead) and weekly 

alcohol intake (iron, manganese, zinc, lead) in HUNT did not substantially change the effect 

sizes of the index variants (Supplementary Table 4). 

 

Table 1: Index variants in genetic loci associated (p-value<5E-8) with trace element 

concentrations in meta-analyses 

Trace 
Element 

Locus 
novelty 

RsID Chr Pos 
(GRCh37) 

Ref Alt AF Effect SE P-value N Nearest 
gene 

Consequence 

As Novel rs73060324 3 45785915 T G 0.10 0.25 0.03 4.8×10-16 5591* SACM1L Nonsynonymous** 
Cd Known56 rs2054394 4 103268763 G A 0.11 -0.21 0.03 4.9×10-14 6542 SLC39A8, 

LOC1053
77621 

 

Cd Known16 rs6987313 8 71570989 T C 0.52 -0.11 0.02 5.2×10-11 6542 LACTB2-
AS1 

 

Cd Novel rs953733 15 45393667 A G 0.08 0.21 0.03 2.9×10-10 6542 DUOX2 Nonsynonymous*** 
Cu Known14,19 rs34004251 3 148929951 T A 0.20 0.21 0.02 4.7×10-23 6564 CP  
Pb Known13 rs1805312 9 116152990 C G 0.08 -0.30 0.03 7.1×10-19 6564 ALAD  
Mn Known15 rs6541114 1 220074279 G T 0.19 0.47 0.02 6.3×10-99 6564 ZC3H11B; 

SLC30A1
0 

 

Mn Known15 rs13107325 4 103188709 C T 0.05 -0.42 0.04 6.0×10-25 6564 SLC39A8 Nonsynonymous 
Mn Novel rs467304 6 5119696 C T 0.31 0.15 0.02 6.5×10-14 6564 LYRM4-

AS1 
 

Mn Known57 rs1800562 6 26093141 G A 0.08 -0.22 0.03 4.5×10-12 6564 HFE Nonsynonymous 
Mn Novel rs4440696 9 88903367 T A 0.65 0.15 0.02 2.6×10-16 6564 TUT7  
Mn Novel rs7176565 15 65998702 C T 0.76 -0.16 0.02 5.5×10-13 6564 DENND4

A 
 

Mn Novel rs2272783 18 55238820 A G 0.06 0.36 0.04 8.9×10-21 6564 FECH  
Mn Novel rs6099115 20 54941140 C T 0.18 -0.16 0.02 1.1×10-12 6564 FAM210B Nonsynonymous 
Mn Novel rs5997397 22 29154455 A G 0.44 -0.11 0.02 1.2×10-9 6564 HSCB  
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Mn Novel rs855791 22 37462936 A G 0.58 -0.12 0.02 3.9×10-12 6564 TMPRSS6 Nonsynonymous 
Se Novel rs1047891 2 211540507 C A 0.31 0.11 0.02 6.0×10-9 5615* CPS1 Nonsynynonymous 
Se Known12 rs17823744 5 78344976 A G 0.12 0.25 0.03 3.3×10-22 5615* DMGDH  
Zn Novel rs322884 1 199029020 A C 0.66 -0.11 0.02 1.3×10-9 6564 LINC0122

1 
 

Zn Known12 rs10097917 8 86260295 A T 0.61 -0.17 0.02 4.7×10-22 6564 CA1  
Zn Known12 rs12591119 15 75355944 A G 0.18 -0.29 0.02 1.4×10-38 6564 PPCDC; 

C15orf39 
 

Trace elements: Arsenic (As), copper (Cu), cadmium (Cd), lead (Pb), manganese (Mn), selenium (Se), zinc (Zn). Index variants are given as reference 

SNP ID (rsID), chromosome (Chr), position in build GRCh37 (Pos), reference (Ref) and alternative (Alt) alleles. Allele frequency (AF) and effect size 

(Effect) with standard error (SE) is with respect to the alternate allele. Meta-analysis sample size (N). All variants are analyzed in HUNT, MoBa and 

PIVUS unless marked with * in the N column (PIVUS excluded). **Correlation r2
 HUNT =0.88 with nonsynonymous variant rs17279437 in SLC6A20. 

***Correlation r2
 HUNT =0.96 with nonsynonymous variant rs269868 and r2=0.99 with nonsynonymous variant rs57659670 in DUOX2. See 

Supplemental Table 1 for more information. 

 

Protein-altering variants 

Among the 20 top association signals, we identified eight protein-altering single nucleotide 

polymorphisms (SNPs) associated with trace elements: Four manganese associated index 

variants (rs13107325 in SLC39A8, rs1800562 in HFE, rs6099115 in FAM210B and rs855791 

in TMPRSS6) and one selenium associated index variant (rs1047891 in CPS1) were 

nonsynonymous SNPs. Among these, only rs13107325 had previously been reported for 

manganese in a GWAS15. Although the hemochromatosis variant rs1800562 was not 

associated with manganese at the GWAS significance level in a previous GWAS15, women 

with HFE variants were reported to have 12% lower blood manganese concentrations in 

another study57. Further, three nonsynonymous SNPs were in strong LD (r2 > 0.8) with index 

variants: rs17279437 in SLC6A20 (p-value=9.8×10-16, r2HUNT = 0.88 with arsenic index 

variant rs7306032), rs269868 in DUOX2 (p-value=5.7×10-10, r2HUNT=0.96 with cadmium 

index variant rs953733) and rs57659670 in DUOX2 (p-value=3.2×10-10, r2HUNT=0.99 with 

cadmium index variant rs953733) (Supplementary Table 5). 

 
SNP heritability estimates and genetic and phenotypic correlations of trace elements 

For the concentrations of 10 trace elements that had sample sizes above 5000 (cadmium, 

cobalt, copper, lead, manganese, mercury, molybdenum, selenium, thallium, and zinc), the 

estimated narrow-sense SNP heritability h2 ranged from h2=0.01±0.09 (thallium) to 

h2=0.29±0.10 (manganese). The estimates were higher for essential trace elements (h2 

between 0.16 and 0.29) than for non-essential trace elements (h2 between 0.01 and 0.11) 

(Supplementary Table 6). 
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We estimated the genetic correlation between all pairs of these 10 trace elements and found 

absolute values of the genetic correlations to range from 0.01 (cobalt against lead and cobalt 

against mercury) to 0.97 (molybdenum against cadmium), although the estimates were 

imprecise and therefore mostly uninformative (Supplementary Figure 44, Supplementary 

Table 7). For comparison, we also estimated the phenotypic correlation (Supplementary 

Figure 39, Supplementary Table 7), where the absolute values ranged from around 0 

(manganese against lead and manganese against mercury) to 0.45 (mercury against 

selenium). We did not observe patterns among the genetic or the phenotypic correlations 

related to the known ion binding preferences of the trace elements58, which we chose to 

group as class A (“oxygen-seeking”) (molybdenum, manganese, zinc), intermediate (cobalt, 

cadmium, copper), and class B (“sulfur/nitrogen-seeking”) (lead, mercury, selenium). 

 

Phenome-wide associations of trace element loci 

We investigated the genetic relationship between trace element concentrations and other 

complex traits by examining associations of the index variants identified by the meta-

analyses with 1326 phenotype codes (‘phecodes’59), 30 blood biomarkers and 167 other 

continuous traits and measurements of the UK Biobank. In total, 17 index variants from trace 

element meta-analyses were associated (p-value < 9.7×10-7, threshold Bonferroni corrected 

for 51 782 tests) with additional phenotypes (Figure 1, Supplementary Figure 40, 

Supplementary Tables 8-10): 

 

Three nonsynonymous index variants for manganese (rs13107325 [SLC39A8], rs1800562 

[HFE], rs855791 [TMPRSS6]) and one index variant for cadmium in high LD with 

nonsynonymous SNPs (rs953733 [DUOX2]) were associated with phecodes (Supplementary 

Table 8, Figure 1): The manganese decreasing variant in the metal ion transporter gene 

SLC39A8 (rs13107325) was positively associated with diseases of the esophagus and with 

musculoskeletal conditions. The manganese decreasing, but iron increasing, 

hemochromatosis variant (rs1800562) was positively associated with disorders of mineral 

and iron metabolism, but also with several diseases in other biological domains. The 

manganese increasing and iron decreasing60 variant rs855791 was positively associated with 

other anemias. The cadmium increasing variant found in a locus that has also been associated 

with iron status biomarkers61 (rs73060324), was positively associated with iron deficiency 

anemias. 
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Further, eight index variants, representing three trace elements (cadmium, manganese, and 

selenium), were associated with blood biomarkers in the UK Biobank (Supplementary Table 

9, Figure 1, Supplementary Figure 40): Five manganese variants (rs13107325, rs1800562, 

rs7176565, rs5997397 and rs855791) were associated primarily with endocrine/metabolic 

biomarkers, but also with digestive, genitourinary, musculoskeletal, and inflammatory 

biomarkers. The cadmium increasing variant rs953733 was positively associated with levels 

of creatinine, a marker for kidney function62, while the cadmium decreasing rs6987313 was 

associated with phosphate and triglyceride levels. The selenium increasing nonsynonymous 

SNP rs1047891 [CPS1]) was associated with endocrine/metabolic, genitourinary, and 

digestive biomarkers. Finally, the selenium increasing rs17823744 (DMGDH) was negatively 

associated with insulin-like growth factor 1 (IGF-1). 

 

Among the GWAS results for continuous traits in the UK Biobank, we observed associations 

for 17 meta-analysis index variants (for cadmium, manganese, selenium, and zinc) 

(Supplementary Table 10, Figure 1, Supplementary Figure 40). The majority of the 

associations were with different blood cell indices, but cadmium, manganese and selenium 

variants were also associated with continuous traits from several other biological domains, 

including musculoskeletal and anthropometric measures (cadmium, manganese, selenium), 

blood pressure traits (cadmium and manganese), biomarkers in urine and variables derived 

from endocrine/metabolic blood biomarkers (manganese and selenium), measures of 

cognitive ability (manganese) and alcohol habits (manganese). 

 

In addition to the associations with the meta-analysis index variants, we also assessed the 

phenome-wide associations with common and low-frequency (MAF>0.5%) variants 

identified only in HUNT. Here, four common variants (strontium [rs17326228], cesium 

[rs7785293], magnesium [rs16926246] and silicon [rs62228297]) were associated (p-value < 

9.7×10-7) with blood biomarkers and/or continuous traits in the UK Biobank (Supplementary 

Tables 11-12, Supplementary Figure 41): The cesium and magnesium variants were 

associated with a range of blood cell related traits, the cesium and strontium variants with 

genitourinary biomarkers and measures, the magnesium variant with endocrine/metabolic 

biomarkers and measures, and the silicon variant with standing height. 
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Figure 1: Phenome-wide associations between meta-analysis index variants and selected outcomes in the UK 
Biobank. Each triangle represents a statistically significant (p-value<9.7´10–7) association between an index variant from 
trace element GWA meta-analysis (x-axis, grouped by trace element) and an outcome in the UK Biobank (y-axis, grouped 
and colored according to biological domain). Larger triangles represent lower p-values, and the direction indicates if the 
direction of effect for the indicated allele is the same (up) or opposite (down) as the association with the trace element. 
Note: Figure 1 only presents a selection of the associated outcomes in UK Biobank. The full list of associations with meta-
analysis index variants are visualized in Supplementary Figure 40. 
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Amount of alcohol drunk on a typical drinking day
Alcohol intake frequency

Forced vital capacity (FVC)
Forced Expiratory Volume in 1 second (FEV1)

Asthma
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Mendelian Randomization 

We used two-sample MR to perform an exploratory examination of potential causal effects of 

trace elements on health outcomes within neurodegenerative, autoimmune, and 

endocrinological diseases, cancers and bone related domains as highlighted in the literature20-

47. Here, we used the index SNPs from the meta-analyses (manganese, selenium, zinc, 

copper, lead, arsenic, and cadmium) or from the GWASs in HUNT (strontium) as 

instruments for the selected trace elements (F-statistics>10 for all trace elements except 

cadmium [F-statistic=9]: Supplementary Table 13). For the SNP-outcome associations, we 

used summary-level data from large GWASs of selected neurodegenerative disorders 

(Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis), autoimmune diseases 

(rheumatoid arthritis and autoimmune thyroid disorder), endocrinological diseases 

(hypothyroidism and type 2 diabetes), bone related traits and disorders (bone mineral density, 

bone fractures, osteoporosis) and cancers (prostate cancer and colorectal cancer). The sources 

of the summary-level data can be found in Supplementary Table 13. The most precise 

association indicated a weak causal effect of zinc on prostate cancer (odds ratio (OR)=1.06, 

95% CI=1.01-1.12) (Supplemental Table 13). There were also stronger but less precise 

associations indicating a causal effect of arsenic and copper on Parkinson’s disease 

(OR=1.24, 95% CI=0.98-1.57 [arsenic], OR=1.17, 95% CI=0.89-1.54 [copper]), as well as 

protective effects of selenium on colorectal cancer (OR=0.89, 95% CI=0.75-1.07) and 

selenium, cadmium and lead on multiple sclerosis (OR=0.86,95% CI=0.64-1.15 [selenium], 

OR=0.86,95% CI=0.72-1.01 [cadmium], OR=0.70, 95% CI=0.52-0.95 [lead]) (Supplemental 

Table 13). The results should however be interpreted with caution due to limitations such as 

few SNPs per instrument and known correlations and common biological pathways of trace 

elements. Otherwise, the MR estimates were generally imprecise, and generally they did not 

give convincing evidence for causal effects of trace elements in the remaining outcomes 

(Supplementary Table 13). 

 

Discussion 

In the present study, we investigated genetic variants associated with whole blood trace 

element concentrations, combining data from up to 6564 individuals in HUNT, MoBa and 

PIVUS. Our GWAS meta-analyses identified genetic contributions to whole blood 

concentrations of essential (copper, manganese, selenium, and zinc) and non-essential or 

toxic (arsenic, cadmium, and lead) trace elements. In total, 20 loci were associated with trace 
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element concentrations across multiple cohorts, confirming 9 loci from previous studies and 

identifying 11 novel loci. Seven of the novel loci were associated with manganese 

concentrations, including two nonsynonymous index variants. Four novel genetic loci were 

associated with selenium, zinc, arsenic, and cadmium, among which we also identified 

nonsynonymous variants in high LD (r2>0.8) with the index variants. The genetic variants 

that we identified in the present study had small to moderate effect sizes. They could, 

however, still contribute to individual differences in trace element concentrations in 

combination with many other factors. Identification of these loci expands our knowledge 

about the genetic contribution to trace element concentrations and indicates proteins that 

could aid in establishing mechanisms for absorption, distribution, metabolism, and excretion. 

 

Because essential trace elements are not produced in the body, but are necessary for normal 

physiology, we would expect genes associated with essential trace elements to encode 

proteins that include these elements or are involved in their respective regulatory processes. 

This is in line with our observations in the meta-analyses of copper, zinc, and manganese, 

where we replicated previously reported loci with index variants near or in genes encoding 

the copper-binding metalloprotein ceruloplasmin (CP)63, the metalloenzyme carbonic 

anhydrase 1 (CA1) involved in the zinc balance64, and two divalent metal ion transporters 

SLC30A1065 and SLC39A866 (nonsynonymous variant), where deficiency in the latter is 

known to cause severe manganese deficiency67. Other nonsynonymous variants we observed 

had, to our knowledge, little or no known underlying biology related to the associated trace 

elements. For example, we observed a novel association between selenium and a 

nonsynonymous variant in the urea cycle gene CPS1. Although the variant is associated with 

vitamin D68, which has again been hypothesized to interact with selenium69, and the gene has 

been observed to be upregulated in mice fed excessive amounts of selenium70, the underlying 

biology of the association with selenium in humans is not established. Because some trace 

elements interact with each other, or have common uptake mechanisms and co-transport, an 

imbalance in the concentration of one trace element might also change the concentration of 

others7,50,71,72: For example, manganese is partly transported by both zinc and iron 

transporters73, and low iron stores have been associated with higher blood concentrations of 

other trace elements7,50. Further, functional variants in iron metabolism genes have been 

associated with lower blood manganese concentrations57, including rs1800562 in HFE that 

we replicated here. The novel loci we observed to be associated with manganese, as well as 
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the CPS1 locus for selenium, are in line with this pattern: One manganese associated 

nonsynonymous SNP is known in iron deficiency anemia (rs855791 in TMPRSS6)74. Further, 

the gene that is closest to the index variant in another locus is the interleukin-6 regulator gene 

TUT775, which stimulates the iron regulator hepcidin76. The index variants in other novel loci 

are close to genes involved in mitochondrial iron uptake (FAM210B77, where we also find the 

nonsynonymous index variant rs6099115) or genes associated with hematological traits or 

involved in the synthesis of iron containing compounds (LYRM4, FAM210B, DENND4A, 

FECH, HSCB)77–80. The CPS1 index variant (rs1047891) was in high LD (r2HUNT =0.92) with 

an index variant (rs715) for total iron binding capacity in our previous study61. These loci 

were not associated with iron in the current study; however, the analysis of iron had limited 

statistical power with less than half the sample size of manganese. 

 

Non-essential trace elements typically do not have their own transport proteins or specific 

mechanisms for metabolism and are generally taken up into the body using the routes of 

macronutrients81 or essential trace elements with similar chemical properties71. This is 

illustrated by one of the known loci we replicate for the toxic metal cadmium, where the 

index variant is nearest to the zinc/manganese transporter gene SLC39A8, which was also 

associated with manganese. For cadmium, we also report a novel locus with two 

nonsynonymous variants in DUOX2, both in high LD with the index variant. The gene codes 

for a thyroid hormone synthesis related protein82 with a heme binding site83 and was 

associated with iron status in previous GWASs61,84. Similarly, the nonsynonymous variant 

rs17279437 in the glycine transporter gene SLC6A20 has been associated with excessive 

glycine excretion85. In this study, the variant was in high LD with the index variant for 

arsenic, which could potentially indicate that the protein can also transport arsenic. Glycine 

levels have also been associated with arsenic exposure in mouse models86. 

 

The genetic associations observed only in HUNT warrant further replication. One interesting 

result identified in HUNT was a selenium locus within a solute carrier gene (SLC18A2). 

Although the index variant was not tested in MoBa, variants in high LD (r2>0.8) with the 

index variant were tested, but not associated with selenium in that data. The non-association 

in MoBa could however potentially be a result of sex-specific or pregnancy-specific exposure 

patterns. Further, index variants in gold and magnesium loci were in or nearest to genes 

associated with hemoglobin and iron regulation (CD163 and HK1)87,88. The strong 
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association between hypomagnesemia and type 2 diabetes89, combined with a previously 

reported association between the magnesium HK1 index variant with levels of the type 2 

diabetes biomarker glycated hemoglobin (HbA1c)90 could support this finding. However, 

associations between HK1 and HbA1c could also reflect the erythrocyte lifetime regardless of 

diabetes status91. We also observed a strong association between strontium concentrations 

and a locus in MORC4. Strontium is chemically very similar to calcium. It has effects on 

bone balance92, and could potentially induce skeletal abnormalities in very high doses92. A 

rare genetic variant in MORC4 has been associated with a 3.4 times increased risk of 

osteoarthritis (Open Targets Platform93, accessed 25.05.2022), and another MORC family 

member, MORC3, is involved in calcium homeostasis and maintenance of bone 

remodeling94. We therefore speculate that MORC4 could have similar functions or be 

involved in similar pathways. 

 

In the PheWAS analyses, we observed the well-known association of functional variants in 

iron metabolism genes (the hemochromatosis HFE variant, rs1800562, and the TMPRSS6 

variant, rs855791) with disorders of iron and mineral metabolism and anemias. As expected, 

and previously demonstrated in the UK Biobank61, rs1800562 was also associated with 

several known clinical manifestations of HFE hemochromatosis95,96. Likewise, the index 

variant in the DUOX2 (cadmium) locus known from GWASs of iron status biomarkers61,84,97, 

was associated with iron deficiency anemia. The many associations between trace element 

index variants and blood cell indices could also potentially reflect their correlation with iron 

status. The associations between digestive and musculoskeletal disorders and rs13107325 

(manganese), which alters the metal ion transporter ZIP8 (encoded by SLC39A8), could 

potentially highlight the role of manganese or other divalent trace metals in these conditions. 

Associations with basal metabolic rate and metabolic biomarkers could possibly be related to 

the processing of trace elements in the body, and associations with biomarkers for liver and 

kidney function could be related to the clearance of trace elements that are toxic or in high 

abundance. However, population stratification could also have caused false associations with 

some of the variants. 

 

We estimated the heritability of concentrations of 10 trace elements with meta-analysis 

sample size above 5000, ranging from low to moderately high heritability (0.01±0.09 

[thallium] to 0.29±0.10 [manganese]). The lower heritability for non-essential trace elements 
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compared to essential trace elements could reflect that humans have not evolved genes and 

biological pathways to handle non-essential trace elements. The very low heritability of 

thallium could also be because most of the samples from MoBa were below the detection 

limit. Further, many of the heritability estimates could be low because LD Score regression 

underestimates the heritability of traits that are not highly polygenic98.  

 

The genetic and phenotypic correlations between nine trace elements did generally not 

correspond well to each other, however the genetic correlations were highly imprecise and 

therefore mostly uninformative. Mercury and selenium had the strongest phenotypic 

correlation, which is in line with the known mercury-selenium antagonistic relationship99. In 

general, the genetic correlations were higher than the phenotypic correlations, although the 

range of the different phenotypic correlation estimates were similar to those previously 

reported in MoBa7. This could potentially reflect a relatively low polygenicity of trace 

element concentrations, where few genetic loci might influence many different trace 

elements, while there are a variety of different factors influencing the phenotypic variations. 

 

Using two-sample MR, we observed indications of a weak harmful effect of circulating zinc 

on prostate cancer. The effect of zinc on prostate cancer is debated, but a harmful effect has 

been found in some previous studies100. The results also gave weak evidence for a harmful 

effect of arsenic and copper in Parkinson’s disease, and for a protective effect of selenium on 

colorectal cancer and selenium, cadmium, and lead on multiple sclerosis. The apparently 

protective effect of lead on multiple sclerosis is not in line with the known inhibitory effect of 

lead on a heme biosynthesis catalyst, aminolevulinate dehydratase (ALAD)101, and (lead 

induced) impairment of heme synthesis as a suggested potential trigger for multiple 

sclerosis102. Otherwise, we observed little evidence for causal roles of trace elements in the 

remaining selected health outcomes. True direct protective effects of non-essential or toxic 

trace elements seem implausible, although their effect could potentially be indirect, for 

example if the toxic trace elements influence essential trace elements in the body. Based on 

the PheWAS results and the known correlations and common biological pathways between 

several trace elements, the estimates were particularly vulnerable to misspecification of the 

primary phenotype and/or horizontal pleiotropy. Further, blood concentrations might not 

indicate other tissue or organ specific trace element concentrations. MR analyses can also be 

influenced by selection bias and competing risks, which might also explain apparent 
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protective effects of toxic trace elements on late-life health outcomes. Few SNPs per 

instrument provided limited opportunities for reliable sensitivity analyses. Some estimates 

were precise around the null, but in general, the confidence intervals were wide and 

compatible with both moderate protection and harmful effects and were therefore 

uninformative. The low precision could be due to low case sample sizes in the outcome data 

and/or genetic instruments that had few SNPs with small to moderate effects on the 

exposures, potentially introducing weak instrument bias103. This was quantified by the low 

variance explained and low F-statistics of some of the instruments. These findings were 

based on the analyses of variation in trace elements concentrations in a general population, 

and we were therefore unable to estimate any effects of extreme trace element concentrations. 

The current results should be interpreted with caution, and future well-powered multivariable 

MR analyses might be helpful to discriminate between the effects of different trace elements. 

Further, as we only analyzed genetic associations with trace element concentrations measured 

in adults, it was not possible to evaluate any effects of trace elements specific to growth and 

development stages in newborns to adolescents104. Low sample sizes and lack of cohorts with 

both trace elements and health outcomes available also prevented us from exploring non-

linear associations with MR. 

 

This study has several limitations. Neither the HUNT nor the MoBa populations have 

generally been exposed to high levels of toxic trace elements, which makes these excellent 

populations for detecting genetic factors, but on the other hand many trace elements had a 

high proportion of measurements below the detection limit, thereby lowering the effective 

sample size. Further, trace elements are distributed differently in different organs, tissues, and 

body fluids105–107, and whole blood is therefore not the preferred tissue for monitoring the 

status of all trace elements. Some trace elements could also be influenced by evaporation, 

contamination from syringes or leakage of trace elements from glass vials. Differences 

between studies and populations also created known and potential limitations. Without access 

to individual level data in PIVUS, we were unable to harmonize all covariates. For example, 

the PIVUS association model included triglycerides and cholesterol as covariates, while the 

models used in HUNT and MoBa did not. Although HUNT, PIVUS and MoBa are all 

Scandinavian cohorts, the populations from which they have been sampled have clear 

differences, particularly in terms of birth year, age, and sex, and although the directions of 

effect were consistent across all three studies, the differences observed in effect size across 
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these studies for a few SNPs could potentially be related to population-specific exposure 

patterns or factors related to pregnancy (MoBa). For example, fish intake might influence 

Swedes more than Norwegians, because there are indications that some toxic trace elements 

have accumulated more in fish caught in the shallow Bothnian Bay than along the deep 

Norwegian coastline 108.  Further, pregnant women might change their diet and different 

generations could have been exposed to different levels of environmental pollution 

throughout their lives. The main limitation was that most of the trace elements were only 

measured in HUNT, and both low sample sizes and the lack of replication cohorts were 

general limitations. Further, trace element concentrations are associated with many different 

factors, and while we have controlled for some of these, there might still be unmeasured 

confounding by population stratification related to factors we have not controlled for, 

especially for rare variants. A particular limitation was the lack of detailed data on dietary 

habits. A particular limitation was the lack of detailed data on dietary habits. The heritability 

and genetic correlation estimates found using LD Score regression were limited by the 

potentially low polygenicity of the trace elements and genomic control (GC) correction of 

summary statistics, both which may contribute to heritability being underestimated. 

Additionally, using summary statistics from mixed models may contribute to overestimation. 

Finally, small sample sizes (and for some trace elements many measurements below the 

detection limit) resulted in highly imprecise estimates. The imprecision was especially large 

for the genetic correlations, which were further limited by heritability z-scores that were all 

below 4109. 

 

In summary, we have identified novel genetic loci and replicated previously indicated loci for 

essential and non-essential trace elements. These highlighted interesting genes that may help 

establish biological pathways and mechanisms for uptake, distribution, metabolism, and 

excretion of trace elements in humans. MR analyses provided several indications of weak to 

moderate associations between trace elements and health outcomes, the most precise being a 

weak harmful effect of genetically determined circulating zinc on prostate cancer. However, 

generally imprecise MR estimates gave no convincing evidence for causal roles of 

genetically determined levels of other trace elements on health outcomes. Studies of 

populations with higher trace element exposure burdens or with larger samples are needed to 

investigate moderate and weak effects. 
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Materials and methods 

Cohort Descriptions 

HUNT 

The HUNT Study48,49 is a longitudinal population-based health study conducted in the county 

of Trøndelag, Norway. Data and samples have been collected through four cross-sectional 

surveys: HUNT1 (1984-86), HUNT2 (1995-97), HUNT3 (2006-08) and HUNT4 (2017-

2019). Approximately 123 000 individuals (aged ≥ 20 years) have participated in one or more 

HUNT surveys. Approximately 88 000 individuals have been genotyped using one of three 

Illumina HumanCoreExome arrays: 12 v.1.0, 12 v.1.1 and 24 with custom content (UM 

HUNT Biobank v1.0). Sample and variant quality control (QC) was performed using 

standard practices and has been described elsewhere110. All variants were imputed from the 

HRC v1.1 reference panel111 merged with 2201 sequenced samples from HUNT, using 

Minimac3112. 

 

Trace elements have been measured in whole blood samples collected in HUNT2 and 

HUNT3 using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) 

(Thermo Finnigan Element 2, Thermo Finnigan, Bremen, Germany) at three laboratories as 

part of previous studies. Here, we combined measurements of nine trace elements (As, Cd, 

Co, Cu, Pb, Mn, Hg, Se, Zn) in 930 samples (HUNT2) that have been analyzed by the 

National Institute of Occupational Health in Norway (STAMI), 53 trace elements (Al, Sb, As, 

Ba, Be, B, Br, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Ga, Ge, Au, Ho, In, Fe, La, Pb, Li, Mg, Mn, 

Hg, Mo, Nd, Ni, Nb, Pa, P, Pt, Pr, Re, Rh, Rb, Sm, Se, Si, Sr, S, Ta, Tb, Tl, Sn, W, U, V, Y, 

Zn, Zr) that have been measured in 757 samples (HUNT3) by one laboratory at NTNU 

(hereafter named NTNU1), and 30 trace elements (As, Be, Bi, B, Br, Cd, Ca, Cs, Cr, Cu, Ga, 

Au, In, Ir, Fe, Pb, Mg, Mn, Hg, Mo, Ni, Rb, Se, Ag, Sr, Tl, Th, Sn, W, Zn) that have been 

measured in 1539 samples (HUNT3) by a second laboratory at NTNU (hereafter named 

NTNU2). For 23 trace elements in HUNT3, some samples (maximum 30) had missing 

information on lab assignment, and we assigned these to NTNU2. There were no individuals 

with multiple measurements. Trace element measurements were returned to the HUNT 

Databank after sample and trace element QC at the respective laboratories. The samples 

analyzed by the STAMI laboratory were collected as part of a sub-study of iron status in 

women (selection criteria: female, age between 20 and 55 years old, non-pregnant, not blood 

donor in the past 2 years), the samples analyzed by HUNT1 were collected as part of a 
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neuroimaging sub-study (selection criteria: age between 50 and 65, participation in previous 

HUNT surveys, exclusion criteria: MRI contraindications (pacemaker of the heart, clipped 

cerebral aneurysm, cochlear implants, severe claustrophobia, or body weight above 150 kg)), 

and 267 of the 1539 samples analyzed by NTNU2 were selected among type 2 diabetes cases 

as part of a diabetes related sub-study. Samples from the NTNU1 laboratory that were either 

below the detection limit or more than 10 times the median value had been removed and were 

not included in the current analysis. The specific reason for removal of these measurements 

was not available, therefore we excluded these measurements for our analysis. The 

proportion of unavailable samples per trace element from NTNU1 ranged from 0 to 69% 

(average 17%, median 2%). For samples from the NTNU2 laboratory, we replaced 

measurements below the detection limit with randomly generated numbers between 0 and the 

element-specific detection limit, because the true measurements were unavailable. The 

proportion of measurements below the detection limit from NTNU2 ranged from 0% to 97% 

(average 11%, median 0%). Details of sample collection, storage of samples, sample 

processing, quality control and ICP-MS analyses have been reported in detail elsewhere8,50,51. 

 

MoBa 

The Norwegian Mother, Father and Child Cohort Study (MoBa) is a population-based 

pregnancy cohort study conducted by the Norwegian Institute of Public Health. Participants 

were recruited from all over Norway from 1999-2008. The women consented to participation 

in 41% of the pregnancies. The cohort includes approximately 114 500 children, 95 200 

mothers and 75 200 fathers54. The current study is based on version 12 of the quality-assured 

data files released for research in January 2019. The establishment of MoBa and initial data 

collection was based on a license from the Norwegian Data Protection Agency and approval 

from The Regional Committees for Medical and Health Research Ethics. 

 

In short, pregnant women were recruited in their first trimester and invited to fill in three 

questionnaires during pregnancy, and to donate blood and urine samples at the time of 

ultrasound screening around gestational weeks 17–19 (mean 18.5). Blood samples were 

obtained from both parents during pregnancy and from mothers and children (umbilical cord) 

at birth. Follow-up is conducted through questionnaires and linkage to national health 

registries54. A total of 98 000 MoBa participants have been genotyped using one of three 

arrays: Illumina HumanCoreExome, Illumina Global Screening Array, or Illumina 
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OmniExpress. In the current study, we used genetic data collected as part of the Better Health 

by Harvesting Biobanks (HARVEST) study released by MoBa Genetics v.1.0 

(https://github.com/folkehelseinstituttet/mobagen/wiki/MoBaGenetics1.0). The sample and 

variant quality control in MoBa has been described elsewhere113. All variants were imputed 

from the HRC reference panel v1.1 at the Sanger Imputation Service. 

 

The Norwegian Environmental Biobank is a sub-study within MoBa established with the aim 

of biomonitoring nutrients and environmental contaminants in MoBa participants. The study 

included 2999 pregnant women with available genetic data who had donated blod and urine 

samples and had responded to questionnaires 1-6 in MoBa7,53. A total of 11 trace elements 

(As, Cd, Co, Cu, Mn, Mo, Pb, Se, Tl, Zn, Hg), were measured in whole blood donated by the 

women in gestational week 18 at the department of laboratory medicine at Lund University 

(Sweden). All trace elements except Hg were analyzed using an ICP-MS (iCAP Q, Thermo 

Fisher Scientific, Bremen, Germany). Total Hg was determined in acid-digested samples by 

cold vapor atomic fluorescence spectrophotometry (Sandborgh-Englund 1998). During the 

analysis campaign, the laboratory participated in the German External Quality Assessment 

Scheme (G-EQAS), with good agreement between obtained element concentrations in quality 

control samples used and expected values. Details of sample collection, storage of samples, 

sample processing and ICP-MS analyses have been reported in detail elsewhere7. 

 

Association analyses 

We performed genome-wide association analyses of 59 trace elements measured in up to 

2819 individuals in HUNT and 11 trace elements measured in 2812 individuals in MoBa. For 

48 trace elements in HUNT (Al, Sb, As, Ba, Be, Bi, B, Br, Cd, Ca, Ce, Cs, Cl, Co, Cu, Ga, 

Ge, Au, Ho, In, Ir, Fe, La, Pb, Li, Mg, Mn, Hg, Mo, Nd, Nb, Pa, P, Rh, Rb, Sm, Se, Ag, Sr, 

S, Ta, Tb, Tl, Sn, W, U, Y, Zn) and 9 trace elements in MoBa (Cd, Co, Cu, Hg, Mn, Mo, Pb, 

Se, Tl, Zn), we used a linear mixed model regression under an additive genetic model for 

each variant as implemented in BOLT-LMM v.2.3.4114, thereby controlling for relatedness 

between study participants. We performed association analyses of 9 trace elements in HUNT 

(Cr, Ni, Pt, Pr, Re, Si, Th, V, Zr) and 2 trace elements in MoBa (As, Mo) in unrelated 

individuals using PLINK 2.0115, because BOLT-LMM was unable to estimate the trace 

element heritability. In total, human GWASs had not been previously published for 39 trace 

elements (Sb, Ba, Be, B, Br, Bi, Ce, Cs, Ga, Ge, Au, Ho, In, Ir, La, Li, Nd, Nb, Pd, Pt, Pr, Re, 
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Rh, Rb, Sm, Si, Ag, Sr, S, Ta, Tb, Tl, Th, Sn, W, U, V, Y, Zr). Distributions, sample size and 

proportion of measurements below the detection limit per study are given for each trace 

element in Supplementary Table 1. 

 

Prior to analysis, we applied rank-based inverse normal transformation of the trace element 

concentrations after adjusting for age and sex (HUNT) using linear regression. Age, and the 

first ten genetic principal components (PCs) of ancestry were included as covariates in all the 

analyses. Sex, genotyping batch, geographical region (coast, town/fjord, or inland/mountain) 

and analysis laboratory (NTNU1, NTNU2, STAMI) were included as additional covariates in 

HUNT where appropriate. We performed genomic control correction of all GWAS results 

with an inflation factor l > 1 (calculated from variants with MAF ³ 0.01). 

 

Variants with a minor allele count < 10 or an imputation R2 < 0.3 were excluded from the 

analyses. After visual inspection of the Manhattan and quantile-quantile plots, we excluded 

the full set of results for Bi and Th due to excessive inflation of the p-values (Supplementary 

Figures 42-45). 

 

We used METAL116 to perform fixed-effect inverse variance weighted GWA meta-analysis 

of 14 trace elements (Al, As, Cd, Cr, Co, Cu, Pb, Mn, Hg, Mo, Se, Tl, Zn) analyzed in at least 

two of three studies: the HUNT, MoBa and/or publicly available summary statistics from the 

PIVUS study15, where 11 trace elements (Al, Cd, Co, Cu, Cr, Hg, Mn, Mo, Ni, Pb, Zn) have 

been measured in 949 seniors from Uppsala, Sweden, and rank inverse normalized trace 

element concentrations had been tested for association using a linear regression under an 

additive model, adjusting for triglycerides, cholesterol, gender and two principal components 

of ancestry. Age was not included as covariate because the PIVUS participants were of the 

same age.   

 

Definition of associated variants, associated loci, and locus novelty 

We considered genetic variants with p-values < 5×10-8 to be statistically significant at a 

genome-wide significance level and defined these as associated with the given trace element. 

Genetic loci were defined as 500 kilobasepairs to each side of genome-wide significant 

variants in the same region. A locus was classified as novel for a given trace element if it had 
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not been reported for the respective trace element before. Previously published loci were 

identified with a literature search and a look-up in the GWAS catalog117. 

Index SNPs were identified as the genetic variant with the lowest p-value in each locus. We 

used PLINK v.1.9115 to identify variants in high LD (correlation r2>0.8) with the index 

variants, based on a reference panel of 5000 unrelated individuals in HUNT. The index 

variants and variants in high LD with the index variants were annotated using ANNOVAR118.  

 

Sensitivity analyses 

For trace elements where tobacco smoke (Cd, As, Pb, Cu)119, wine (Pb)120 or fish (As, Se)121 

is a major source of human intake, or where alcohol is thought to regulate uptake or 

metabolism (Fe, Mn, Zn)122–124, we repeated the association analyses of the associated loci in 

HUNT, including smoking status (self-reported, never versus ever smokers (including ex-

smokers, occasionally and daily smokers)), frequency of fat fish intake (self-reported) and 

units of alcohol per week (self-reported) as covariates, respectively (Supplementary Table 4). 

Further, since some of the analyzed samples were selected from type 2 diabetes cases, and 

type 2 diabetes is associated with hypomagnesemia89, we repeated the association analyses of 

magnesium including diabetes status (excluding type 1 diabetes) as covariate. Diabetes cases 

were defined as either any non-type 1 diabetes (self-reported) and/or fasting serum glucose ³ 

7.0 mmol/liter and/or serum glucose ³ 11.0 mmol/liter 2 hours after first having fasted 

overnight and then consumed 75 grams of glucose dissolved in ~3 dl water. 

 

Heritability estimation and genetic and phenotypic correlation between trace 

elements 

We used LD Score regression109,125 to estimate the narrow-sense SNP heritability (Vg/Vp ± 

1SE, where Vg is the variance explained by the SNPs and Vp is the total phenotypic variance) 

of 11 trace elements from the GWA meta-analysis summary level SNP results, using LD 

scores estimated from individuals of European ancestry in the HUNT population. The 

analysis was performed in trace elements with a meta-analysis sample size > 5000, as 

recommended for the LD Score regression software. Each set of summary statistics were 

restricted to well imputed SNPs in HapMap3. Further, we used LD Score regression to 

estimate the genetic correlation between all pairs of 10 trace elements with an estimated SNP 

heritability > 0 and a sample size > 5000 in the GWA meta-analysis. The cadmium-mercury 
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and molybdenum-cobalt correlations were excluded because the genetic estimates were out of 

bounds (higher than 1.0 or lower than -1.0). Additionally, we estimated the phenotypic 

correlation between the same pairs of trace elements in HUNT using Spearman rank 

correlation. Prior to the phenotypic correlations, the trace elements were corrected for median 

concentration per lab and log2 transformed. 

 

Phenome-wide association tests (PheWAS) 

We tested for associations of 34 common and low-frequency (MAF>0.5%) trace element 

index variants (21 from meta-analysis and 13 from GWAS in HUNT) with 1326 phecodes, 

167 continuous traits and 30 biomarkers in participants of white British ancestry in the UK 

Biobank, using publicly available summary statistics (https://pan.ukbb.broadinstitute.org/). 

Four variants (rs146233512 [gold], rs763064690 [indium], rs78394934 [iron], rs927502065 

[tungsten]) were excluded because they were not tested in the UK Biobank. To correct for the 

total number of tests (n=51782), we used a Bonferroni corrected p-value significance 

threshold of 9.7×10-7. 

 

Mendelian randomization (MR) of individual trace elements on selected health 

related outcomes 

To explore potential causal associations of trace elements on selected outcomes, we used 

two-sample MR: We applied the inverse-variance weighted (IVW) method for trace elements 

with multiple index SNPs, and the Wald ratio method for trace elements with only one index 

SNP, as implemented in the TwoSampleMR126 and MRInstruments127 packages in R v3.6.3 

and R v4.0.5. The exposures were selected based on robust genetic associations with trace 

elements in the current study, i.e. meta-analyzed index variants and the common index 

variant in the locus strongly associated with Sr in HUNT. The outcomes were selected based 

the availability of instrument summary statistics for a priori outcomes of interest highlighted 

in previous literature: Alzheimer’s disease (Mn, Pb, As, Cd, Cu, Se and Zn)20,21,25–28,128, 

Parkinson’s disease (Pb, As, Cd, Cu, Mn, Se and Zn)20,29–31, multiple sclerosis (Zn, Mn, Se, 

Pb, As and Cd)22–24, autoimmune thyroid disease (Se)33, hypothyroidism (Se)33, osteoporosis 

(Cu)44,46, bone mineral density (Cu, Cd, Mn, Zn and Sr)45–47, bone fracture (Sr)47, rheumatoid 

arthritis (Cd and Zn)34,35, type 2 diabetes (Cu, Mn, Se and Zn)38–40, colorectal cancer (Zn and 

Se)42,43 and prostate cancer (Se, Zn)41,43. We used SNP-exposure associations from the GWA 
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meta-analysis (Cu, Zn, Mn, Se, Pb, As, Cd) or GWAS in HUNT (Sr) of each trace element 

(Supplementary Table 2), and SNP-outcome associations were collected from independent 

genome-wide summary level data129–139 (Supplementary Table 13). For the SNP associations 

with multiple sclerosis, we calculated the beta coefficient as the natural logarithm of the OR, 

and the standard error as 𝑆𝐸 = |𝑏𝑒𝑡𝑎 𝑄(!
"
), |, where | | denotes absolute values, p denotes the 

p-value and Q denotes the inverse standard normal distribution. Outcomes obtained from 

https://pan.ukbb.broadinstitute.org (Pan-UKB team, 2020) were defined as: hypothyroidism 

(phecode: 244), and osteoporosis (phecode: 743.1). We estimated the variance explained and 

F-statistic for the instruments from a linear regression of the trace element concentrations 

versus the sum of estimated allele counts (dosages) for the trace element increasing alleles in 

HUNT (Supplementary Table 13). Except for manganese, the trace element instruments 

consisted of fewer than 4 SNPs, which provided limited opportunities for reliable sensitivity 

analyses. 
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Data Availability 

Summary level data supporting the findings are available in the Supplementary materials and 

upon request. The consent given by the participants in HUNT and MoBa does not open for 

storage of individual level data in repositories or journals. Researchers associated with 

Norwegian research institutes can apply for the use of HUNT data. Researchers from other 

countries may apply if collaborating with a Norwegian Principal Investigator. Information for 

data access can be found at https://www.ntnu.edu/hunt/data. Researchers who want access to 

MoBa data sets for replication should apply to helsedata.no. Access to data from either 

HUNT or MoBa requires approval from The Regional Committees for Medical and Health 

Research Ethics in Norway. 
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