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Abstract 
Introduction: 

The literature on the use of AI in prehospital emergency care (PEC) settings is scattered and 

diverse, making it difficult to understand the current state of the field. In this scoping review, 

we aim to provide a descriptive analysis of the current literature and to visualise and identify 

knowledge and methodological gaps using an evidence map. 

 

Methods: 

We conducted a scoping review from inception until 14 December 2021 on MEDLINE, 

Embase, Scopus, IEEE Xplore, ACM Digital Library, and Cochrane Central Register of 

Controlled Trials (CENTRAL). We included peer-reviewed, original studies that applied AI 

to prehospital data, including applications for cardiopulmonary resuscitation (CPR), 

automated external defibrillation (AED), out-of-hospital cardiac arrest, and emergency 

medical service (EMS) infrastructure like stations and ambulances.  

 

Results: 

The search yielded 4350 articles, of which 106 met the inclusion criteria. Most studies were 

retrospective (n=88, 83·0%), with only one (0·9%) randomised controlled trial. Studies were 

mostly internally validated (n=96, 90·6%), and only ten studies (9·4%) reported on 

calibration metrics. While the most studied AI applications were Triage/Prognostication 

(n=52, 49·1%) and CPR/AED optimisation (n=26, 24·5%), a few studies reported unique use 

cases of AI such as patient-trial matching for research and Internet-of-Things (IoT) wearables 

for continuous monitoring. Out of 49 studies that identified a comparator, 39 reported AI 

performance superior to either clinicians or non-AI status quo algorithms. The minority of 

studies utilised multimodal inputs (n=37, 34·9%), with few models using text (n=8), audio 

(n=5), images (n=1), or videos (n=0) as inputs. 

 

Conclusion: 

AI in PEC is a growing field and several promising use cases have been reported, including 

prognostication, demand prediction, resource optimisation, and IoT continuous monitoring 

systems. Prospective, externally validated studies are needed before applications can progress 

beyond the proof-of-concept stage to real-world clinical settings.  

 

Funding: 

This work was supported by the Duke-NUS Signature Research Programme funded by the 

Ministry of Health, Singapore. 
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Research in context 
Evidence before the study: There has been growing research into artificial intelligence as a 

potential decision support tool in prehospital emergency care (PEC) settings. Previous 

reviews summarising AI research in emergency and critical care settings exist, some of which 

include prehospital care studies peripherally. However, the landscape of AI research in PEC 

has not been well characterised by any previous review. In this scoping review, we search six 

databases up to 14 December 2021 for eligible studies and summarise the evidence from 106 

studies investigating AI applications in PEC settings. 

 

Added value of the study: To our knowledge, our scoping review is the first to present a 

comprehensive analysis of the landscape of AI applications in PEC. It contributes to the field 

by highlighting the most studied AI applications and identifying the most common 

methodological approaches across 106 included studies. Our study examines the level of 

validation and comparative performance of AI application against clinicians or non-AI 

algorithms, which offers insight into the current efficacy of AI in PEC. We provide a unique 

contribution by visualising knowledge and methodological gaps in the field using an evidence 

map. This scoping review is a valuable resource for researchers and clinicians interested in 

the potential of AI in PEC and serves as a roadmap for future research. 

 

Implications of all the available evidence: Our findings reveal a promising future for AI in 

PEC, with many unique use cases and applications already showing good performance in 

internally validated studies. However, there is a need for more rigorous, prospective 

validation of AI applications before they can be implemented in clinical settings. This 

underscores the importance of explainable AI, which can improve clinicians’ trust in AI 

systems and encourage the validation of AI models in real-world settings.  
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Introduction 
 

Artificial intelligence (AI) and machine learning (ML) are at the forefront in the era of digital 

medicine (1, 2). They have been extensively applied to various medial domains such as 

cardiology (3), ophthalmology (4), emergency medicine (5, 6), and many others. As 

summarized in numerous reviews and discussions on the adoption of AI and ML techniques 

in healthcare, both structed and unstructured data (medical images, clinical free texts, time-

series physiological signals) benefit from the versatility and flexibility of AI and ML 

techniques. In addition to healthcare institution-based applications, the intersection of the 

Internet-of-Things (IoT) and AI have also attracted interest in the form of wearables and 

remote continuous health monitoring (7). 

 

While there have been attempts to summarise the evidence on AI and ML applications in 

acute care (5, 6, 8-11), little is reported on their use in prehospital emergency care (PEC) 

setting. Adoption of AI solutions in PEC is hindered by limited resources and the fast-paced 

nature of PEC workflows. PEC systems are further complicated by the need for coordination 

and collaboration between multiple disciplines, such as emergency medicine, critical care, 

disaster management, and transportation networks. Despite growing research into AI and ML 

in PEC, there is no systematic review and summary of relevant literature, making it difficult 

to understand the current state and future directions for the field. 

 

In this paper, we present a systematic scoping review of six databases (MEDLINE, Embase, 

Scopus, IEEE Xplore, ACM Digital Library, and Cochrane Central Register of Controlled 

Trials (CENTRAL)) to summarize the current literature on AI and ML applications in PEC 

research. The aims of the study are to provide a descriptive analysis of the current literature, 

and to visualise and identify knowledge and methodological gaps using an evidence map (12, 

13). The evidence map categorises studies by both applications and input data, allowing a 

granular analysis of gaps in the current literature.  
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Methods 
We reported this systematic review according to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) checklist 
(Supplementary File S1). A review protocol was developed but was not publicly registered. 
 
Literature search and selection criteria 

 

We performed a systematic literature search in six databases, namely, PubMed, Embase, 

Scopus, IEEE Xplore, ACM Digital Library, and CENTRAL from inception to 14 December 

2021. We selected PubMed, Embase, and Scopus for their broad coverage of biomedical and 

general scientific literature, IEEE Xplore and ACM Digital library to capture more 

specialised research on AI, and CENTRAL for its focus on controlled trials. We combined 

two broad concept sets on AI and PEC to conduct our search. A truncated search strategy 

listing the first three keywords in each set is shown here: (“Artificial intelligence” OR “Deep 

learning” OR “Machine learning” OR …) AND (“emergency medical service” OR 

“emergency health service” OR “prehospital” OR …). The full search strategy can be found 

in Supplementary File 2.  

 

We included original articles that applied AI to PEC data. In this review, we considered 

articles to have applied AI if they used any of the following AI models: random forest, 

support vector machine, K-nearest neighbours, neural networks (including deep learning), 

gradient boosted machine, classification and regression tree, clustering, or natural language 

processing. We defined PEC to include applications for cardiopulmonary resuscitation (CPR) 

and automated external defibrillators (AEDs), out-of-hospital cardiac arrests (OHCA), and 

ambulances or emergency medical service (EMS) stations, but excluded applications in 

disaster and military medicine. Articles were excluded if they were duplicated, abstracts, or 

reviews. No restrictions on language were imposed; MLC1 is fluent in Mandarin Chinese and 

articles in other languages were translated using Google Translate, if necessary. 

 

Literature selection and data extraction 

We exported all extracted literature entries into Microsoft Excel (Office 365) for screening 

and selection. Each article was independently screened by title and abstract initially, and then 

full-text by two of three reviewers (MLC1, KM, KT). Discrepancies were resolved through 

discussions among the two reviewers until consensus was achieved. There was substantial 

inter-rater agreement, with 96·2% absolute agreement and Cohen’s kappa statistic=0·629. 

Subsequently, MLC1, MLC2, and HH conducted information extraction from the included 

literature and all authors reviewed the results. We retrieved information from full-text articles 

of all included studies, including publication year, study aims, country of dataset origin, AI 

methods used, comparators used and performance of AI against comparators, study design, 

sample size and outcomes of interests in predictive modelling studies, input types used, and a 

summary of each study. We also recorded the study type according to the Transparent 

reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) 

classification of predictive models (14). The TRIPOD classification describes whether a 

study conducted model development, model validation, or both, as well as the type of model 

validation, if applicable.  

 

Evidence map analysis 

To investigate the knowledge gap in the current literature, we conducted an evidence map 

analysis of selected studies. We categorized the studies into one of the following applications: 

“CPR/AED optimisation”, “Triage/Prognostication”, “ECG interpretation” 
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(electrocardiogram interpretation), “EMS dispatch”, “Remote monitoring”, “Ambulance 

demand”, “Treatment decision support”, “AED/Station positioning”, and “Research aid” 

(e.g., patient-trial matching). For each study, we recorded if it used one or more of the 

following inputs: “ECG”, “Audio/Voice recording”, “EHR (electronic health record) data” 

(categorical or continuous data, e.g., patient age and sex, presence or absence of symptoms, 

laboratory tests) , “EHR free text”, “Public/Government data” (including weather and 

population data), “Geospatial/GPS data” (e.g., GPS coordinates), “Time-based data” (e.g. 

season or month of the year), “Still images” (e.g. X-rays, photos), “Moving images” (e.g. 

videos of echocardiograms), “Vital signs data” (e.g., blood pressure, heart rate), “Others”. 

We also noted if multiple input types were used. We analysed application-input pairs by 

aggregating the total number of studies for each pair and identified any implementation gaps 

using the evidence map. Given the heterogenous nature of PEC data, we wanted to analyse 

the trends in multimodal input utilisation and how different inputs are being used in each 

unique AI application. 

 

Role of the funding source 

The funder of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. 
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Results 
Figure 1 shows the PRISMA flowchart of paper selection. The initial search of the six 

databases returned 4349 papers and we identified one additional paper through hand 

searching of included articles. After removing 4072 papers on title and abstract screening, we 

identified 278 studies for full-text screening, of which 106 studies were included for data 

extraction and subsequent analysis (15-120). 
 

Figure 1: PRISMA flowchart 

 
 

Table 1 shows the characteristics and methodology of the included studies (for results of 

individual studies, refer to Supplementary File 3). Datasets from included studies were 

collected from 25 different countries. Most studies utilised datasets from North America or 

Europe, with data from United States being the most common (n=46, 32·4%), followed by 

Sweden (n=12, 11·3%), Norway (n=11, 10·4%), Japan (n=9, 8·5%), and the United Kingdom 

(n=8, 7·5%).  

 

The majority of included studies utilised a retrospective cohort (n=88, 83·0%), with a few 

prospective cohorts (n=17, 16·0%). Only one (0·9%) study was evaluated using a randomised 

controlled trial.  

 

Figure 2: Frequency of TRIPOD type 
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Figure 2 shows the frequency of each TRIPOD type, with explanations of each type. Most 

studies were internally validated (n=96, 90·6%). The most common TRIPOD classification 

was 1B (n=45, 42·5%), where validation was done using re-sampling techniques. Type 2A 

(n=27, 25·5%) and 2B (n=20, 18·9%) were the next most common. Only 3·8% of studies 

(n=4) were type 1A and did not perform validation. External validation is more robust but 

only 8·5% (n=9) of studies used it; 3·8% (n=4) were type 3, models were developed and 

validated on separate data, and 4·7% (n=5) were type 4, where existing models were 

evaluated on separate data. One study (71) was not classifiable as it was a predictor finding 

study that did not create a predictive model. Calibration was evaluated in only 9·4% (n=10) 

of studies. 

 

Included studies used a variety of AI types, with 37·7% of studies (n=40) using multiple 

models. Of these, 10 studies (9·3%) combined models and 30 (28·3%) developed and 

compared multiple models. For studies with a single AI model, 28 (26·4%) used neural 

networks, 14 (14·2%) used random forest, six (5·7%) used decision trees, six (5·7%) used 

support vector machines, two (1·9%) used classification trees, two (1·9%) used gradient 

boosted algorithms, one (0·9%) utilised a linear classifier, and one (0·9%) employed natural 

language processing. 

 

Figure 3: Stack plot of total publications per year, stratified by AI application 
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Figure 3 shows the number of studies published per year, stratified according to AI 

application. Triage/Prognostication (n=52, 49·1%) represented the majority of applications 

from 2015 onwards, with 57·6% in 2021. CPR/AED optimisation publications (n=26, 24·5%) 

also increased significantly from 2016, with 38·1% in 2020. The number of publications on 

AI in PEC increased sharply in 2019, peaking at 33 in 2021, compared to one in 2015. From 

2017 to 2021, the diversity of AI applications also increased from two to six out of nine 

application types. Notably, remote monitoring (n=2, 1·9%), research aid (n=1, 0·9%), 

AED/station positioning (n=1, 0·9%) and treatment decision support (n=2, 1·9%) were 

underrepresented in the included studies.  

 

Figure 4: Histogram of AI superiority against comparators in included studies 

 
  

Figure 4 shows the performance of AI models against comparators in included studies. In this 

review, we defined a comparator as any benchmark of performance for the best-performing 

AI model in the study. AI and non-AI models developed as part of the same study were 

excluded as comparators. Fifty-seven (53·8%) studies did not use a comparator, 22 (20·8%) 

used other previously developed AI models, 10 (9·4%) used existing clinical decision tools, 

ten (9·4%) used non-AI statistical models, and five (4·7%) used human comparators. Two 

studies (1·9%) used comparators not included in these categories, such as baseline polices 

and baseline decision rules (31, 67). 

 

Among 49 studies that used comparator against AI, AI was superior in 39 (79·6%) and not 

statistically different in 8 (16·3%). Results were unclear in two (4·1%) studies. No AI model 

reported worse performance than the comparator. 

 

Figure 5: Evidence map of input modality by AI application  
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We performed evidence map analysis to visualise the landscape of prehospital AI research 

and identify gaps, as has been demonstrated in previous reviews for AI in COVID-19 

research (12). Figure 4 shows the evidence map of input modality compared against 

application type. CPR/AED optimisation relies heavily on ECG (25 out of 26) as an input and 

tends to be single input (22 out of 26). Triage/Prognostication leaned more towards having 

multiple inputs (24 out of 52), with the majority (39 out of 52) using EHR. Inputs such as 

ECG (40 out of 106), EHR (53 out of 106) and vitals (15 out of 106) were among the most 

used. The minority of studies utilised multimodal inputs (n=37, 34·9%), with few models 

using text (n=8), audio (n=5), images (n=1), or videos (n=0) as inputs. Seven studies used 

inputs that did not fall into one of our predefined categories; these inputs included 

capnography (38, 107), thoracic impedance (19, 38, 100, 101, 117), and accelerometer-based 

chest compression depth data (98). 
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Discussion 
Recently, interest in AI and its applications in PEC has been rapidly growing, with diverse 

applications promising improvements to PEC systems globally. In this scoping review, we 

present the first overview of AI applications in PEC settings, including an evidence map 

analysis of current implementation gaps. AI applications in PEC have been reported to be 

superior to clinicians or non-AI algorithms, particularly in predictive tasks. Applications of 

AI in PEC are also diverse, including triage, resource optimisation for dispatch, and 

geospatial optimisation for stations and AEDs. However, gaps remain in the utilisation of 

multimodal inputs and novel input modalities such as text, audio, images, and video. In this 

discussion, we summarise the main findings of our review and provide insight into the 

potential benefits and challenges of AI in prehospital care. 

 

We found that, like other areas of medicine, the most prevalent application of AI in PEC is 

triage and prognostication, in the form of diagnostic and prognostic predictive models. These 

models have the potential to excel as rapid, objective tools for triage and prognostication in 

PEC settings, where clinician decision making is often time sensitive. Prognostic models help 

identify patients who may be at high risk for poor outcomes, allowing for earlier intervention 

and management. Works by Liu et al. (80, 81) demonstrate how the combination of different 

features such as vital signs and heart rate variability and complexity in a ML prognostic 

model can provide an accurate estimation of risk in the prehospital setting. These models 

based on neural networks and multilayer perceptrons can accurately assess the need for 

lifesaving interventions in trauma patients in real-time. The works of Liu et al. highlight the 

capability of AI to harness advances in technology and healthcare big data for real-time, 

continuous monitoring and processing of in-ambulance data, such as vital signs and ECG 

signals. Similarly, Czap et al. (33) have taken advantage of developments in Mobile Stroke 

Units (MSUs) and validated an AI algorithm for the prehospital identification of large vessel 

occlusion using MSU CT angiograms.  

 

Another major domain in prehospital prognostication is out-of-hospital cardiac arrest. AI 

algorithms have been employed in the prediction of defibrillation success, as well as short- 

and long-term outcomes following OHCA. Patient outcomes may be improved with further 

research on the utility of these models in influencing early intervention and other treatment 

decisions in certain high-risk patients after OHCA.  
 

AI has also been used in various optimisation problems within PEC settings. Several studies 

have demonstrated the feasibility of AI-assisted dispatch systems to significantly improve 

response times and increase the efficiency of EMS operations. These studies mainly employ 

AI for the prediction of travel time (21, 27, 31, 36, 92, 115) and ambulance demand (29, 48, 

49, 57, 69, 78, 79, 85, 99, 106), which can assist with the generation of spatial coverage plans 

for EMS stations (36). Similarly, Mackle et al. (83) used a genetic algorithm to simulate and 

optimise aerial AED drone positioning for quick access to patients in OHCAs, which may 

improve long-term outcomes and survival rates.  

 

We found several emerging, novel use cases of AI in PEC. Firstly, Stemerman et al. (112) 

used clinical notes derived from the EMS to train ML algorithms for patient trial matching, 

potentially reducing the workload of research nurses and expediting research processes. Also 

of note is the emerging use of wearable IoT devices. Majumder et al (84) introduced a novel 

application of AI in pre-hospital patients using a wearable IoT device which signals the users 

OHCA risk with an approximate accuracy of 95%. Chan et al. (28) investigated contactless 

detection of cardiac arrest through the integration of AI models that perform real-time 
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classification of agonal breathing into smart IoT devices. With wearable IoT devices 

becoming more common, model inputs such as ECGs, vital signs, and potentially EHR will 

also become more readily accessible. With these rich information sources, there is significant 

potential for applying advanced AI and ML (121, 122) and novel physiological measures 

(123) for remote continuous monitoring. However, such IoT systems are nascent and require 

further validation in larger datasets and real-world contexts. 

 

The reported performance of AI applications has been encouraging, with several predictive 

models achieving areas under the receiver operating characteristic curve (AUROC) greater 

than 0·9 in their intended discriminatory tasks. However, we caution that these statistics may 

be optimistic. Many studies were internally validated (TRIPOD type 1A, 1B and 2A) while 

few were validated by appropriately splitting data temporally or spatially (type 2B) or 

validated on external datasets from other studies (type 3). Reporting of performance metrics 

such as calibration was also poor. It is thus uncertain whether the superior discrimination 

metrics reported in AI studies will translate to efficacy in real-world clinical scenarios which 

are more dynamic and heterogeneous. Regardless of performance, these AI applications are 

often the first decision support tools of their kind, with no previous benchmarks or 

comparators available. These applications represent new opportunities for decision support in 

triage and prognostication, resource optimisation, and monitoring that have not been possible 

without AI. Rigorous validation and improved reporting will help to optimise these 

applications for translation into real-world practice. We recommend that future authors 

consult AI-specific guidelines such as SPIRIT-AI, CONSORT-AI, and more recently, 

DECIDE-AI, to guide model development and reporting of results (124, 125). 

 

AI has several advantages over traditional methods in PEC settings. It can effectively analyse 

and interpret high-dimensional data, such as EHR data, images, and ECG signals (18, 24, 45). 

AI can also integrate multimodal data (126) and model nonlinear relationships. Shandilya et 

al. (107) demonstrate this with nonlinear feature extraction and fusion of multimodal 

capnographic and ECG signal data, resulting in a prediction of defibrillation outcomes with 

an AUROC of 93·8%. Pirneskoski et al. (95) and Spangler et al. (111)’s AI models for risk 

prediction of various short-term outcomes outperformed the National Early Warning Scores 

(NEWS) even when using the same variables, suggesting superior discrimination with 

nonlinear modelling. Performance was further improved when multimodal data was included 

(95). Several studies used NLP to analyse multimodal EHR free-text data and speech audio 

samples for OHCA identification (22, 23, 25) or general triage (42), a task not possible with 

traditional methods. Nonetheless, the inclusion of multimodal data does not always improve 

performance (102). Additional data modalities also introduce implementation challenges, 

such as privacy concerns and data acquisition (126). Currently, multimodal AI is feasible on a 

small scale, but these challenges and technical limitations prevent the integration of large and 

diverse data. PEC data is highly multimodal, including ECG signals, ultrasound (127) and CT 

imaging (128), and image, video, and audio from body worn cameras (129) or wearables 

(130, 131). With progress in multimodal AI, we anticipate improved performance and greater 

diversity in PEC AI applications. 

 

Despite clear advantages of AI in predictive performance and versatility, the lack of 

interpretability is a major barrier to implementation (132). Healthcare professionals are 

hesitant to accept predictions from AI models without rationale, particularly in high acuity 

PEC settings. Opaque AI models whose predictions cannot be easily understood, known as 

‘black boxes’, raise ethical concerns as they can lead to biased decision making and lack of 

accountability for any adverse outcomes (133). Thus, researchers may instead opt to use 
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interpretable non-AI methods, such as logistic regression, or less complex AI models (134). 

An example is Goto et al.’s (46) work with simple, interpretable decision-trees for EMS 

triage. This solution often, but not always (26, 77, 96, 102, 118), results in poorer 

discrimination compared to more complex methods like neural networks and deep learning 

(42, 62, 75). The challenge, then, is appropriately applying AI or non-AI methods in 

consideration of the clinical context and acceptable limits for performance and 

interpretability.  

 

A promising solution to model opacity is explainable AI, an approach that seeks to increase 

AI transparency without compromising performance (135). Explainable AI techniques, such 

as feature attribution and model agnostic methods, can help practitioners understand the 

model’s decision-making process and identify potential biases. The shift towards explainable 

AI enables applications to evolve beyond mere black boxes and serve as valuable decision 

support tools for practitioners. Yet, at present, not all AI algorithms have suitable 

explainability methods. In such cases, Ghassemi et al. (136) argue that rigorous validation 

processes can instil sufficient trust and minimise bias in AI models. While validation 

processes may serve as a stopgap measure, the field of explainable AI remains a critical area 

of research for the continued progress and flourishing of AI in PEC settings.  

  

Limitations 

 

Our study has several limitations. Firstly, we excluded articles on military and disaster 

medicine, which some may consider relevant to PEC. Our search criteria were also limited to 

a pre-specified list of AI models which provided clarity to but may have excluded novel 

forms of AI. Additionally, we only searched for peer-reviewed English language articles, 

which may have missed grey literature and non-peer-reviewed articles such as conference 

abstracts. These limitations may have resulted in underrepresentation of AI applications in 

non-English speaking countries. Indeed, included studies were predominantly from Europe or 

North America. Given the scoping nature of the review, we also did not conduct a formal risk 

of bias analysis. However, despite these limitations, our review provides a systematic 

overview of the current literature on AI applications in PEC. 

 

Conclusions 
 

AI in PEC is a growing field, with numerous promising applications such as prognostication, 

demand prediction, resource optimisation, and IoT continuous monitoring systems. While the 

potential for AI in PEC is promising, it is important to select appropriate use cases for AI 

applications and not to over-generalise its capabilities. The field of AI in PEC is still in its 

infancy and more prospective, externally validated studies are needed before AI can progress 

beyond the proof-of-concept stage to real-world clinical settings. 
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Table 1: Study characteristics and methodology 
Variable n (%) 

AI Type 

Classification tree 2 (1·9) 

Decision tree 6 (5·7) 

Gradient boosted algorithm 2 (1·9) 

Linear classifier 1 (0·9) 

Mixed models 40 (37·7) 

NLP 1 (0·9) 

Neural network 28 (26·4) 

Support vector machine 6 (5·7) 

Random forest 14 (13·2) 

Combined 10 (9·4) 

Comparison 30 (28·3) 

Other 2 (1·9) 

Comparator 

Clinical decision tools 10 (9·4) 

Human comparator 5 (4·7) 

Other AI 22 (20·8) 

Non-AI statistical models 10 (9·4) 

Other 2 (1·9) 

None 57 (53·8) 

Study Type 

Development 4 (3·8) 

Development + validation 93 (87·7) 

Predictor finding 4 (3·8) 

Validation only 5 (4·7) 

Study Design 

Retrospective cohort 88 (83·0) 

Prospective cohort 17 (16·0) 

Randomised controlled trial 1 (0·9) 

Calibration 

Not reported 96 (90·6) 

Reported 10 (9·4) 

Country (of dataset origin) 

USA 46 (43·4) 

Sweden 12 (11·3) 

Netherlands 3 (2·8) 

Austria 4 (3·8) 

France 5 (4·7) 

Norway 11 (10·4) 

UK 8 (7·5) 

Denmark 2 (1·9) 
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Canada 1 (0·9) 

China 4 (3·8) 

Czech Republic 2 (1·9) 

Finland 2 (1·9) 

Japan 9 (8·5) 

Greece 2 (1·9) 

Italy 3 (2·8) 

Ireland 1 (0·9) 

Korea 2 (1·9) 

Hong Kong 1 (0·9) 

Germany 1 (0·9) 

Mexico 1 (0·9) 

South Africa 3 (2·8) 

Taiwan 3 (2·8) 

Spain 2 (1·9) 

Slovenia 1 (0·9) 

Singapore 1 (0·9) 

Inputs 

ECG 40 (37·7) 

Audio 5 (4·7) 

EHR 53 (50·0) 

Text 8 (7·5) 

Public 5 (4·7) 

Temporal 5 (4·7) 

GIS 8 (7·5) 

Image 1 (0·9) 

Video 0 (0·0) 

Vitals 15 (14·2) 

Multiple 37 (34·9) 

Other 7 (6·6) 
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