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Abstract  

Glycans are an essential structural component of Immunoglobulin G (IgG) that modulate 
its structure and function. However, regulatory mechanisms behind this complex 
posttranslational modification are not well known. Previous genome-wide association 
studies (GWAS) identified 29 genomic regions involved in regulation of IgG 
glycosylation, but only a few were functionally validated. One of the key functional 
features of IgG glycosylation is the addition of galactose (galactosylation). We performed 
GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, 
indicating that IgG galactosylation is regulated by a complex network of genes that 
extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene 
prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 
system we manipulated gene expression of candidate genes in the in vitro IgG expression 
system. Up- and downregulation of three genes, EEF1A1, MANBA and TNFRSF13B, 
changed the IgG glycome composition, which confirmed that these three genes are 
involved in IgG galactosylation in this in vitro expression system. 
 

Introduction 
Glycosylation is a posttranslational modification characterized by the attachment of 
oligosaccharide chains (glycans) to proteins or lipids1. Glycans linked to immunoglobulin 
G (IgG) are essential regulators of effector functions of both native and therapeutic 
monoclonal antibodies. At the population level, galactosylation (the presence of zero (G0), 
one (G1), or two (G2) galactose moieties) is the most variable trait in the human IgG 
glycome2,3, with agalactosylated glycans comprising 6%-50% of the total IgG glycome in 
healthy subjects4. Galactosylation is also the most variable glycan trait between different 
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strains of mice5. The presence of galactose on IgG glycans has an important role in the 
downstream immune responses mediated by IgG antibodies. Most of the studies show that 
galactosylated IgG has increased complement and FcγR activity6–10. van Osch et al.8 even 
proposed a mechanism where IgG galactosylation promotes the hexamerization of IgG 
antibodies thus enhancing the activation of the classical complement pathway. 
Large-scale studies have shown that IgG galactosylation levels decrease with ageing and 
in inflammatory conditions11 and enabled the development of the glycan clock of ageing12. 
The IgG glycome composition has been found to associate with age with galactosylation 
reaching a peak in early adulthood and then declining with age13,14. It was proposed that 
agalactosylated IgG which increases with age acts as an effector of pro-inflammatory 
pathological changes and therefore can be exploited not only as a biomarker, but also 
functional effector of ageing15,16.  
Elevated levels of agalactosylated IgG glycans were first observed in rheumatoid arthritis 
17, and followed by similar discoveries in various autoimmune conditions, such as 
systemic lupus erythematosus (SLE), inflammatory bowel disease, active 
spondyloarthropathy, autoimmune vasculitis and adult periodontal disease18–22. Changes in 
levels of galactosylated IgG also occur in infectious diseases such as COVID-1923. In 
addition, decreased IgG galactosylation levels were observed in cancer patients (for a 
review see 11 and references herein), potentially reflecting the defensive inflammatory 
response to cancer24 and acute-phase response processes involved in cancer progression25. 
However, the question remains whether the agalactosylated IgG is just a biomarker, or 
whether it can functionally contribute to disease activity.   
 
Several studies have demonstrated that the regulation of IgG glycosylation is largely 
influenced by genetics. Up to 75% of the variance in some IgG glycan traits can be 
explained by the genetic component26. The genetic determinants of populational variation 
in IgG glycosylation were explored by genome-wide association studies (GWAS) which 
identified at least 29 candidate genomic loci27–31. However, the involvement of the 
specific genes and their potential interactions to generate differential IgG galactosylation 
are still poorly understood. Here, we conducted a GWAS of IgG galactosylation 
phenotypes in a study that almost doubles the sample size (N=13,705) compared to 
previous GWAS of IgG N-glycome30 and focus on the genes with in-silico evidence for 
involvement in the IgG galactosylation process. To assess their functional role in IgG 
galactosylation we applied our recently developed HEK293FS IgG transient expression 
system based on CRISPR-dCas9 molecular tools to functionally test whether the change in 
the expression of associated genes affects the IgG galactosylation levels32.  

 
Results  

To enable meta-analysis of GWAS of galactosylation phenotypes measured by different 
analytical platforms and thereby increase the total number of samples, we first developed 
a protocol for data harmonisation for glycan data generated using different analytical 
platforms (UPLC and LC-MS). The protocol was established based on the estimated 
correlation of the glycan traits derived in one cohort that had glycans measured using both 
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UPLC and LC-MS platforms. The aim was to combine IgG subclass-specific glycan 
information obtained from LC-MS (i.e. galactosylation measured separately on IgG1-4 
subclasses) in an appropriate manner to obtain information corresponding to the total IgG 
galactosylation measured by UPLC (analysis of glycans from both Fab and Fc fragments 
from all IgG subclasses). As described in Supplementary Methods, we compared different 
normalization and subclass information summary approaches. In a subset of individuals 
that were analysed using both methods, the Pearson correlation coefficients ranged from 
0.95 and 0.97 for G0, 0.73 to 0.80 for G1, and 0.90 and 0.91 for G2 trait (Appendix Table 
1). Different pre-processing approaches performed similarly, so we selected median 
quotient normalization due to previous recommendation33, followed by the calculation of 
the derived traits without IgG subclass weighting in LC-MS data.  
 
Discovery and replication GWAS 
We performed a discovery GWAS of IgG galactosylation in seven cohorts of European 
descent (N=13,705). The association between HRC-imputed SNPs and three phenotypes 
(G0, G1 and G2) was studied under the assumption of an additive linear model. The 
inverse-variance meta-analysis of GWAS summary statistics resulted in 16 genome-wide 
significant (p ≤ 2.5 × 10-8) genomic loci associated with at least one galactosylation trait 
(Table 1). Quantile-quantile plots of associations for three traits are shown in Fig. S1.  
For twelve loci, the same trait-SNP association reached the significance threshold p-value 
≤ 0.0031 (P ≤ 0.05/16 loci) in replication meta-analysis (N=7,775). The association 
between the top SNP in the HLA region (chr6:31107733-31164511) was not replicated 
due to the unavailability of the SNP and SNPs in LD in all four replication cohorts. 
However, the association of the HLA region and IgG glycan patterns was observed in the 
previous GWAS of IgG glycome27,28,30,31. For top SNPs in three regions (chr6:74168723-
74285118, chr4:103390496-103567348 and chr21:36564553-36665202) the association 
was not significant after correction for multiple testing in the replication meta-analysis, 
but the direction of the effect was consistent with the discovery analysis (Table 1). 
Due to lack of compatibility in glycan trait definition in the current study and previous 
GWAS of IgG glycome27–31, we checked for the overlap of the associated genomic regions 
across any previously examined IgG glycan traits. Thirteen loci overlap with previously 
identified and replicated genomic regions (Appendix Table 2). The remaining three 
associations in chr4:103390496-103567348, chr17:56404349-56418136 and 
chr6:74168723-74285118 are considered as novel.  
Among 16 loci, three loci were G2-specific (rs3822960, rs1808192 and rs2526377), two 
were G1-specific (rs10896045 and rs34562254) and two were G0-specific (rs13250010 
and rs199516) (Fig. 1a), which is intriguing since conversion of G0 to G1, and then G2 is 
a consequence of the activity of the single enzyme (product of B4GALT1 gene).  
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Table 1: List of genome-wide significant loci in IgG galactosylation GWAS. Locus- chromosome:start-end position in GRCh37 (hg19) build; Top SNP- rsID identifier for the 1 
SNP with the strongest association with the glycan trait; Trait- trait with the lowest p-value for the top SNP in the genomic locus; EA- effect allele for which the effect is 2 
reported; OA- non-effect allele; EAF- effect allele frequency; Beta- effect estimate for the effect allele of the top SNP; SE- standard error of the effect estimate; P– p-value for 3 
the top SNP-trait association; Beta repl- effect estimate for the effect allele of the top SNP in replication analysis; SE repl- standard error of the effect estimate in the 4 
replication analysis; P repl- p-value for the top SNP in the replication analysis; Closest gene- gene found closest to the top SNP in the locus; Prioritized genes- symbol for 5 
genes prioritized in the locus; 6 

Locus Top SNP Trait EA OA EAF Beta SE P Beta 
repl 

SE 
repl 

P repl Closest gene Prioritized.genes 

1:24699711-25493756 rs188468174 G0 T C 0.015 0.693 0.048 3.20E-47 0.865 0.076 2.96E-30 RUNX3 RUNX3 

2:26109539-26149988 rs10177977 G0 T C 0.334 -0.062 0.01 3.80E-10 -0.049 0.015 1.03E-03 KIF3C KIF3C 

4:103390496-103567348 rs3774964 G2 A G 0.37 -0.065 0.01 1.56E-11 -0.038 0.015 9.20E-03 NFKB1 NFKB1; MANBA 

6:31107733-31164511 rs1265109 G0 T G 0.295 -0.063 0.011 1.57E-09 0.013 0.019 4.97E-01 HLA region HLA region 

6:74168723-74285118 rs3822960 G2 T C 0.306 0.061 0.01 5.84E-10 0.028 0.015 6.24E-02 EEF1A1 EEF1A1; MTO1 

6:143088071-143206826 rs7758383 G2 A G 0.486 0.092 0.009 6.09E-23 0.145 0.014 9.44E-25 HIVEP2 HIVEP2 

7:150856165-150906453 rs113745074 G0 T C 0.094 0.12 0.015 6.19E-16 0.134 0.022 8.47E-10 SMARCD3 
ABCF2; CHPF2; 
SMARCD3 

8:103542538-103550211 rs13250010 G0 T G 0.356 0.063 0.01 7.71E-11 0.062 0.015 3.47E-05 KB-1980E6.3 
UBR5; RRM2B; 
ODF1; KB-
1980E6.3 

9:32933492-33385427 rs13297246 G2 A G 0.184 0.195 0.013 4.21E-55 0.202 0.019 2.36E-26 B4GALT1 B4GALT1 

11:65555524-65555524 rs10896045 G1 A G 0.301 0.079 0.013 2.61E-09 0.079 0.017 2.42E-06 OVOL1 OVOL1; AP5B1 

17:16813994-16875636 rs34562254 G1 A G 0.106 0.166 0.019 1.48E-18 0.092 0.024 9.95E-05 TNFRSF13B TNFRSF13B 

17:43856639-44863413 rs199516 G0 T C 0.221 0.068 0.012 1.20E-08 0.058 0.018 1.25E-03 WNT3 

ARHGAP27; 
CRHR1; SPPL2C; 
MAPT; KANLS1; 
ARL17B; 
LRRC37A; NSF; 
WNT3 

17:45766846-45870129 rs1808192 G2 A G 0.351 0.061 0.01 5.94E-10 0.051 0.015 6.78E-04 TBKBP1 TBKBP1; TBX21 

17:56404349-56418136 rs2526377 G2 A G 0.463 0.062 0.009 5.59E-11 0.057 0.015 8.05E-05 BZRAP1 
BZRAP1; 
SUPT4H1; 
RAD5C1 

17:79158040-79268562 rs2659005 G2 T C 0.436 0.079 0.009 4.36E-17 0.097 0.016 6.99E-10 SLC38A10 
AZI1; ENTHD2; 
SLC38A10; 
C17orf89 

21:36564553-36665202 rs4817708 G0 T C 0.229 0.073 0.011 2.39E-11 0.043 0.017 1.15E-02 RUNX1 RUNX1 
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Before functional evaluation of GWAS hits, careful inspection of the genomic regions was 
undertaken to prioritize and choose the genes with strong evidence for a potential role in a 
biological pathway. We applied a set of in silico methods to prioritise genes for the 
functional analysis. First, we mapped associated variants to genes using mapping 
strategies based on position, overlap with eQTL associations and chromatin interaction as 
implemented in FUMA34, and identified 107 candidate genes in total (Appendix Table 3). 
The number of genes prioritised by two or more approaches is shown in Fig. 1b.  
The gene analysis in MAGMA is based on a multiple linear principal components 
regression model in which the statistic is computed by combining the p-values of the 
individual SNPs in a gene while taking into account their LD structure. In gene analysis, 
SNP data is aggregated to the whole gene level to test the joint association of all SNPs in 
the gene with the phenotype, thereby making it possible to detect effects consisting of 
multiple weaker SNP-phenotype associations that would otherwise be missed. The gene-
based association test for G0, G1 and G2 identified 38 genes significant at FDR < 0.05 
(Appendix Table 4).  
Given that missense variants have a direct impact on protein function and therefore a more 
straightforward effect on the phenotype, we also assessed the functional consequences of 
associated variants using Variant Effect Predictor35. For two genes, SLC38A10 and MAPT, 
variants with potentially pathogenic amino acid (aa) change were detected by both SIFT 
and Polyphen2 algorithms. For additional four genes, MANBA, SPPL2C, CRHR1 and 
TNFRSF13B, the variants were predicted to result in a benign aa change. The details on 
position and aa changes are listed in Table S1. 
Finally, to assess the potential pleiotropic effects of the variants on IgG galactosylation 
and gene expression we performed colocalization analysis with the whole blood eQTLgen 
dataset36. By comparing the regional association patterns with the approximate Bayesian 
Factor approach in coloc37 we identified five genes (KIF3C, NFKB1, MIR-142, EEF1A1 
and MTO1) whose expression patterns colocalize with IgG galactosylation (PP4 > 75%) 
(Table S2, Fig. S2). Previous prioritization efforts in GWAS of IgG glycosylation, as well 
as implications for gene's potential function in glycosylation process were taken into 
account in the final gene prioritization, which resulted in 37 credible gene candidates in 
the identified regions (Fig. 1c). Table S1 contains details on prioritization evidence for 
each gene. 
 

            IgG galactosylation and diseases 
Due to existing evidence of altered IgG glycosylation patterns in multiple conditions11, we 
assessed the pleiotropy of the IgG galactosylation-associated loci with a range of 
autoimmune, inflammatory and infectious diseases. The threshold of 75% and higher was 
applied for the posterior probability for colocalization of traits (PP4). A shared association 
pattern between SLE and monogalactosylation (PP4 = 82%) was detected in a locus on 
chromosome 11 (chr11:65555524), while agalactosylation-associated locus 
chr17:43856639-44863413 colocalized with breast cancer (PP4 = 95%), COVID-19 
hospitalization (PP4 = 93%), SLE (PP4 = 89%) and schizophrenia (PP4 = 84%) (Table 
S3). Because of the extensive LD pattern, there are more than twelve candidate genes in 
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the chromosome 17 locus. It is important to note that high PP4 indicates at least one 
shared causal variant and low PP4 does not mean that two phenotypes do not share one, 
especially if the probability of both phenotypes being associated with the region but 
having different causal variants (PP3) is high.  

 

Fig. 1: A) Top SNP in identified genomic regions for each associated trait, B) Venn diagram showing the 
number of genes mapped by positional mapping, chromatin interaction mapping, eQTL mapping and 
genome-wide gene-based association analysis (MAGMA), C) Manhattan plot of genome-wide significant 
associations in IgG galactosylation GWAS with prioritized genes in each locus. Plot shows -log10(p-values) 
of association on y-axis and SNPs ordered by chromosomal location on x-axis. Red line indicates the 
genome-wide significance threshold (2.5 ×10-8). Orange gene names indicate novel loci associated with IgG 
glycosylation.  

 
Polygenic score 
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A polygenic score (PGS) aggregates the effects of many genetic variants into a single 
number which predicts genetic predisposition for the phenotype. In the standard approach, 
a PGS is a linear combination of linear regression effect estimates and allele counts at 
single-nucleotide polymorphisms (SNPs).  
For each of the G0, G1 and G2 traits, we created two PGS models based on genome-wide 
association meta-analysis (GWAMA) results. Specifically, we derived the first model 
based on the SBayesR 38 method, and the second model using a clumping and thresholding 
(C+T) method. These models were tested within the CEDAR dataset, which has 
aggregated genotype data and galactosylation information on 162 participants of European 
ancestry and which was not used in the GWAMA.  
The estimated SNP-based heritability (h2SNP, SBayesR package38) was 36.5% for the G0, 
27.2% for G1, and 36.8% for the G2 trait. Our best PGS models explained 7.4% [p-value: 
4.79 x 10-4], 2.2% [p-value: 0.059] and 7.4% [p-value: 4.77 x 10-4] of G0, G1 and G2 
variance in CEDAR samples. The complete results of the implementation of SBayesR and 
C+T models can be found in Appendix Table 5. 
 
Functional validation of GWAS hits  
The genes for functional follow-up were selected based on novelty in GWA studies for 
IgG galactosylation and by reviewing the evidence for prioritization, expression in B cells 
(Human Protein Atlas), as well as known roles of the encoded proteins. Newly discovered 
GWAS hits, EEF1A1 and MANBA-NFKB1, where NFKB1 and MANBA are found in the 
same locus, were selected and functional follow-up was performed to decipher which one 
is indeed involved in galactosylation. We also included HIVEP2 because it was previously 
assigned in the gene network as a transcription factor potentially involved in the regulation 
of B4GALT1 gene expression30, and TNFRSF13B for its highly specific expression in B 
cells and function in humoral immunity. SLC38A10 was included as one of the genes 
prioritized in chr17:79158040-79268562 locus to test its potential function as a transporter 
protein in the IgG glycosylation pathway. We also included KIF3C as it was the 
prioritized gene in chr2:26109539-26149988 locus. 
To functionally validate the potential role of the selected GWAS hits in IgG 
galactosylation, we used the newly developed transient expression system HEK293FS for 
IgG production with stably integrated dSaCas9-VPR or dSpCas9-KRAB expression 
cassettes for target gene upregulation or downregulation32. Therefore, the candidate genes 
were manipulated in dCas9-VPR or dCas9-KRAB containing monoclonal cell lines 
transiently cotransfected with a plasmid carrying genes for IgG heavy and light chains and 
specific gRNA. Subsequently, secreted IgG was analysed for glycan phenotype. 
Utilizing dCas9-VPR cell line and three gRNAs for each locus, we successfully 
upregulated all selected loci except SLC38A10 and HIVEP2 (Fig. S3a, Table S4). 
Successful downregulation in the dCas9-KRAB cell line was accomplished using 3 
gRNAs for all selected loci except NFKB1 and HIVEP2 (Fig. S3b). A significant change 
of IgG glycome composition was observed after dCas9-VPR targeting of HIVEP2, 
MANBA, TNFRSF13B and EEF1A1 (Fig. 2, Appendix Table 6). Interestingly, 
manipulation of the HIVEP2 promotor did not upregulate HIVEP2 transcript level 
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sufficiently to reach statistical significance at transcript level, but it resulted in a 
significant increase of digalactosylated structures and a concomitant decrease of 
agalactosylated structures on IgG (Fig. 2a). Upregulation of the MANBA locus resulted in 
a significant decrease of monogalactosylated IgG glycans, but no change in levels of 
agalactosylated and digalactosylated glycans was observed (Fig. 2b). Targeting 
TNFRSF13B in dCas9-VPR cell line resulted in almost 400-fold increase of its expression 
and a moderate increase in agalactosylated IgG glycans (Fig. 2c). Upregulation of the 
EEF1A1 locus resulted in a significant decrease of monogalactosylated glycans and in a 
concomitant increase of agalactosylated IgG glycans (Fig. 2d). 
 

 
Fig. 2 Targeting of selected GWAS loci associated with IgG galactosylation (HIVEP2, MANBA, 
TNFRSF13B and EEF1A1) in dCas9-VPR monoclonal cell lines resulted in significant changes in IgG 
glycan composition. Samples containing non-targeting gRNAs served as controls. Changes in transcript 
levels are given as fold change values and changes in IgG phenotype are given as a relative change 
compared to control samples. (a) Manipulation of the HIVEP2 gene did not result in a statistically 
significant change in HIVEP2 transcript level, however, did induce a significant increase of digalactosylated 
structures (G2) with a concomitant decrease of agalactosylated IgG glycan structures (G0). (b) Targeting of 
MANBA by dCas9-VPR elevated transcription level of this gene which resulted in decrease of 
monogalactosylated IgG glycan structures (G1) (c) Targeting TNFRSF13B by dCas9-VPR resulted in ~ 400-
fold increase of transcript levels and significant change of IgG agalactosylated IgG glycans (G0). (d) 
Successful upregulation of the EEF1A1 locus was followed by an increase of agalactosylated IgG glycans 
(G0) with a concomitant decrease of monogalactosylated IgG glycans (G1). Nominal p-value: *<0.05; 
**<0.01; ***<0.001; ns, not significant. 
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Discussion  
Using GWAS approach we identified 16 genomic regions associated with IgG 
galactosylation, which is the molecular basis of the glycan clock of ageing. Thirteen out of 
16 loci were associated with traits related to IgG glycosylation in our previous GWAS 
studies, while three were novel27–31. Contrary to previous studies, in which we were 
looking for genes that were associated with any aspect of IgG glycosylation, in this study 
we focused on galactosylation, a functionally well-defined element of IgG glycosylation 
that is the basis of increased inflammation in people with accelerated glycan ageing. This 
was done by converting percentages of individual glycans in the glycome into sums of 
glycan structures containing either one, two or no galactose residues. This enabled us to 
combine GWA studies for which the phenotype analysis was performed using different 
analytical methods. We also estimated the SNP-based heritability to be 36.5%, 27.2% and 
36.8%, for G0, G1 and G2, respectively, an estimate that very closely replicates recent 
heritability estimate for biological age estimate based on these glycan structures39. Upon 
prioritization efforts which resulted in 37 candidate genes, we evaluated functional 
relevance of these genes using HEK293FS transient expression system for IgG production 
with stably integrated dCas9-KRAB or dCas9-VPR fusion. Results of this study expanded 
the list of genes for which the functional relevance for in vitro expression and 
glycosylation of IgG was confirmed with MANBA, TNFRSF13B and EEF1A1 (Fig. 2). 
Thus, out of 13 replicated GWAS hits, for six of them we have functionally confirmed that 
they act at IgG glycosylation in a way that is conserved between plasma cells and our 
artificial in vitro expression system in HEK293FS cells (Fig. 3). It is likely that some 
additional GWAS hits may be plasma cell specific and will be confirmed once an efficient 
system for gene manipulation and IgG production in B cells is developed. However, it is 
important to note that IgG glycosylation can be affected at multiple other levels (e.g. B-
cell selection, maturation, expansion, etc.), thus the absence of functional confirmation of 
other loci in this assay does not mean that they are not implicated in IgG glycosylation in 
some other, more complex, manner.  
The total heritability of G0, G1, G2 is not known, however, the heritability of individual 
IgG glycan peaks ranges between 27% and 76%26. More than half of the studied glycan 
traits have additive genetic component estimate of 50% which would imply that half of the 
variance in their values could be explained by common variants, an observation similar to 
other complex traits (Menni et al., 2013). The constructed PGS models explained 7.4% of 
the variance in G0 and G2 traits in an out-of-sample testing, thus capturing about 20% of 
the estimated SNP heritability. However, for G1 the PGS model explained a minor 
proportion of SNP heritability. The explanation why for G1, that had comparable SNP 
heritability, the proportion of variance explained was much less may lie in a flatter 
distribution and hence individually smaller genetic effects onto G1; and observation which 
may be described as “higher polygenicity”. Indeed, while for G0 and G2 lead associations 
explained about 1.5% of variance, for G1 the lead variant near TNFRSF13B explained 
only about 0.5% of its variation. With smaller individual effects, one needs larger 
discovery GWAS to construct powerful PGS. 
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Given that the majority of identified candidate SNPs are located in non-coding regions, we 
applied several in silico approaches to prioritize potential causal genes in associated 
genomic regions, including exploring functional consequences of associated variants, 
pleiotropy with gene expression, gene-based association analysis, as well as evidence from 
previous GWA studies and prior biological knowledge of gene function. Among 37 
candidate genes from 16 associated loci, for the two genes, RUNX3 and B4GALT1, the 
effect on IgG glycosylation has recently been demonstrated using direct gene expression 
modulation in HEK293FS IgG transient expression system32,40.  
Due to existing evidence of altered IgG glycosylation patterns in multiple conditions11, we 
performed colocalization analysis with a range of diseases and observed a high probability 
for pleiotropic effects in the AP5B1/OVOL1 locus on chromosome 11 for SLE and 
monogalactosylation. Interestingly, for the same locus, we observed considerable 
probability for colocalization (PP4=0.56) with asthma and allergy. Although this is below 
our pre-defined posterior probability for colocalization (PP4) threshold of PP4 > 0.75, the 
finding is in line with previous results linking this locus with variation of specific 
digalactosylated structures (FA2FG2S1), expression of the OVOL1 gene and the risk of 
asthma31. OVOL1 gene encodes a putative zinc finger containing transcription factor with 
a role in the development and differentiation of epithelial and germ cells41. The locus on 
chromosome 17 was pleiotropic for agalactosylation and SLE, breast cancer, COVID-19 
hospitalization and schizophrenia. The colocalized region on chromosome 17 
(chr17:43856639-44863413) contains at least twelve genes and is known for numerous 
copy number variants. It also includes a megabase-long inversion polymorphisms (H1 and 
inverted H2 forms) which contain partial duplication of KANSL1 gene with inverted H2 
isoform having a higher frequency than H1 isoform in the European population42. The 
complexity of the locus makes it challenging to prioritise a specific gene without further 
investigation. 
 
The functional follow-up was based on the previously developed HEK293FS transient 
expression system for IgG production which was shown to be an excellent tool for 
studying the role of the genes identified in glycosylation GWAS32. Despite the fact that we 
could not demonstrate upregulation of HIVEP2 mRNA using dCas9-VPR, a significant 
increase in digalactosylated structures with a concomitant decrease in agalactosylated 
structures was measured from IgG secreted from the same cells. HIVEP2 (HIVEP zinc 
protein 2) encodes a transcription factor that interacts with numerous viral and cellular 
promoters, and has an established role in immunity43,44. Even though we prioritised 
HIVEP2, the locus interacts with variants in six genes via chromatin interactions (Fig. S4), 
including FUCA2 (alpha-L-fucosidase) which is located 0.6 megabases away. It is 
plausible that dCas9-VPR targeting HIVEP2 promoter disrupted these chromatin 
interactions which in turn altered the expression of other genes mapping to this region. In 
the case of the locus on chromosome 4, the functional study was utilized as one of the 
steps to decipher which of the two genes might influence galactosylation process as both 
NFKB1 and MANBA were prioritised with in silico approaches. The MANBA/NFKB1 
region was identified in previous studies as a disease susceptibility locus for primary 
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biliary cholangitis (PBC)45 and a recent study found a decreased level of IgG 
galactosylation in PBC patients46. The NFKB1 gene encodes a subunit of the nuclear 
factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) transcription factor 
family, known for its critical role in cell survival and inflammation47. The upregulation of 
NFKB1 using dCas9-VPR resulted in a significant change in transcript level, but no 
change in IgG glycoprofile was observed. On the other hand, the upregulation of the 
MANBA gene expression resulted in a decrease of IgG monogalactosylated species. The 
MANBA gene encodes beta mannosidase which is an exoglycosidase enzyme cleaving 
beta-mannose residues from the non-reducing end of N-linked glycans48. As such, it has a 
known role in glycosylation process but currently we cannot speculate about the exact 
mechanism by which it affects IgG galactosylation. Interestingly, mutations in MANBA 
are known to affect kidney function49, blood pressure50 and cardiovascular disease51, while 
the monogalactosylated IgG glycan (G1) (that MANBA affects in our in vitro expression 
system) was previously identified as the best predictor of future cardio vascular events in 
women52,53. While at the moment do not know putative mechanisms that could explain the 
link between MANBA, G0 and cardiovascular or renal diseases, these intriguing 
associations warrant future studies. 
The EEF1A1 (Eukaryotic Translation Elongation Factor 1 Alpha 1) gene encodes for an 
isomer of an alpha subunit of the eukaryotic translation elongation factor-1 complex that 
has a role in binding of aminoacyl tRNA to the A site on ribosomes during protein 
synthesis 54. Together with EEF1A2, it is the second most abundant protein (1%-3%) in 
the cell with other roles outside of protein synthesis, including protein degradation, 
apoptosis modulation, oncogenesis and viral pathogenesis55,56. Previous study has shown 
that EEF1A1 also serves as a signal transducer during inflammation, where it can enhance 
interleukin 6 expression through STAT3 and PKCδ57. Interleukin 6 is implicated in 
different autoimmune and inflammatory diseases58 and its high levels lead to decreased 
IgG galactosylation59. By targeting dCas9-VPR to EEF1A1, we increased its expression 
level, which resulted in a decrease of galactosylated IgG glycans. Therefore, our results 
are concordant with the previous findings, suggesting that EEF1A1 upregulation could 
lead to pro-inflammatory modulation of IgG by decreasing its galactosylation. 
A locus harbouring TNF receptor superfamily member 13B (TNFRSF13B) gene was 
previously identified in the multivariate IgG glycosylation GWAS31, while here it was 
associated with IgG monogalactosylation. TNFRSF13B encodes a transmembrane 
activator calcium modulator and cyclophilin ligand interactor (TACI) protein, a 
lymphocyte-specific member of the tumour necrosis factor (TNF) receptor superfamily, 
which has a role in signalling pathway leading to B cell differentiation and antibody 
production60,61. Common genetic variation in TNFRSF13B locus was previously 
associated with different levels of immunoglobulins in serum62, while rare deleterious 
variants were implicated in common variable immunodeficiencies and IgA 
deficiencies63,64. Therefore, we speculate that TNFRSF13B might impact glycosylation 
profile of the sample by controlling secretion of certain IgG glycoforms. Despite extensive 
increase in TNFRSF13B expression upon activation with dCas9-VPR, we observed only a 
moderate increase in IgG agalactosylation and no changes in mono- or digalactosylation. 
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Our experimental setting might be limited by the B-cell specific function of TNFRSF13B 
and thus, we might not be able to observe changes comparable to changes in the gene 
expression level.  
The role of four other prioritized genes, NFKB1, KIF3C, HIVEP2 and SLC38A10, could 
not be validated in our HEK293FS transient expression system. Even though this cell 
system represents a good model for studies of IgG glycosylation regulation, it has some 
limitations. HEK293FS cells do not inherently secrete immunoglobulins and their 
epigenetic context is not equivalent to plasma and B cells. In addition, alternative 
galactosylation might depend on gene expression in other cell types and their interactions, 
hence we might not observe the natural effects after manipulation of gene expression in 
this model system, due to the lack of the right biological context.  
In conclusion, in the present study we mapped 16 genetic loci regulating glycan structures 
that are not only the basis of the glycan clock of ageing, but also functional effectors of 
inflammation at multiple levels. Furthermore, we were able to confirm the functional role 
of three genes (MANBA, TNFRSF13B and EEF1A1) in the IgG galactosylation pathway 
by use of the HEK293FS transient expression system with stably integrated dCas9 fusion 
designed for this purpose. Fig. 3 summarizes all GWAS hits with previously unknown link 
to IgG glycosylation, whose functional relevance has been shown using this cell system. 
Further research is needed to fully elucidate functional mechanism behind their role in 
ageing and to reveal the complete network of gene interactions regulating the complex 
process of IgG glycosylation. However, this study is an important step in this direction 
since it clearly indicates that regulation of IgG galactosylation extends far beyond the 
expression of the galactosyltransferase gene that adds galactose.  
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Fig. 3 A graphical review of up-to-date functional validation of GWAS hits associated with IgG 
glycosylation using HEK293FS transient expression system with stably integrated dCas9-VPR or dCas9-
KRAB fusions. When specific gRNA targeted dCas9-VPR to two estrogen associated genes, RUNX3 and 
SPINK4 (Mijakovac et al. 2021), as well as to the TNFRSF13B, MANBA and EEF1A1 loci, transcription was 
upregulated that resulted in decreased levels of galactosylated (red arrow within box), increased levels of 
agalactosylated IgG glycan structures (green arrow within box) or both. Downregulated transcription of 
SPPL3 resulted in an increase in galactosylated structures with a concomitant decrease in agalactosylated 
IgG glycan structures. Protein structures do not depict true protein structures in humans, generic protein 
shapes are chosen for easier visualization. Figure was created with BioRender.com. Accessed on 16 
November 2021.  

 
Materials and Methods 

The participating cohorts were approved by local research ethics committees and informed 
consent from the participants was obtained. Information about sample numbers, sex and 
age for each cohort is provided in Appendix Table 7. Further information on genotyping, 
genotype imputation and quality control can be found in Appendix Table 8.  
 
Glycan measurements 
An overview of cohorts and technologies used for IgG glycome measurement (LC-MS or 
UPLC), as well as the published studies where IgG glycome analysis for the 
corresponding cohort was described in more detail, are shown in Appendix Table 7.  
Briefly, for UPLC-based analysis, IgG was isolated from blood plasma samples using 
protein G plates, followed by neutralization and denaturation of the protein. N-glycans 
were enzymatically released from IgG and fluorescently labelled with 2-aminobenzamide 
dye, followed by separation and quantification by hydrophilic interaction UPLC which 
resulted in 24 peaks (GP1-GP24), most of which represent a single glycan structure. In 
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cases where multiple glycan structures are found under one peak, the most abundant 
structure is considered. The list of all glycans and their proportion under each peak can be 
found in Pučić et al.65. 
For LC-MS-based glycan analysis, IgG was isolated from blood plasma samples by 
affinity chromatography binding to protein G plates and treated with trypsin to allow 
cleavage of IgG at specific amino acid sites. The cleavage resulted in different 
glycopeptides across IgG subclasses, thereby enabling subclass-specific glycan 
measurements. IgG subclass separation and detection were performed using a nano-LC 
system coupled with quadrupole-TOF-MS. IgG2 and IgG3 subclasses have the same 
tryptic glycopeptide moieties, thus the separation of the subclass-specific glycopeptides 
was not possible. LC-MS quantification resulted in 50 values which correspond to 20 
glycans measured on IgG1, 20 glycans on IgG2/3 and 10 glycans on IgG4. The list of 
glycan structures measured by UPLC and LC-MS along with their description is listed in 
Appendix Table 9 and 10.  
 
Glycan data pre-processing 
Prior to genetic analysis, the best approach for harmonization of glycan measurements by 
UPLC and LC-MS was chosen (Supplementary Methods) to allow for meta-analysis of 
GWAS summary statistics from all cohorts. To reduce the impact of experimental 
variation on the downstream analysis, glycan measurements were normalized using 
median quotient normalization and batch corrected using empirical Bayes method66 
implemented in ComBat function of the “sva” package67 in statistical software R68. 
Median quotient normalization was applied due to negligible differences between different 
normalization approaches in the comparison and further supported by previous 
recommendation33. Next, three derived traits were calculated as the percentage of 
structures in the total IgG glycome containing zero, one or two galactose units as G0, G1 
and G2, respectively (Appendix Table 11). In this way, the subclass-specific glycan values 
from LC-MS measurements were summarized to allow for comparison with total glycan 
data obtained with UPLC. The glycan data was pre-processed centrally in Genos for all 
cohorts except Leiden Longevity Study (LLS), for which the glycan data was pre-
processed by the phenotype provider from the Leiden University Medical Center.  
 
Genome-wide association study 
Discovery genome-wide association study was performed in seven cohorts of European 
descent (CROATIA-Vis, CROATIA-Korcula, CROATIA-Split, TwinsUK, EPIC, 
VIKING, ORCADES) with a total sample size of 13,705. Quantile normalization was 
applied to the derived traits in each cohort. For CROATIA, VIKING and ORCADES 
cohorts, first linear mixed model was fit to adjust for age, sex and cohort-specific 
covariates while also accounting for the genomic kinship. This step was performed using 
polygenic function in GenABEL R package69, followed by testing the association between 
SNPs and phenotype using the RegScan software v0.570. For TwinsUK cohort, the derived 
traits were adjusted for age and sex and the association analysis was carried out using 
GEMMA71 including kinship matrix to correct for family structure. SNPTEST software 
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was used for association testing of age- and sex-adjusted glycan values with genetic 
variants in EPIC cohort. GWAS was performed on Haplotype Reference Consortium 
(HRC)72 imputed genotypes, assuming an additive linear model of association. Quality 
control of study-specific summary statistics was performed prior to meta-analysis using 
EasyQC R package as described in Winkler et al.73 
After quality control, the GWAS summary statistics for seven cohorts were pooled using 
the inverse-variance weighted method for meta-analysis as implemented in METAL 
software74. METAL software also allowed for the estimation of genomic control (GC) to 
correct test statistics to account for population stratification in the studies included in the 
meta-analysis (lambda GC median =1.00; range 0.98-1.01). Given that we performed 
GWAS for three correlated traits, we used 5 x 10-8/2= 2.5 × 10-8 as a genome-wide 
significance threshold, where 2 denotes the number of PCs that explain 99% of the 
variation in the three galactosylation traits.  
 
Replication analysis 
Following the discovery GWAS, we performed replication meta-analysis to validate 
results from the discovery phase. Four independent cohorts of European descent were 
used: KORA F4, LLS, EGCUT and GCKD, with a total sample size of 7,775. Glycan 
measurements for KORA F4 and LLS cohort were quantified with LC-MS, while EGCUT 
and GCKD glycan measurements were obtained with UPLC. The strongest glycan trait-
SNP pair from each locus in the discovery analysis was meta-analysed using the fixed-
effect inverse variance method. The significance threshold was set to p-value < 0.05/16 = 
0.0031, where 16 is the number of associated genomic regions. We also checked the 
consistency of effect direction between the discovery and replication analyses in cases 
where the top SNP did not formally replicate. 
 
Genomic loci definition 
Genomic loci associated with galactosylation phenotypes were defined using FUMA v. 
1.3.6b34. SNP2GENE function in FUMA first identifies independent (LD r2 < 0.6) 
significant SNPs with MAF > 0.01 to determine borders of genomic locus. LD estimates 
were inferred from reference panel derived from 10,000 subjects of European descent in 
UK Biobank (Bycroft et al., 2018). The maximum distance of 250kb was used for merging 
LD blocks into a single genomic locus. SNPs in LD (r2 > 0.6) with independent SNPs 
within 250 kb distance were selected as associated SNPs and considered in further 
analysis. 
 
Gene prioritization 
Since we aimed to demonstrate in vitro the functional activity of the proteins encoded by 
genes potentially causal for IgG galactosylation, we first employed multiple in silico 
strategies to prioritise candidate genes.  Briefly, we used the following criteria: gene 
mapping (prioritising based on genomic position, overlap with eQTLs and chromatin 
interactions), functional consequence-based prioritisation (genes whose missense variants 
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were associated with galactosylation), colocalization of SNP associations with gene 
expression in whole blood and with galactosylation, and gene-based analysis.  

 
Gene mapping  
Genes in the significantly associated genomic regions were mapped using three 
approaches implemented in FUMA: positional mapping, eQTL mapping and chromatin 
interaction mapping. Genes were positionally mapped based on ANNOVAR76 annotations 
and the maximum distance of  <10 kb between associated variants and genes. The eQTL 
mapping was based on overlap of galactosylation-associated variants and eQTLs in B and 
T cells, including Database of Immune Cell Expression (DICE)77, Fairfax et al.78 and 
CEDAR79 datasets. Only significant eQTL signals at FDR < 0.05 were considered. 
Chromatin interaction mapping was performed using the Hi-C data derived from B cell 
line (GM12878) 80 and the suggested FDR value < 1 × 10-6 for significant chromatin 
interaction was used. 
  
Functional consequences 
To assess potential functional consequences of galactosylation associated variants we used 
SIFT and Polyphen-2  algorithms, as implemented in the Variant Effect Predictor (VEP) 
v97 by Ensembl35. 
 
Colocalization with gene expression in whole blood 
The colocalization of galactosylation GWAS signals and gene expression was estimated 
using Approximate Bayes Factor (ABF) method81, as implemented in the coloc package37 
in R. The method outputs five posterior probabilities, one for each of the five hypotheses: 
H0) no association with either of the two traits, H1) association with trait 1, but not with 
trait 2, H2) association with trait 2, but not with trait 1, H3) association with both trait 1 
and trait 2, but two independent causal variants and H4) association with both trait 1 and 
trait 2 and one shared causal variant. Whole blood eQTL data was obtained from the 
publicly available eQTLgen dataset which was derived from 31,684 individuals across 37 
cohorts36. Tissue- or cell-specific eQTL data (e.g. B cell or T cell) were not used due to 
low number of SNPs in the associated regions which overlap in galactosylation GWAS 
summary statistics and tissue-specific eQTL data to allow for reliable colocalization test. 
The posterior probabilities for colocalization with cis-eQTLs were computed for each 
gene found in galactosylation-associated genomic loci using SNP p-values and MAF. The 
default values for prior probabilities were used (p1�=�1 × 10-4, p2�=�1 × 10-4 and 
p12�=�1 × 10-5). The threshold of 75% for PP4 (probability of the same shared variant 
for two traits) indicated positive colocalization and strong support for prioritization of the 
gene in the given genomic locus. 
 
Gene-based association test 
Genome-wide gene-based association test for all three traits was performed by MAGMA 
v1.0882 to evaluate the joint effects of variants in 18,655 protein-coding genes while 
accounting for LD between those variants. In such test, SNP data is aggregated to the 
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whole gene level to test the joint association of SNPs in the gene with the phenotype to 
allow detection of effects comprising of multiple weaker SNP-phenotype associations that 
would potentially be missed. MAGMA uses p-values derived from variant-based analyses 
as input and implements the SNP-wise mean model which derives a mean χ2 statistic for 
SNPs in the gene and a p-value by using a known approximation of sampling distribution. 
Only genes significant at FDR < 0.05 were considered. 
 
Colocalization with diseases and traits 
The ABF colocalization method was used to explore the pleiotropy between IgG 
galactosylation and complex diseases for which there is previous evidence of aberrant IgG 
glycosylation11 and traits with shared associated variants in the GWAS Catalog, as 
obtained from GWAS Catalog query (accessed in June 2021). The full list of traits and 
links for summary statistics download is available in Table S5. The default values for prior 
probabilities were used (p1�=�1 × 10-4, p2�=�1 × 10-4 and p12�=�1 × 10-5). The 
posterior probabilities by ABF were computed using beta and standard error values if 
available in the dataset, otherwise, SNP p-values and MAF were used. The threshold of 
75% for PP4 (probability of the shared underlying causal variant for two traits) was used 
for colocalization and evidence of high confidence for pleiotropy between IgG 
galactosylation and disease or trait.  
 
Polygenic score 
SbayesR method reweights the effect of each variant according to the marginal estimate of 
its effect size, statistical strength of association, the degree of correlation between the 
variant and other variants nearby, and tuning parameters. This method requires a 
compatible LD matrix file computed using individual-level data from a reference 
population. For these analyses, we used publicly available shrunk sparse GCTB LD matrix 
including 2.8 million pruned common variants from the full UK Biobank (UKB) European 
ancestry (n�≈�450,000) data set and computed from a random set of 50,000 individuals 
of European ancestry from the UKB data set38,83. SbayesR was run for each chromosome 
separately, and with the default parameters except for the number of iterations (N=3000) 
and p-value (0.9) (Appendix Table 12). 
Clumping and thresholding model was built using a p-value and linkage disequilibrium-
driven clumping procedure in PLINK version 1.90b (--clump) 84. In brief, the algorithm 
forms clumps around SNPs with association p-values less than a provided threshold (p-
value=5 x 10-8). Each clump contains all SNPs within 250 kilobases of the index SNP that 
are also in linkage disequilibrium with the index SNP as determined by a provided 
pairwise correlation (r2=0.2) threshold in the linkage disequilibrium reference. The 
algorithm iteratively cycles through all index SNPs, beginning with the smallest p-value, 
only allowing each SNP to appear in one clump. The final output should contain the most 
significantly disease-associated SNP for each linkage disequilibrium-based clump across 
the genome. 
The prediction accuracy was defined as the proportion of the variance of a phenotype that 
is explained by PGS values (R2). To calculate PGS based on the PGS model we used 
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PLINK2 software, where PGS values were calculated as a weighted sum of allele counts. 
Out-of-sample prediction accuracy was evaluated using samples from the CEDAR cohort 
that was not used for discovery or replication.  
 
Functional validation of GWAS hits associated with galactosylation trait 
 
Plasmid constructs for targeted upregulation/downregulation of prioritized GWAS 
hits 
Seven genes strongly associated with IgG glycosylation were selected for the follow-up 
functional validation. A newly developed transient expression system with stably 
integrated CRISPR/dCas9 fusions dSaCas9-VPR (for gene expression upregulation) and 
dSpCas9-KRAB (for gene expression downregulation)32 was used for in vitro validation. 
Three guide RNAs (gRNAs) were designed using the CRISPick online tool (Broad 
Institute) for adequate dCas9 orthologue (dSaCas9 or dSpCas9) and each selected locus 
(KIF3C, NFKB1, MANBA, SLC38A10, TNFRSF13B, EEF1A1 and HIVEP2). Specific 
gRNAs were assembled with genes coding for IgG light and heavy chains, CBh promoter 
and bGH terminator using Golden Gate enzymes in three steps as described in Mijakovac 
et al.32. Non-targeting gRNAs were assembled in the same manner. Plasmids pORF-hp21, 
pORF-hp27 (Invivogen, San Diego, CA, USA) and p3SVLT were used for enhanced IgG 
production85. Specific gRNA sequences targeting each gene are shown in Appendix Table 
13.  
 
Transfection of monoclonal dCas9-VPR/dCas9-KRAB HEK293FS cell lines 
The main approach was to use suspension cell lines with integrated expression control 
machinery based on dCas9 fusions with IgG-producing plasmid bearing gRNA expression 
cassettes, as described in Mijakovac et al.32. Briefly, suspension-adapted monoclonal cell 
lines with stably integrated dSaCas9-VPR (dCas9-VPR) or dSpCas9-KRAB 
(dCas9-KRAB) were grown until they reached the appropriate density for cell transfection 
with gRNA-IgG bearing plasmids as well as plasmids used for enhanced protein 
production in mass ratio gRNA and IgG chain bearing plasmid, p3SVLT, pORF-hp21 
(Invivogen, San Diego, CA, USA) and pORF-hp27 (Invivogen, San Diego, CA, USA) 
0.69/0.01/0.05/0.25. Transfections were performed with 293fectin transfection reagent 
diluted in Opti-MEM I Reduced Serum Medium (Thermo Fisher Scientific, Waltham, 
MA, USA). Five days following transfection, cells were centrifugated and used for gene 
expression analysis, while supernatant was used for IgG isolation and glycan analysis.  
 
Reverse transcription and quantitative Real-Time PCR (qPCR) 
Total RNA was isolated from cell pellets with Rneasy Mini Kit (Qiagen, Hilden, 
Germany) and 50 ng of RNA was converted to cDNA using the PrimeScript Rtase 
(TaKaRa, Kusatsu, Japan) and random hexamer primers (Invitrogen, Waltham, MA, 
USA). All samples were treated with Turbo Dnase (Invitrogen, Waltham, MA, USA) to 
remove any remaining DNA. Gene transcripts were detected with SYBR Green Gene 
Expression Assay using the 7500 Fast Real-Time PCR System. Primer sequences are 
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listed in Appendix Table 14. The mean value of 9 replicates was normalized to HPRT1 
expression which was used as an endogenous control. Fold changes in transcript 
expression compared to non-targeting control were analysed using the ΔΔCt method86.  
 
Glycan measurements 
IgG glycan measurements were done as described previously32 with a few modifications 
described below. Briefly, this method consisted of five main steps: 1) IgG isolation from 
HEK293FS transient expression system cell culture supernatants using Protein G Agarose 
fast flow beads (Merck, Darmstadt, Germany); 2) Enzymatic release of N-glycans from 
isolated IgG using PNGase F (Promega, Madison, WI, USA); 3) fluorescent labelling of 
released IgG glycans with procainamide hydrochloride (Thermo Fisher Scientific, 
Waltham, MA, USA); 4) clean-up of labelled IgG glycans using hydrophilic interaction 
liquid chromatography solid-phase extraction (HILIC-SPE) on a 0.2 μm Supor filter plate 
(Pall Corporation, Port Washington, NY, USA) and 5) separation of fluorescently labelled 
glycans by hydrophilic interaction chromatography on a Waters Acquity UPLC instrument 
(Waters, Milford, MA, USA). The IgG isolation step was modified from that previously 
described in the way that all washing steps after incubation of samples with Protein G 
beads as well as elution of IgG were done on an Orochem filter plate (Orochem 
Technologies Inc., Naperville, IL, USA). The obtained UPLC chromatograms were all 
separated in the same manner into 24 peaks and the amount of glycans in each peak was 
expressed as a percentage of total integrated area. 
 
Statistical analysis 
Statistical analysis of RT-QPCR and IgG glycan data was performed using R68 and 
GraphPad (GraphPad Software, San Diego, CA, USA). RT-QPCR was done in two 
technical replicates and biological replicates were pooled from independent experiments. 
Group differences were determined using a two-tailed t-test on ΔΔCt values. IgG glycans 
were measured as a percentage of area under chromatogram peaks (Table S6). Derived 
glycan traits (G0, G1 and G2) were calculated as a sum of glycan peaks containing zero, 
one or two galactose units. Initial round of experiments involved both up- and down-
regulation of the genes and was used as pilot study to determine whether the expression of 
genes changed and if there were significant changes in glycan profile by applying 
Student’s T-test. Five genes (HIVEP2, MANBA, EEF1A1, TNFRSF13B and NFKB1) were 
selected and the experiments for gene expression upregulation were repeated. To combine 
results of testing differences in control and treated samples by Student’s T-test across 
multiple experimental runs, meta-analysis approach was applied using metafor R 
package87. 
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