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ABSTRACT

Health data is key for the development of medicinal drugs, treatments, and policy-planning to control the spread of infectious
diseases. However, the collection, curation, and interpretation of health data is often biased. This paper discusses England-wide
impact of public policies to control the spread of SARS-CoV-2 (Covid-19) infections, based on the recorded per-capita infection
cases between July 2020 to January 2023. The analysis presented herewith highlights the disparities across the upper local tier
authorities, in the number of Covid-19 cases recorded in response to the policies. This paper further presents the correlation
between the Covid-19 cases count and demographic factors, thus highlighting the key factors determining the effectiveness
of the NHS policies, and therefore the need for incorporating demographic imbalance in the policy planning process. It is
concluded that the upper local tier authorities comprise of three clusters of low, mid, and high prevalence of Covid-19 infections.
Where the regions with high prevalence of Covid-19 cases are also the ones with higher proportions of Black/ Mixed racial
groups, amongst a mid-range and low internal Migrations.

Introduction

Health data refers to physical or mental information about an individual collected in a digital or physical form'. Health data
often contains information related to health status including future, past and current treatments, causes of deaths, among several
other socio-economic parameters>>.

Health data is key for the development of medicinal drugs, treatments, and policy-planning to control the spread of infectious
diseases. Clinical treatments®?>, facilitating the communication between the health care service sectors®’, and developing
the cure of diseases®? all rely on health data. Additionally, and as recent events have shown, collecting, and understanding
data is also crucial for public decision-making!?, for instance during lockdowns when to close facilities!" including schools,
universities, gyms, as well as to take measures to prevent and contain novel diseases'>. Health data is thus a constant factor for
the whole health care sector: from establishing bridges between different services, their use for scientific research to public
interest, the collection, curation, interpretation, and extrapolation of health data has modernized the medical services.

Nonetheless, the collection, curation, and interpretation of health data is often biased. The bias is specifically disadvanta-
geous to the minority sectors, making them invisible in policy-planning for the broader population. A long-standing problem
and as recognised by the World Health Organization is that health data has historically been focused on “privileged people”!?.
Since health data is used as input for the taking of decision and their impact on the population'4, the development of drugs,
treatments and prevention of side-effects!?, the lack of data from minorities makes vulnerable sectors invisible and reinforce
the gap between privileged people and population from struggling backgrounds'®.

There are two types of local authorities in England: county councils and district councils. Upper-tier local authorities
(UTLAs) are county councils, which are responsible for services such as education, social services, highways and transport,
and waste management, among others. One of the responsibilities of the UTLAs is to uphold public health, where they are
responsible for providing health services, such as immunisation programs and health education. During the Covid-19 played an
especially critical role in developing and implementing policies to control the spread of infections. They were particularly
involved in developing and implementing local outbreak control plans, coordinating local responses, providing public health
advice and support, and monitoring compliance with regulations.

Covid-19 polivies in England comprised of lockdowns, social distancing measures, mask mandates, and vaccination
campaigns.

In March 2020, the UK government introduced a national lockdown in response to the COVID-19 pandemic. This lockdown
required people to stay at home except for essential purposes such as buying food and medicine or exercising. This policy
was successful in reducing the spread of the virus, and in June 2020, the government began to ease restrictions. However, the
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number of cases began to rise again, and in November 2020, a second national lockdown was introduced.

In December 2020, the government announced that it had approved the Pfizer-BioNTech COVID-19 vaccine for use in the
UK. The vaccination campaign began shortly afterward, with priority given to the elderly, healthcare workers, and people with
underlying health conditions. By April 2021, over 32 million people in the UK had received their first dose of the vaccine.

In early 2021, the government introduced a tiered system of restrictions based on the prevalence of the virus in different
areas. This system allowed for some businesses to reopen and for people to meet in outdoor spaces with limited numbers.
However, in January 2021, a third national lockdown was introduced, with schools closed and people once again being asked to
stay at home except for essential reasons.

Overall, the role of upper-tier local authorities in COVID-19 policies has been to provide local leadership and coordination
in the response to the Covid-19 pandemic, working closely with national government and other local organizations such as the
National Health Service (NHS) to control the spread of the virus and protect public health. Figure 1 shows the UTLAs and 7
NHS regions across England.
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Figure 1. Maps showing various UTLA and NHS regions

The COVID-19 policies implemented in England have had significant impacts on people’s lives, both positive and negative.
On the one hand, lockdowns and other restrictions have been successful in reducing the spread of the virus and saving lives.
The vaccination campaign has also been successful in reducing the number of hospitalizations and deaths.

On the other hand, the policies have had a severe impact on the economy, with many businesses forced to close or reduce
their operations. The lockdowns have also had negative impacts on mental health, with many people experiencing isolation,
loneliness, and depression. The closure of schools has also had a significant impact on children’s education and development.

The policies have also highlighted existing inequalities in society, with some groups, such as low-income families and
ethnic minorities, being disproportionately affected by the virus and the policies aimed at controlling it. The pandemic has also
highlighted the importance of a strong social safety net and adequate support for vulnerable groups.

To that end, this paper discusses England-wide impact of governmental policies to control the spread of Covid-19 infections,
based on the recorded per-capita infection cases between July 2020 to January 2023 obtained from the official NHS website !.
The analysis presented herewith highlights the disparities across the upper local tier authorities of the number of per-capita cases
recorded in response to the NHS policies. The disparities are highlighted by using Self-Organising Maps (SOMs) to cluster
the timeseries. This paper further presents the correlation between the Covid-19 cases count and demographic factors, thus
uncovering the key factors determining the effect of the NHS policies and the need for incorporating demographic imbalance in
the policy planning process. This is done by using clusters obtained via using the clusters identified using SOM as targets and

"https://coronavirus.data.gov.uk/details/download
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demographic data as features, to train a Random Forest classifier. Permutation and Shapley importance scores were used to
evaluate the determining features. The most important features identified through this process where further analysed for each
of the clusters. The demographic data is obtained from the UK’s National Statistics Website 2.

Results following the analysis demonstrate that the upper local tier authorities comprise of three clusters of low, mid, and
high prevalence of Covid-19 infections. Moreover, the regions with higher prevalence of Covid-19 cases are also the ones with
higher proportions of Black/ Mixed racial groups, amongst a mid-range and low internal Migrations.

Results and Methods

Disparities in Covid-19 Infections across England

Figure 2 presents the Covid-19 cases recorded in the UK, across its upper local tier authorities. In Figure 2a, the shaded portion
represents the first standard deviation (along y-axis) of Covid-19 infections per-100,000 population, and the corresponding
mean. It is clear that there is a significant variation across the UTLAs, in terms of number of Covid-19 infections. to further
highlight this variation, Self Organizing Map (SOM) was used for clustering the timeseries into three difference clusters
representing high, moderate, and low number of Covid-19 infections explained in the following subsections. This variation in
the observed number of cases is also evident for various NHS regions, shown in Figure 2b.
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Figure 2. Timeseries showing the Covid-19 cases recorded across the UK

Self Organizing Maps for Timeseries Clustering
Self-Organizing Maps (SOMs) are a type of artificial neural network that can be used for unsupervised learning and clustering.
They are particularly useful for analyzing high-dimensional data, including time-series data, by projecting it onto a lower-
dimensional grid. In particular, SOMs can be a powerful tool for time-series clustering that can be used to identify patterns and
relationships in complex time-series data. By projecting the data onto a two-dimensional grid, SOMs can visualize and explore
the underlying structure of the data and to identify groups of similar time-series data based on their patterns and characteristics.
To apply SOMs to time-series data, the input data is first transformed into a sequence of feature vectors, with each vector
representing a different time step in the series. The SOM is then trained using these feature vectors to create a two-dimensional
grid of neurons that represents the patterns in the data. During training, the SOM adjusts the weights of each neuron to represent
different regions of the input space, with neurons that are close to each other in the grid representing similar input patterns.
Here, for time-series clustering using SOMs, a modified distance measure called Dynamic Time Warping (DTW) distance
that takes into account the temporal relationships between the feature vectors is used. DTW measures the distance between two
time-series data by aligning their sequences in time and calculating the minimum distance between corresponding points.
The weight update equation for SOMs is modified to incorporate the temporal relationships between the feature vectors as
follows:

’https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/
datasets
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AWj,'(l‘) = a(t)hji(t)(x(t) — Wj,'(l‘))

where Aw j;(r) is the change in weight for neuron j at time 7, o(7) is the learning rate at time ¢, x(¢) is the feature vector at
time 7, and w ;(¢) is the weight vector for neuron j at time ¢. The function /;(¢) is the neighborhood function that determines
the degree to which neighboring neurons influence the weight update of neuron j at time ¢.

In this case, 50,000 iteration was deemed sufficient as the algorithm converged after this.

Figures 4 and 5 present the cluster counts and timeseries in each of the clusters. It should be noted that although majority
of the cities belong to lower recorded Covid-19 infections, there are UTLAs where significantly higher instaces of Covid-19
infections are observed.
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Figure 5. Number of cases within each cluster

Feature Analysis
Using the clusters of UTLAs identified above, corresponding to low, moderate, and high Covid-19 infections, a Random Forest
Classifier was trained using the above clusters as labels and demographic data as features.

More specifically, the following demographic features, corresponding to a UTLA, were used:

1. Population Age:
2. Ethnicity

3. Gender Diversity
4. Migration
5

. Population Density
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Random Forest Classifier

Random Forest (RF) is an ensemble learning method that is used for classification, regression, and other tasks. In RF, multiple
decision trees are trained on different subsets of the data and their results are combined to make predictions. Each tree in the
forest is constructed using a random subset of the features and a bootstrapped sample of the data.

The algorithm works as follows:

1. A random subset of features is selected.
2. A decision tree is trained on the bootstrapped sample of the data using the selected features.
3. Steps 1 and 2 are repeated multiple times to create a forest of decision trees.

4. To make a prediction, the input data is passed through each tree in the forest, and the results are aggregated to produce a
final prediction.

5. The final prediction is determined based on the majority vote or average of the results from all the trees in the forest. RF
reduces overfitting by introducing randomness and variability in the tree building process.

The RF algorithm can be expressed mathematically as follows:
Let T be the number of trees in the forest, and /(x) be the prediction of tree ¢ for input x. The prediction for the RF
ensemble is given by:

1 T
hRF(x) == ? Zh,(x) (1)
t=1

Where hgp(x) is the prediction for input x using the RF ensemble.

RF classifiers are widely used in machine learning due to their high accuracy and ability to handle large datasets with many
features. They have applications in fields such as finance, medicine, and natural language processing.

For the current analysis, an RF comprising 2000 decision trees using four features at once with aggregate bagging of the
dataset was used. An example of a decision tree used in the current analysis is shown in Figure 6

The following metrics were used to quantify the feature importance, given the above identified timeseries clusters as targets.
In other words, these numbers show the importance of each feature to classify the corresponding UTLA into the possible
classes, and in turn the effectiveness of NHS policy in that area.

Permutation Feature Importance
Permutation feature importance is a method for feature selection in machine learning models. It measures the importance
of a feature by randomly permuting its values and measuring the effect on the model performance. The permutation feature
importance for categorical variables can be computed as follows:

Let X be the categorical feature of interest and y be the target variable. The model is trained using X and y, and its
performance is evaluated using a performance metric M. The permutation feature importance for X is then defined as:

>

1
=z

1

FI(X) (M(X,y) =M (Xz;,y))

where FI(X) is the feature importance score for X, K is the number of permutations, Xy, is the feature X with its values
randomly permuted in the i-th permutation, and M(X,y) and M (Xz,,y) are the model performance scores for the original feature
and the permuted feature, respectively.

The permutation feature importance score for X measures the effect of permuting the values of X on the model performance.
A high importance score indicates that the feature is important for the model, and a low score suggests that the feature is not
relevant.
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Shapely (SHAP) Value for Feature Selection

Shapley value is a concept from cooperative game theory that has been applied to feature selection in machine learning. It
measures the contribution of each feature to the model performance by computing the marginal contribution of a feature to the
overall performance. The Shapley value for a categorical feature is computed as follows:

Let X be the categorical feature of interest and y be the target variable. The Shapley value for X is defined as:

i Y [M(m(SUX),y) - M(n(S),y)]

St SCF\X mellg

where ¢; is the Shapley value for feature X, |S| is the size of the subset S of features excluding X, ITs is the set of all possible
orderings of the features in S, and M(w(SUX),y) and M(7(S),y) are the model performance scores for the ordered feature set
including and excluding X, respectively.

The Shapley value measures the contribution of a feature to the model performance by averaging the marginal contributions
of the feature to all possible subsets of features in the model. A high Shapley value indicates that the feature is important for the
model, and a low value suggests that the feature is not relevant.
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Figure 7. Feature importance determined using the permutation importance and SHAP scores
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Analysing the Features with Highest Scores
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Figure 8. Comparison of the top features responsible for determining the policy effectiveness

Discussion

The results presented above show the NHS policies do not apply evenly to the UK population. This is evident by clusters of
timeseries observed in the recorded Covid-19 cases across various upper tier local authorities considered in this study.

The analysis presented herewith demonstrates that policy making should be align with theories, that generic policies are not

the best way to pursue improvements and changes in the society. By taking into consideration the unique characteristics of its
population, health agencies and governments can induce more case effective policies and strategies with the aim to stop the
spreading of diseases.
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