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Abstract  
 

Background: Transcranial direct current stimulation (tDCS) applied to dorsolateral prefrontal cortex 

has mild to moderate antidepressant effects. Little is known about the mechanisms of action. Other 

antidepressant treatments have been shown to act in part by reducing negative biases, which are 

thought to play a causal role in the maintenance of depression. Negative biases are hypothesized to 

stem from aberrant reinforcement learning processes, more precisely from overestimation of the 

informativeness of negative outcomes. The aim of this study was to test whether bifrontal tDCS might 

normalise such aberrant reinforcement learning processes in depressed mood.  

 

Methods: 85 community volunteers with low mood received tDCS during (or before) the performance 

of a reinforcement learning task that manipulated the informativeness (volatility) of positive and 

negative outcomes. In two sessions participants received real or sham tDCS in counter-balanced 

order. Baseline performance (sham tDCS) was compared to a sample of healthy individuals (n = 40) 

to identify the effect of low mood on task performance. The impact of tDCS on task performance was 

assessed by contrasting real and sham tDCS.  

 

Results: Low mood was characterised by decreased adjustment of loss relative to win learning rates in 

response to changes in informativeness. Bifrontal tDCS applied during task performance normalised 

this deficit by increasing the adjustment of loss learning rates to informativeness. Bifrontal tDCS 

applied before task performance had no effect indicating that the stimulation effect is cognitive state 

dependent. 

 

Conclusions: Our study provides preliminary evidence that bifrontal tDCS can normalise aberrant 

reinforcement learning processes in low mood. Crucially, this was only the case if stimulation was 

applied during task performance, suggesting that combining tDCS with a concurrent cognitive 

manipulation might increase the functional impact on cognitive functions and potentially on 

emotional symptoms. Future studies are needed to test if the effect on learning processes might have a 

beneficial effect on mood itself.  
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Introduction 

 

TDCS is a non-invasive brain stimulation method which applies constant electric currents through the 

scalp to change cortical excitability. Transcranial direct current stimulation (tDCS) is under 

investigation as an antidepressant treatment. Depression is associated with hypoactivity in the left, 

and hyperactivity in the right dorsolateral prefrontal cortex (DLPFC)(1-3). In depression trials, a 

bifrontal tDCS montage is commonly used which applies anodal (excitatory) tDCS to left, and 

cathodal (inhibitory) tDCS to right DLPFC, with the aim to re-balance activity between these regions 

(4, 5). A recent meta-analysis suggests that tDCS applied to DLPFC has mild to moderate 

antidepressant effects (6). More research is needed to understand the mechanisms of action and 

develop approaches to improving the application of tDCS for depression treatment. 

Depression is typically characterised by a negative cognitive bias, i.e. information processing is 

biased towards negative rather than positive information (2). Compared to healthy controls, 

individuals with depressive symptoms remember more negative words (7), perceive feedback as more 

negative (8) and tend to interpret ambiguous information as negative (9). Negative biases are 

hypothesised to play a causal role in the development and maintenance of depressive symptoms (2, 

10, 11). Reduction in negative bias has been shown to be one mechanism of action of antidepressant 

drugs (10-12). Negative biases are associated with hypoactivity in the left, and hyperactivity in the 

right DLPFC (1, 3). Bilateral tDCS is applied with the physiological aim to rebalance activity 

between these areas. This suggests the hypothesis that tDCS might also reduce negative biases.  

 

Recent research in computational psychiatry has shed light on how negative biases might develop. 

Information processing should prioritise outcomes that are most informative, i.e. most useful for 

predicting future outcomes (13). How informative outcomes are depends in part on the volatility of 

the underlying reward association (13, 14). If the association is volatile (i.e. changes over time) 

compared to stable, an unexpected outcome is more likely to signal a change in the underlying reward 

association, i.e. it is more informative. In a volatile environment, behaviour should therefore be 

changed more quickly in response to unexpected outcomes than in stable environments, i.e. learning 

rates should be higher in volatile environments (13, 14). Learning rates can therefore be interpreted as 

a measure for estimated informativeness of outcomes.  

 

While human participants adjust their learning rates to volatility (13, 15), anxiety and depression have 

been associated with deficits in doing so (16, 17). Difficulties tracking informativeness of outcomes 

might lead to a negative bias if an individual estimates negative events to be more informative than 

positive events (18, 19). Consequently, an individual would focus their attention on negative rather 
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than positive outcomes. On a computational level, this might manifest in increased punishment vs. 

reward learning rates (20-22). Increased punishment learning rates might lead to negative behavioural 

consequences, by causing an individual to give up quickly after receiving negative feedback which 

might prevent them from experiencing potential future positive outcomes. A potential therapeutic 

target would therefore be to normalise reward and punishment learning in depression. 

 

The aim of this study was to investigate whether bifrontal tDCS might normalise alterations in 

reinforcement learning associated with depression. DLPFC is part of a brain network involved in 

reinforcement learning and has been found to be activated in response to volatility (23-25). In our 

previous study, we found that bifrontal tDCS increased reward learning rates in healthy volunteers 

(26). However, due to the alterations in reinforcement learning in depression, it is unclear whether the 

same tDCS effect should be expected in individuals with low mood. To assess this, we compared task 

performance between healthy volunteers from our previous study and individuals with depressive 

symptoms (26). We hypothesised that individuals with depressive symptoms would show increased 

punishment vs. reward learning rates (20-22) and/or reduced adjustment of learning rates to volatility 

(16, 17). We then tested whether bifrontal tDCS applied during task performance might normalise the 

observed behavioural alterations in the low mood participants.  

 

Our secondary aim was to test the hypothesis that tDCS would have a greater functional impact when 

applied during rather than before task performance. When applied during activity-dependent 

neuroplasticity (‘online’) tDCS has been shown to change brain and behaviour, with no such effect 

when stimulation was instead applied ‘offline’ prior to plasticity induction (26-29). We therefore 

hypothesised that tDCS would normalise alterations in reinforcement learning only if applied during, 

but not before task performance.  

 

2 Methods and Materials 
 

This study has been pre-registered (https://clinicaltrials.gov/ct2/show/NCT03393312).  

 

2.1 Sample 

85 participants suffering from low mood (Beck Depression Inventory II (30) score of at least 10)  

were recruited via university email lists and social media advertisement (see Table 1 for demographic 

details). 41 participants were assigned to the “tDCS during task” group, and 44 participants to the 

“tDCS before task” group. All participants completed two testing session in which they received real 

or sham tDCS in counter-balanced order. An a-priori power analysis based on the effect size from our 
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previous study in healthy participants (26) indicated that a sample size of 38 participants per group 

was required to reach a power level of 80% for contrasting the effect of real vs. sham tDCS (paired t-

test, two-tailed, Cohen’s dz = 0.472). This study was approved by the University of Oxford Central 

University Ethics Committee (R67041/RE002). All participants gave informed written consent to take 

part in the study.  

To investigate the effect of low mood on learning behaviour in our experimental paradigm, we 

compared task performance during sham tDCS between participants with low mood and the sample of 

healthy participants from our previous study (26). To avoid confounds with learning effects from task 

repetition, only individuals (from either study) who received sham tDCS in their first session were 

included in this analysis (low mood: n = 43, healthy: n = 40). Demographic data and baseline 

questionnaire scores for both samples are shown in Table 1 and Figure 1. 

 

 

Table 1. Mean (SD) baseline characteristics for the “tDCS during task” and “tDCS before task” groups.  

  tDCS during task (n = 41) tDCS before task (n = 44) 

Sociodemographic data   

   Female(%) 24 (59%) 30 (68%) 

   Male (%) 17 (41%) 14 (32%) 

   Age in years (SD) 24.3 (4.8) 24.2 (4.6) 

Clinical measures   

   STAI-Trait 55.4 (9.0) 57.4 (8.3) 

   BDI 24.9 (9.1) 27.7 (8.4) 

BDI: Beck Depression Inventory-II, score range = 0-63; STAI-Trait: State-Trait Anxiety Inventory (trait form), 

score range = 20-80. 

 
 

 
 
Figure 1. Distribution of BDI scores. (A) Distribution of BDI scores of all participants recruited for this study (n 

= 85). (B) Comparison of BDI scores for participants included in the comparison between the low mood sample 

(n=43) and general population sample (n=40). Participants with low mood had significantly higher BDI scores 

than participants in the general population sample (two-sample Welch t-test: t(73.8) = 12, p < .001). 

 

A B
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2.2 Information Bias Learning Task 
 

The Information Bias Learning Task (IBLT)(18) manipulates the relative informativeness of win and 

loss outcomes. The task is described in detail in Figure 2. In brief, participants performed six blocks 

of 80 trials in which they were asked to choose between two shapes. Each trial resulted in the receipt 

of a win (+10p), a loss (-10p), both win and loss (0p), or neither outcome (0p). Wins and losses were 

independently associated with the two shapes which allowed for separate estimation of win and loss 

learning rates. The relative informativeness of wins and losses was manipulated throughout the six 

blocks, such that wins and losses were equally informative (both-volatile), wins were more 

informative than losses (wins-volatile) or losses were more informative than wins (losses-volatile).  
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Figure 2. Task design of the Information Bias Learning Task. (A) On each trial, participants were asked to 

choose one of two shapes, by pressing the keys ‘A’ or ‘L’ for the left or right shape, respectively. Subsequently, 

a win and a loss outcome appeared on the screen. (B) The win and loss outcomes were independent of each 

other, resulting in four possible scenarios: The chosen shape might be associated with the win (+10p), the loss (-

10p), both outcomes (0p) or neither (0p). Wins and losses were associated with an actual win or loss of 10p on 

each trial, respectively. (C) Underlying reward structure for a ‘both-volatile’, ‘losses-volatile’ and ‘wins-

volatile’ block. In this task, the volatility of the wins and losses was manipulated independently. In ‘wins-

volatile’ blocks, the wins were associated with one of the shapes in 80% of the trials, and with the other in 20%. 

This association reversed a few times within the block. Losses were randomly presented with either shape 

(50%) and are therefore uninformative. In ‘losses-volatile’ blocks, the probability pattern was reversed. In 

‘both-volatile’ blocks, both wins and losses were independently associated with one shape in 80% and with the 

other in 20. Retrieved from (26). 

 

 

2.3 tDCS protocol 

All participants took part in two testing sessions in which they received real or sham tDCS in counter-

balanced order (double-blinded). Real tDCS was applied for 20 minutes at an intensity of 2mA. The 

anode and cathode were placed over left and right DLPFC, respectively, approximated by the F3 and 

F4 electrode positions (international 10-20 system)(see Figure 3C for a simulation of the electric 

field). The first 41 participants received tDCS during performance of the second and third task block 
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(“tDCS during task” group, Figure 3A). To test whether the cognitive state during stimulation is 

critical, another 44 participants received tDCS at rest after the first task block, and performed the 

remaining task blocks after the stimulation period (“tDCS before task” group, Figure 3B).  

 

Figure 3. (A) Task protocol for the “tDCS during task” group. Participants started with a ‘both-volatile’ block, 

and then underwent two ‘wins-volatile’ and two ‘losses-volatile’ block in alternating order. Half of the 

participants performed the ‘wins-volatile’ block first, while the other half performed the ‘losses-volatile’ block 

first. The experiment ended with another ‘both-volatile block’. Stimulation was applied during the performance 

of block 2 and 3. (B) Task protocol for the “tDCS before task” group. The task protocol was identical to (A) 

with the exception that tDCS was applied at rest after performance of the first task block. (C) Modelling of the 

electric field induced by the bifrontal tDCS setup, with the anode over left, and the cathode over right DLPFC. 

The left figure shows the strength of the electric field. The right figure displays the normal component (red = 

anodal stimulation, blue = cathodal stimulation). Adapted from (26). (C) is adapted from (31) with permission.   
 

 

 

 

 

 

C
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2.4 Computational modelling 
 
 
Performance in the IBLT was analysed using computational models that were fit to participants’ trial-

by-trial choices. The fit of six models was compared using the Bayesian Information Criterion (BIC) 

averaged across participants (see Supplementary Material 1). In line with our previous study (26) we 

first fitted the six models separately to each task block for each participant and session (“block-wise 

models”). Since the inverse temperature estimates did not vary between task conditions in the original 

study (18), we applied a second modelling approach in which the inverse temperature parameters 

were fitted across all six task blocks while the learning rates were allowed to vary between blocks 

(“constant models”). For each of these modelling approaches, model comparison was performed using 

six comparator models. Statistical analysis was performed based on the parameter estimates derived 

from the winning model for each of the two modelling approaches. 

 

The winning block-wise model used a modified version of a Rescorla-Wagner updating rule in which 

the probability of an outcome being associated with shape A was modelled separately for win and loss 

outcomes: 

 

𝑟𝑤𝑖𝑛(𝑖+1) =  𝑟𝑤𝑖𝑛(𝑖) +  𝛼𝑤𝑖𝑛 ∗ (𝑤𝑖𝑛𝑜𝑢𝑡(𝑖) −  𝑟𝑤𝑖𝑛(𝑖)) 

𝑟𝑙𝑜𝑠𝑠(𝑖+1) =  𝑟𝑙𝑜𝑠𝑠(𝑖) +  𝛼𝑙𝑜𝑠𝑠 ∗ (𝑙𝑜𝑠𝑠𝑜𝑢𝑡(𝑖) −  𝑟𝑙𝑜𝑠𝑠(𝑖)) 

 

Where  𝑟𝑤𝑖𝑛(𝑖+1) and 𝑟𝑙𝑜𝑠𝑠(𝑖+1)  are the estimated probabilities of the win or loss being associated 

with shape A on trial i+1. These probability estimates were updated on each trial with the prediction 

error on the previous trial weighted by the win or loss learning rate, 𝛼𝑤𝑖𝑛 or 𝛼𝑙𝑜𝑠𝑠. A Softmax 

function was used to transform the probability estimates into choice probabilities:  

 

 

𝑃(𝑐ℎ𝑜𝑖𝑐𝑒 = 𝐴)(𝑖) =  
1

1 +  𝑒𝑥𝑝(−𝛽 ∗ (𝑟𝑤𝑖𝑛(𝑖)− 𝑟𝑙𝑜𝑠𝑠(𝑖)+𝑡))
 

 

 

Where P(choice = A)(i) represents the probability of the participant choosing shape A on trial i. The 

inverse decision temperature 𝛽 captures choice stochasticity (lower values indicate more random 

behaviour). The tendency parameter t accounts for a potential tendency of choosing one shape over 

the other. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 26, 2023. ; https://doi.org/10.1101/2023.04.24.23289064doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.24.23289064
http://creativecommons.org/licenses/by/4.0/


 9 

The winning constant model calculated the outcome probabilities as above, but contained two 

separate inverse temperature parameters for wins and losses (but no tendency parameter): 

𝑃(𝑐ℎ𝑜𝑖𝑐𝑒=𝐴(𝑖)) =  
1

1 + exp
(−(𝛽𝑤𝑖𝑛∗(𝑟𝑤𝑖𝑛(𝑖)− 0.5)−𝛽𝑙𝑜𝑠𝑠∗(𝑟𝑙𝑜𝑠𝑠(𝑖)− 0.5)))

 

 

 

Parameters for the block-wise models were estimated by calculating the posterior distribution over the 

full parameter space and deriving the expected value of the marginal distribution for each parameter. 

The constant models were fit to the whole session simultaneously and therefore included a larger 

number of parameters. Parameters for the constant models were therefore estimated in STAN 

(32)(Supplementary Material 1.2). 

 

 

 

2.5 Statistical analysis 
 

The main outcome measures of interest were win and loss learning rates, and the relative adjustment 

of learning rates between volatile versus stable blocks. Win learning adjustment and loss learning rate 

adjustment were defined as:  

 

win learning rate adjustment = win learning rate wins-volatile –  win learning rate losses-volatile 

loss learning rate adjustment = loss learning rate losses-volatile –  loss learning rate wins-volatile 

 

 

Positive learning rate adjustment values indicate that learning rates were higher in volatile than in 

stable conditions. To capture the extent to which learning rate adjustment was biased towards either 

win or loss outcomes, learning rate adjustment bias was defined as: 

 

learning rate adjustment bias = loss learning rate adjustment – win learning rate adjustment 

 

A positive value on learning rate adjustment bias therefore indicates that win learning rates were 

adjusted more to changes in informativeness than loss learning rates.  An inverse logit transformation 

was applied to the learning rate estimates. 

 

As non-computational control analysis, logistic regressions were run to predict the choice on each 

trial using win and loss outcomes of the previous 3 trials: 

 

Choice(n) ~ win(n-1) + loss(n-1) + win(n-2) + loss(n-2) + win(n-3) + loss(n-3) 
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Regressions were run for each task block and each participant individually. To enable comparison 

across blocks and participants, the regression weights obtained in each regression were divided by the 

largest weight obtained in that regression so that weights varied between 0 and 1. The analysis of 

regression weights provides a non-computational alternative to learning rates and is independent of 

the computational models. Regression weights for more recent outcomes should be larger than 

regression weights for more distant outcomes. A higher learning rate would correspond to a higher 

weight on the most recent outcome. The primary measure of interest was therefore the weight for trial 

n-1. 

 

All analyses were performed in RStudio (Version 1.4.1717, R 4.1.1). All dependent variables were 

analysed in mixed ANOVAs (ezANOVA package). To test whether low mood might be associated 

with increased loss vs. win learning rates, learning rate estimates were analysed in ANOVAs 

including the factors Sample (low mood vs. general population), Valence (win vs. loss), Volatility 

(both-volatile, wins-volatile and losses-volatile) and Time (first half vs. second half). To test whether 

low mood might be characterised by decreased learning rate adjustment, an ANOVA including 

Sample, Valence, and Time tested for a different between the groups on learning rate adjustment. 

ANOVA including Sample and Time was used to test for a difference in Learning rate adjustment 

bias between the groups. 

 

To test whether tDCS might modulate any of these outcome measures, mixed ANOVAs were run for 

task performance in blocks 2 and 3 during the stimulation period (or right after the stimulation period 

for the “tDCS before task” group). For the analysis of learning rates, tDCS Condition (real vs. sham), 

Valence and Volatility (wins-volatile vs. losses-volatile) were included. For learning rate adjustment, 

TDCS Condition and Valence were included, for learning rate adjustment bias, only tDCS Condition 

was included. All ANOVAs included Block Order (wins-volatile first vs. losses-volatile first) as 

between-subject factor of no interest. All analyses were repeated after removing outliers (see 

Supplementary Material 2-4). Summary statistics for all computational parameters are provided in 

Supplementary Material 6. 

 

All outcome measures were correlated to BDI and trait anxiety scores. Significance of correlations 

was assessed using t-tests. 

 

All analyses were repeated after removing outliers. A datapoint was identified as an outlier if it was 

more than 1.5 times the interquartile range below the first or above the third quartile. For each 

outcome measure, outliers were removed separately for the levels of the factors of interest (i.e. 

separately for the general population and low mood sample, and win and loss outcomes where 

appropriate). For the analysis of the effect of real vs. sham tDCS, a datapoint was identified as outlier 
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if the difference between real minus sham tDCS was more than 1.5 times the interquartile range 

below the first or above the third quartile. Statistics are reported for the entire dataset unless outlier 

removal had an impact on the results (for completeness, figures including outliers are included in the 

supplementary material for all analyses that outlier removal had an impact on). 

 

3 Results  
 

3.1  Low mood is associated with alterations in learning rate adjustment 

 
In the block-wise model, low mood had no effect on learning rates, learning rate adjustment or 

learning rate adjustment bias (all p > .16)(Supplementary Material 3.2).    

 

This contradicts previous findings showing that depression and anxiety are associated with difficulties 

adjusting learning rates in response to changes in informativeness (16, 17). We therefore tested 

whether an alternative modelling approach (‘constant model’) would be able to capture this effect in 

our dataset. In the second modelling approach, the inverse temperature was kept constant across the 

whole session while the learning rates were allowed to vary between blocks. Changes in choice 

behaviour between blocks will therefore be attributed to changes in learning rates. There was no effect 

of Sample on the learning rate estimates derived from the constant model (all p > .07, Figure 4A). 

However, there was a significant Sample x Valence interaction (F(1,72) = 4.4, p = .038, seven outliers 

removed). Post-hoc tests indicated that there was no significant main effect of Sample on win learning 

rate adjustment (F(1,72) = 1.3, p = .24) but a trend towards lower loss learning rate adjustment in the 

sample with low mood (F(1,72) = 3.2, p = .076)(Figure 4B). In line with the interaction of Sample 

and Valence on learning rate adjustment, individuals with low mood showed a lower learning rate 

adjustment bias (main effect of Sample: F(1,72)=  4.4, p = .038, Cohen’s d = 0.44)(Figure 4C). That 

is, while the general population adjusted their win and loss learning rates to a similar extent (learning 

rate adjustment bias not different from zero (one-sample t-test): t(35) = -1.3, p = 0.17), individuals 

with low mood adjusted their loss learning rate significantly less than their win learning rate (learning 

rate adjustment bias significantly below zero: t(39) = -3.2, p = .002). In line with this, there was a 

negative correlation between BDI score and learning rate adjustment bias across groups (r = -.25, 

t(75) = -2.2, p = .027; correlations within groups were non-significant, see Supplementary Figure 

S12). 
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Figure 4. Effect of low mood on learning rate measures. (A) Low mood did not affect learning rates per se. (B) 

Interaction effect between Sample and Valence on learning rate adjustment. Participants with low mood showed 

a trend towards lower loss learning rate adjustment. (C) In line with this, participants with low mood showed a 

significantly lower learning rate adjustment bias. 

 

 

Previous studies showed that depression and anxiety are associated with decreased adjustment of 

learning rates to volatility (16, 17). Since the constant model was able to capture this effect in our 

study, the analysis of the effect of tDCS will focus on the constant model (the tDCS effect in the 

block-wise model is reported in Supplementary Material 4.3). Additional non-computational analyses 

were carried out to validate the findings from the constant model (Supplementary Material 5).  

 

 

3.2 Online bifrontal tDCS normalises learning rate adjustment 
 

 
TDCS had no effect on learning rates per se (all p > .60, Figure 5A). However, there was a significant 

tDCS Condition x Valence interaction on learning rate adjustment (F(1,34) = 7.47, p = .009, three 

outliers removed). Real compared to sham tDCS led to an increase in loss learning rate adjustment 

(F(1,34) = 6.0, p = .018, Cohen’s dz = 0.46), and to a marginally significant decrease in win learning 

rate adjustment (F(1,34) = 4.0, p = .051, Cohen’s dz = 0.48; Figure 5B). In line with this, real vs. 

sham tDCS increased learning rate adjustment bias (main effect of tDCS: F(1,34) = 7.4, p = .009, 

Cohen’s dz = 0.65, Figure 5C). During sham tDCS, learning rate adjustment bias was negative and 

significantly different from zero (t(37) = 2.1, p = .037), indicating that participants adjusted their loss 

learning rates significantly less than their win learning rate. During real tDCS, there was a trend 

towards a positive learning rate adjustment bias, i.e. towards higher loss than win learning rate 

adjustment (t(37) = 1.8, p = .067). The effect on learning rate adjustment did not outlast the 

stimulation period (no significant effect of tDCS Condition in block 3 and 4, Figure S14) 
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Figure 5. Effect of tDCS applied during task performance on learning rate measures. (A) tDCS had no effect on 

learning rates per se. (B) TDCS led to significant increase in loss learning rate adjustment, and marginal 

decrease in win learning rate adjustment. (C) TDCS induced a significant increase in learning rate adjustment 

bias.  

 

 

We further hypothesised that the effect of bifrontal tDCS would be specific to the cognitive state 

during stimulation, i.e. tDCS applied before task performance should not have the same effect as 

tDCS applied during task performance. In line with this, tDCS before task performance had no effect 

on learning rates, learning rate adjustment or inverse temperature (all p > .16). The effect of tDCS 

during task performance on learning rate adjustment bias was marginally though not significantly 

larger than the effect of tDCS before task performance (t(78.9) = -1.5, p = .063 (Welch two sample t-

test, one-sided))(Figure 6).  
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Figure 6. Comparison of the effects of bifrontal tDCS applied during or before task performance on learning 

rate adjustment bias. The effect of tDCS applied during task performance was marginally larger than the effect 

of tDCS applied before task performance. 

 

3.3 Non-computational validation 
 

Since the findings obtained from the constant model were not observed in the block-wise model, we 

conducted control analyses to test whether these findings relate to any non-computational measures. 

As non-computational analysis, logistic regressions were conducted to predict the trial-wise choices 

using the win and loss outcomes from the previous three trials (see Supplementary Material 5). 

Regression weights for trial-by-trial outcomes capture similar behavioural characteristics as learning 

rates without relying on a specific computational model. A higher learning rate would correspond to 

higher weight on the most recent outcomes. During real vs. sham tDCS, individuals with low mood 

adjusted the weight on the loss outcome from the previous trial more to informativeness than during 

sham tDCS (marginal effect of tDCS on loss learning rate adjustment: p = .069; Figure S21A). This is 

equivalent to the observed increase in loss learning rate adjustment. Regarding the effect of low mood 

on learning rate adjustment, the findings from the regression analysis are mixed (Figure S23).   

 

4 Discussion 
 

The goal of this study was to investigate whether bifrontal tDCS might normalise alterations in 

reinforcement learning associated with depression. Participants with low mood performed a task in 

which the relative informativeness of positive and negative outcomes was manipulated. In comparison 

to a sample of healthy participants, individuals with low mood did not show increased punishment vs. 

reward learning rates. However, low mood was associated with reduced adjustment of punishment 

compared to reward learning rates to changes in informativeness. Bifrontal tDCS applied during task 

p = .063

before during
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performance increased adjustment of loss compared to win learning rates. This effect was dependent 

on the cognitive state during stimulation. Bifrontal tDCS applied before task performance had no 

effect. As a limitation of this study, these findings were only observed in one of the two 

computational models. 

 

Negative biases in depression are hypothesised to arise from alterations in reinforcement learning. 

Depression has been associated with deficits in adjusting learning rates to the informativeness of 

outcomes (16, 17). Deficits in evaluating informativeness might lead to negative biases if the 

informativeness of negative outcomes is overestimated (18, 19) which might be reflected in increased 

punishment vs. reward learning rates (20-22). In this study, there was no evidence for increased loss 

vs. win learning rates in individuals with low mood. Several other studies failed to detect an 

imbalance in reward vs. punishment learning rates in depression (33-35). However, we found that 

participants with low mood adjusted their learning rates in a different way to changes in 

informativeness than healthy participants. While healthy participants adjusted their win and loss 

learning rates to an equal extent, participants with low mood adjusted their loss learning rate less than 

their win learning rate. This seemed to be caused by both decreased adjustment of loss learning rates, 

and increased adjustment of win learning rates. Reduced adjustment of loss learning rates to 

informativeness has previously been associated with depression and anxiety (16, 17). The increase in 

win learning rates adjustment was unexpected. In contrast to previous studies, our paradigm required 

simultaneous tracking of rewards and punishments. One potential explanation for the increase in win 

learning rate adjustment might be that participants with low mood had difficulties tracking the 

informativeness of losses and therefore focused their cognitive resources on tracking the 

informativeness of wins as a compensatory strategy. 

 

Bifrontal tDCS applied during task performance normalised learning rate adjustment in individuals 

with low mood, by increasing the adjustment of loss learning rates, and (marginally) decreasing the 

adjustment of win learning rates to informativeness. To our knowledge, this is the first evidence 

suggesting that tDCS might normalise aberrant reinforcement learning processes in individuals 

suffering from depressive symptoms. While these alterations in reinforcement learning have been 

suggested to be a potential mechanism leading to negative biases (18, 19), we did not observe a 

negative bias per se in the task (i.e. no increase in punishment vs. reward learning). Further research is 

needed to test how alterations in learning rate adjustment relate to negative biases, and whether 

normalising learning rate adjustment might have beneficial effects in depression treatment. 

 

In our previous study in healthy participants, bifrontal tDCS selectively increased reward learning 

rates. This raises the question why bifrontal tDCS had a different effect in participants with low mood 

in this study. We speculate that this might be the case because participants with low mood showed 
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altered learning rate adjustment at baseline and tDCS has been shown to interact with baseline 

behaviour (36). In individuals with low mood, bifrontal tDCS might normalise aberrant brain activity 

and thereby normalise information processing. The same tDCS protocol applied to a healthy brain 

might increase a pre-existing optimism bias which is associated with intact mental health (37, 38).  

 

TDCS affected learning rate adjustment only when applied during, but not when applied before task 

performance. This suggests that the cognitive state during the stimulation period is critical. In clinical 

trials, tDCS is usually applied at rest. However, tDCS applied during activity-dependent plasticity has 

been shown to potentiate learning effects (27, 39), and might therefore be more effective 

therapeutically if applied during a learning task relevant to depression. A suitable task might be a 

training paradigm which trains participants in appropriately adjusting behaviour to changes in 

informativeness of positive and negative outcomes. A future clinical trial could test whether bifrontal 

tDCS applied during task performance might be more effective than tDCS applied at rest. 

 

This study was designed to investigate how bifrontal tDCS, a stimulation setup commonly applied in 

depression trials, affects reinforcement learning in individuals with low mood. Since this setup 

stimulates large parts of the brain, we can only speculate which neural mechanisms the behavioural 

effect might rely on. The DLPFC (23, 24) as well as the dorsal anterior cingulate (13) are 

hypothesised to be involved in adjusting behaviour to volatility. While the bifrontal setup stimulated 

the DLPFC directly, the dorsal anterior cingulate might be stimulated more indirectly via anatomical 

connections. Future studies combining tDCS with neuroimaging are needed to investigate how the 

behavioural effect of tDCS relates to physiological changes in these brain regions.   

 

As a limitation of this study, it should be noted that we used two different computational modelling 

approaches. The effects on learning rate adjustment were only observed in the model in which the 

inverse temperature was kept constant across all blocks. It is unclear why different findings were 

obtained in the block-wise modelling approach which has been applied in previous studies (18, 26, 

40). As a control analysis, we ran logistic regressions to test whether non-computational measures 

might explain the change in learning rate adjustment observed in the constant model. We found that 

real compared to sham tDCS increased adjustment of the regression weight of the previous loss 

outcome to informativeness, which is in line with the observed increase in loss learning rate 

adjustment. The effect in weight adjustment correlated with the effect in learning rate adjustment 

across participants, indicating that these two measures might capture similar behaviour. The effect of 

low mood on learning rate adjustment was not clearly supported by the regression results. However, 

decreased loss learning rate adjustment has previously been reported in the literature (16, 17). 

Replication studies are needed to assess the reliability of the findings observed in this study.  
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5 Conclusions 
 

Our findings indicate that bifrontal tDCS might normalise the adjustment of learning rates to 

informativeness in individuals with depressive symptoms. This study therefore provides preliminary 

evidence that tDCS might normalise aberrant reinforcement learning processes which are 

hypothesised to lead to negative biases in depression. This effect was only present if tDCS was 

applied during, but not if applied before task performance, indicating that the cognitive state during 

stimulation matters. This suggests that combining tDCS with a concurrent cognitive manipulation 

might increase the functional impact on cognitive processes and potentially on mood. In future 

studies, we aim to investigate whether improvements in learning rate adjustment transfer to other 

tasks and might ultimately lead to improvements in mood. 
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