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Abstract 18 

Background and Aims: Life’s Essential 8 (LE8) is a comprehensive construct of 19 

cardiovascular health. Yet, little is known about LE8 score, its metabolic correlates, and their 20 

predictive implications among Black Americans and low-income individuals.  21 

Methods: In a nested case-control study of coronary heart disease (CHD) among 598 Black 22 

and 596 White low-income Americans, we estimated LE8 score, conducted untargeted 23 

plasma metabolites profiling, and used elastic net with leave-one-out cross-validation to 24 

identify metabolite signature (MetaSig) of LE8. Associations of LE8 score and MetaSig with 25 

incident CHD were examined using conditional logistic regression. Mediation effect of 26 

MetaSig on the LE8-CHD association was also examined. The external validity of MetaSig 27 

was evaluated in another nested CHD case-control study among 598 Chinese adults. 28 

Results: Higher LE8 score was associated with lower CHD risk [standardized OR (95% 29 

CI)=0.61 (0.53-0.69)]. The identified MetaSig, consisting of 133 metabolites, showed strong 30 

correlation with LE8 score (r=0.61) and inverse association with CHD risk [OR (95% 31 

CI)=0.57 (0.49-0.65)], robust to adjustment for LE8 score and across participants with 32 

different sociodemographic and health status (ORs: 0.42-0.69; all P<0.05). MetaSig mediated 33 

a large portion of the LE8-CHD association: 53% (32%-80%) (P<0.001). Significant 34 

associations of MetaSig with LE8 score and CHD risk were found in validation cohort 35 

[r=0.49; OR (95% CI)=0.57 (0.46-0.69)].  36 

Conclusions: Higher LE8 score and its MetaSig were associated with lower CHD risk among 37 

low-income Black and White Americans. Metabolomics may offer an objective and 38 

comprehensive measure of LE8 score and its metabolic phenotype relevant to CHD 39 
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prevention among diverse populations. 40 

 41 

Keywords: Life’s Essential 8; Cardiovascular Health; Coronary Heart Disease; Multi-racial 42 
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Introduction 44 

Coronary heart disease (CHD) is a leading cause of morbidity and mortality in the United 45 

States (US) and worldwide, with significant and persistent sociodemographic disparities1,2. 46 

To reduce the burden and life lost due to CHD and other cardiovascular disease (CVD), the 47 

American Heart Association (AHA) has recently proposed Life’s Essential 8 (LE8) to assess 48 

and promote cardiovascular health (CVH) in individuals and populations3. LE8 includes 4 49 

health behaviors (healthy diet, participation in physical activity, avoidance of nicotine, and 50 

healthy sleep [a new component of LE8]) and 4 health factors (weight, blood lipids, glucose, 51 

and blood pressure), and has a new scoring system with continuous scale to better reflect 52 

inter-individual differences. While a higher LE8 score has been recently associated with 53 

lower CVD incidence and mortality4-7, few studies have evaluated LE8 score and its 54 

association with incident CVD among Black and White Americans who have low 55 

socioeconomic status (SES) and face disproportionate CVD burdens. In addition, although 56 

some potential mechanisms have been identified (e.g., reduced inflammation and 57 

atherosclerosis)8,9, beyond those known CVD risk pathways, mechanisms and inter-58 

individual differences underlying the cardioprotective effects of LE8 and its included health 59 

behaviors and health factors are not fully understood. 60 

 61 

Metabolite profiling ("metabolomics”) comprehensively measures small-molecule 62 

metabolites (including substrates, intermediates, and end products) in biological samples and 63 

represents a powerful tool for mechanistic investigation, novel biomarker discovery, and 64 

precision medicine10,11. Metabolite profiling of blood samples may improve assessments of 65 
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individuals’ alignment with LE8, particularly for behavioral factors that are prone to survey 66 

and recall biases. In addition, circulating metabolites related to LE8 may capture varied 67 

individual metabolic responses to LE8, providing novel mechanistic insights into its 68 

cardioprotective effects and informing precision medicine. While previous studies have 69 

identified metabolites related to the components of LE8, including diet12-16, physical 70 

activity17-19, tobacco exposure20-22, sleep23-26, and body mass index (BMI)27,28, to our 71 

knowledge, no study has applied untargeted plasma metabolomics to identify a 72 

comprehensive metabolite signature (MetaSig) for LE8 to enable studies with incident CHD. 73 

Given that those health behaviors and factors often correlate and interact with each other, 74 

investigating whether plasma metabolomics could provide a good objective assessment of 75 

individuals’ alignment with and metabolic responses to overall LE8 and uncovering potential 76 

pathways linking LE8 to incident CHD is highly warranted.  77 

 78 

Here, leveraging a case-control study of CHD nested within the Southern Community 79 

Cohort Study (SCCS) involving 598 Black Americans and 596 White Americans, we 80 

assessed the LE8 score and its MetaSig and examined their relations to incident CHD. The 81 

results were further replicated in another nested CHD case-control study of racially and 82 

geographically different population: 598 Chinese adults from the Shanghai Women’s Health 83 

Study and Shanghai Men’s Health Studies (SWMHS). In addition, we identified MetaSigs for 84 

the health behaviors and health factors recommended in the LE8 and evaluated their 85 

associations with incident CHD. 86 

 87 
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Methods 88 

Study participants 89 

This study was based on a nested case-control study of CHD within the SCCS29. Briefly, 90 

the SCCS enrolled 84,735 primarily low-income, uninsured/underinsured Black and White 91 

Americans aged 40-79 years from 12 southeastern US states between 2002-2009, with >50% 92 

having household income less than $15,000/y and ~86% were uninsured or underinsured29. 93 

Participants were surveyed for a wide range of information at baseline and followed up 94 

regularly for morbidity and mortality outcomes. Venous blood samples were collected at 95 

baseline, and plasma samples were aliquoted and stored at -80°C for long-term use. A nested 96 

case-control study of CHD within SWMHS was used as the validation cohort, which enrolled 97 

74,940 women, aged 40-70 years, and 61,480 men, aged 40-74 years, from Shanghai, China 98 

between 1996–2000 and 2002–2006, respectively30,31. These cohort studies were approved by 99 

the Institutional Review Boards of the Vanderbilt University Medical Center, Meharry 100 

Medical College, and/or Shanghai Cancer Institute. Informed consent was obtained from all 101 

enrolled participants. 102 

 103 

For the nested case-control studies, participant inclusion criteria were 1) no history of 104 

CHD, stroke, heart failure, cancer, or end-stage renal disease at baseline; 2) available baseline 105 

plasma samples and data on fasting time and in SCCS, time between sample collection and 106 

lab processing; 3) no use of antibiotics nor cold/flu in last 7 days before blood collection. In 107 

addition, to facilitate CHD case identification and adjudication, in SCCS, participants were 108 

eligible for Centers for Medicare & Medicaid Services (CMS) and had ≥2 claims after cohort 109 
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enrollment; in SWMHS, participants’ medical records were accessible for our study. In 110 

SCCS, nonfatal CHD cases were identified through CMS, including acute myocardial 111 

infarction, coronary revascularization, and other acute CHD, and CHD deaths were identified 112 

through the National Death Index. In SWMHS, CHD cases were first identified by self-113 

reported diagnoses during follow-up visits and then confirmed by medical records. In each 114 

race (Black, White, or Chinese) and gender (male or female), 150 incident CHD cases were 115 

randomly selected and 1:1 matched with controls who had no CHD, heart failure, stroke, nor 116 

cancer at the time of case diagnosis, by enrollment age (±2 years), fasting time (±2 hours), 117 

and time between sample collection and lab processing (±4 hours, for SCCS samples; all 118 

SWMHS samples were processed within 6 hours after collection). After excluding eight 119 

plasma samples that did not pass the metabolite profiling quality control, a total of 1792 120 

participants, including 597 pairs of CHD cases and controls in SCCS (299 pairs of Black 121 

Americans and 298 pairs of White Americans), and 299 pairs of Chinese adults in SWMHS 122 

were included in the present study (Fig. 1). 123 

 124 

Life’s Essential 8 125 

We constructed each LE8 component metric and total LE8 score (ranging from 0 to 100) 126 

according to AHA guidelines3,32, with some modifications based on the characteristics of our 127 

data, as shown in Table S1. Briefly, dietary quality was assessed by the Dietary Approaches 128 

to Stop Hypertension (DASH) score33-35. Physical activity was measured by total minutes of 129 

leisure-time moderate and vigorous physical activity per week, with each minute of vigorous 130 

physical activity counted as 2 minutes toward the total minutes. Nicotine exposure was 131 
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assessed by active tobacco smoking and secondhand smoking exposure. Sleep health was 132 

measured by average self-reported sleep hours per day. BMI was calculated as weight 133 

(kg)/height (m)2. Blood lipids component was assessed by non-HDL cholesterol (mg/dL) 134 

(plasma total cholesterol minus HDL cholesterol). Because concentrations of fasting glucose 135 

and HbA1c were not measured in our study, blood glucose component was scored based on 136 

diabetes diagnosis and medications and relative abundance of plasma glucose measured 137 

simultaneously with other metabolites (see following metabolite profiling methods). Blood 138 

pressure was unavailable in SCCS, thus blood pressure component was scored based on 139 

hypertension status and medications. Total LE8 score was obtained by calculating the 140 

arithmetic mean of individual component scores. We also calculated scores reflecting 141 

alignment with health behaviors and health factors. 142 

 143 

Metabolite profiling 144 

Baseline plasma samples of selected CHD case-control pairs were retrieved and placed 145 

adjacently in the same assay batch. Laboratory persons were blinded to the case-control status 146 

of samples. Untargeted metabolite profiling was performed using ultra-high-performance 147 

liquid chromatography (UHPLC) coupled with tandem mass spectrometry (MS) by 148 

Metabolon Inc. (Morrisville, NC, USA) following a standard assay protocol36. Briefly, 149 

plasma samples were extracted with methanol and split into four aliquots for analysis by 150 

UHPLC-MS/MS in both positive and negative ion modes using a combination reverse phase 151 

and HILIC chromatography methods. Metabolites were identified by automated comparison 152 

of mass spectra features to a reference library of >4,000 authenticated standard compounds 153 
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followed by visual inspection for quality control. Peaks were quantified using area-under-the-154 

curve. A total of 1502 metabolites were detected in our samples. The majority of metabolites 155 

(>80%) were annotated based on internal standards. Metabolites that were annotated only by 156 

a match to a known MS spectrum or chemical formula were marked by ‘*’ and ‘**’, 157 

respectively. We excluded metabolites detected in <10% of participants, resulting in 1322 158 

metabolites. Metabolites with missing values were imputed by half of the minimal value in 159 

the non-missing samples. The values of all metabolites were log-transformed and 160 

standardized to mean 0 and unit variance. 161 

 162 

Statistical analysis 163 

The characteristics of the study participants were presented as mean (standard deviation 164 

[SD]) for continuous variables and frequency (percentage) for categorical variables. 165 

Spearman correlations between LE8 score and individual component scores were assessed. 166 

Elastic net regression was used to identify metabolites associated with LE812,14,37, with 167 

hyperparameters determined via a ten-repeated tenfold cross-validation framework, using R 168 

package caret (version: 6.0-88)38 and glmnet (version: 4.1-3)37,39. The MetaSig was calculated 169 

through a leave-one-out cross-validation approach. In addition, we externally validated the 170 

identified signature in SWMHS using weights of the selected metabolites from SCCS. We 171 

calculated Spearman correlations between LE8 score and MetaSig among all participants and 172 

by race, sex, age (≥60y/<60y), incident CHD status, diabetes status, hypertension status, 173 

dyslipidemia status, and fasting status. 174 

 175 
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We then examined the associations of LE8 and its MetaSig with risk of CHD using 176 

conditional logistic regression, adjusting for age, education, income, alcohol intake, and 177 

family history of CHD. We also included LE8 score and MetaSig in the same model to assess 178 

their independent associations with CHD and potential mediating effect of MetaSig on LE8-179 

CHD association. The potential multicollinearity was assessed by variance inflation factor 180 

(VIF) using R package car (version: 3.1-0) with VIF >10 indicating multicollinearity among 181 

variables. The ranges of VIF for LE8 score and its MetaSig were 1.08-1.37, confirming no 182 

multicollinearity. The mediation analysis was performed using R package mediation (version: 183 

4.5.0)40. Subgroup analyses to evaluate the associations of LE8 and MetaSig with incident 184 

CHD were performed by race, age group, sex, education, household income, diabetes status, 185 

hypertension status, and dyslipidemia status, with P value for interaction obtained from the 186 

corresponding interaction term in the model.  187 

 188 

The same methods were used to identify MetaSigs for health behaviors and health factors 189 

included in LE8 and evaluate their associations with incident CHD, potential mediation 190 

effects, and their external validity. Mutual adjustments of health behaviors and health factors 191 

score were performed in corresponding statistical models. All analyses were performed using 192 

R (version 4.1.1). Two-sided P < 0.05 was considered statistically significant. An overview of 193 

our study design is presented in Fig. 1. 194 

 195 
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Results 196 

Baseline characteristics of study participants 197 

The mean age at baseline (blood collection) was 55 years in our study participants (Table 198 

1). The mean (SD) of LE8 score was 48.1 (12.3) in Black women, 50.0 (13.6) in Black men, 199 

48.1 (13.4) in White women, and 48.5 (14.4) in White men. The median follow-up time for 200 

incident CHD cases was 5 (interquartile range: 3-8) years in SCCS. Incident CHD cases had 201 

significantly lower total LE8 score, health behaviors score, and health factors score than 202 

controls (all P <0.05). The characteristics of participants in SWMHS (mean age: 61 years; 203 

mean LE8 score: 57.2 in women and 50.7 in men) are shown in Table S2. There were 204 

moderate correlations between total LE8 score and individual component scores (r ranged 205 

from 0.22 with smoking to 0.47 with BMI and blood pressure scores in SCCS; Fig. S1).  206 

 207 

Metabolite signature of LE8 208 

We identified 133 metabolites related to LE8 (top 30 are shown in Fig. 2A; the full list 209 

can be found in Table S3). The MetaSig was strongly correlated with LE8 score (r = 0.61, 210 

P<0.001; Fig. 2B), meanwhile variations in MetaSig were observed among individuals with 211 

the same LE8 score, demonstrating interindividual difference in metabolic phenotype of LE8. 212 

MetaSig was also correlated with LE8 score in SWMHS (r = 0.49, P<0.001; Fig. 2C). 213 

Stratified analyses showed that correlations between LE8 score and MetaSig were consistent 214 

regardless of age, sex, race, fasting status, diabetes status, hypertension status, dyslipidemia 215 

status, and incident CHD status (r ranged from 0.54 to 0.64; Table S4), suggesting the 216 

robustness of our identified LE8 metabolite signature across participants with different 217 
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sociodemographic backgrounds and metabolic disease status.  218 

 219 

Associations with incident CHD 220 

Higher LE8 score and its MetaSig were significantly associated with lower risk of CHD: 221 

standardized multivariable-adjusted odds ratio (OR) = 0.61 (95% CI: 0.53-0.69) for LE8 222 

score and 0.57 (0.49-0.65) for MetaSig; both P < 0.001 (Table 2). Sensitivity analysis 223 

showed that the MetaSig-CHD associations did not change after excluding any individual 224 

metabolites from the signature (Table S5). After further adjusting for LE8 score, the 225 

MetaSig-CHD association was only slightly attenuated [OR (95% CI) = 0.66 (0.55-0.78); 226 

P<0.001; Table 2], suggesting circulating metabolites may complement LE8 assessment and 227 

contribute to CHD risk beyond LE8 score. On the other hand, the LE8-CHD association was 228 

moderately attenuated after adjusting for MetaSig [OR (95% CI) = 0.78 (0.66-0.92), 229 

P=0.003]. Mediation analysis showed that MetaSig mediated a large portion of the LE8-CHD 230 

association [53% (32%-80%); Pmediation<0.001; Fig. 2D].  231 

Both LE8 and its MetaSig were inversely associated with CHD risk in subpopulations by 232 

race, age group, education, income, diabetes status, hypertension status, and dyslipidemia 233 

status (Pinteraction>0.05; Fig. 3), with stronger associations observed in women than in men [for 234 

LE8, OR (95% CI) = 0.53 (0.42-0.66) in women and 0.66 (0.55-0.80) in men, Pinteraction = 235 

0.017; for MetaSig, 0.48 (0.38-0.6) in women and 0.65 (0.54-0.78) in men, Pinteraction = 0.016].  236 

The association of MetaSig with incident CHD was replicated in SWMHS (Table 2), 237 

with OR (95% CI) = 0.57 (0.46-0.69) and 0.69 (0.55-0.86) after further adjusting for LE8 238 

score (both P<0.001). The MetaSig also mediated a considerable portion of the LE8-CHD 239 
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association in SWMHS [27.4% (10%-47%); Pmediation<0.001; Fig. 2E]. 240 

 241 

Metabolite signatures of health behaviors and health factors and associations with CHD 242 

We further identified MetaSigs for health behaviors (Fig. S2A) and health factors in 243 

SCCS (Fig. S3A; full lists of metabolites are shown in Table S3), which showed strong 244 

correlations with health behaviors score (r = 0.59, P<0.001; Fig. S2B) and with health factors 245 

score (r = 0.76, P<0.001; Fig. S3B). Significant correlations were also found among 246 

participant subgroups (Table S4), suggesting the robustness of identified metabolite 247 

signatures for health behaviors and health factors. In addition, there were significant inverse 248 

associations of health behaviors score, health factors score, and their related signatures with 249 

risk of CHD (all P<0.001; Table 2). Specifically, standardized OR (95% CI) was 0.73 (0.63-250 

0.85) for health behaviors MetaSig and 0.57 (0.49-0.66) for health factors MetaSig. Similarly, 251 

metabolites mediated large portions of the health behaviors-CHD association [43.9% (13.9%-252 

101%), P=0.004; Fig. S2D] and health factors-CHD association [53.2% (24.8%-89%), 253 

Pmediation<0.001; Fig. S3D]. Further, all results on health behaviors MetaSig and health factors 254 

MetaSig were replicated in SWMHS (Table 2, Fig. S2, and Fig. S3). 255 

 256 

Discussion 257 

Leveraging untargeted plasma metabolites data in a nested case-control study among 258 

low-income Black and White Americans, we identified a metabolite signature that could 259 

reflect LE8 score and was associated with incident CHD, even after adjusting for LE8 and 260 

among participants with varied sociodemographic and metabolic health status, suggesting 261 
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that circulating metabolite profiling may be used to help assess LE8 alignment across diverse 262 

populations and offer additional information on CVH (e.g., inter-individual metabolic 263 

phenotypes related to LE8). We also identified MetaSigs for health behaviors and health 264 

factors and found consistent results showing that circulating metabolites could reflect the 265 

alignment with those recommendations and underlying metabolic phenotypes, which were 266 

further linked to incident CHD across diverse populations. All the results were further 267 

replicated in another nested case-control study of CHD among Chinese adults. Our findings 268 

demonstrate the potential utility of blood metabolomics to improve the assessment of LE8 269 

and its underlying metabolic variations that are linked to incident CHD among 270 

sociodemographically diverse populations, towards advancing precision medicine and 271 

addressing disparities in CVH. 272 

 273 

LE8 is the American Heart Association’s updated and enhanced guideline to measure and 274 

promote CVH for individuals and populations3. The beneficial associations of following the 275 

LE8 with lower risks of CHD, CVD, and related mortality have been demonstrated in recent 276 

studies4-7. However, multi-racial/ethnic populations with low SES remain underrepresented in 277 

research studies, even though they have persistently experienced worse CVH and CVD 278 

outcomes, as well as systemic disadvantages to improve CVH, than White and middle-class 279 

Americans2,41-43. Leveraging resources from SCCS, a large cohort of predominantly low-280 

income Black and White Americans (in the present study: ~65% with household income 281 

<$15,000/y and ~95% with household income <$25,000/y), our study assessed CVH based 282 

on LE8 and evaluated the association of LE8 score with incident CHD. We found that higher 283 
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LE8 score (per SD increase) was associated with ~40-50% lower risk of CHD among Black 284 

Americans and individuals with low SES. While LE8 provides a comprehensive approach to 285 

quantify CVH, its assessment involves a series of procedures such as questionnaires, 286 

anthropometric and blood pressure measures, and blood draw. Particularly, health behaviors 287 

(diet, physical activity, smoking, and sleep) are usually assessed by questionnaires, which are 288 

time-consuming and prone to measurement errors and low compliance (particularly in the 289 

clinical setting). Also, LE8 score cannot capture varied individual metabolic responses to 290 

lifestyle exposures. Hence, we incorporated untargeted plasma metabolomics data, and for 291 

the first time, identified a robust metabolite signature of LE8 and then examined its 292 

association with incident CHD. 293 

 294 

Metabolomics has been demonstrated as a powerful tool for improving exposure 295 

assessment and identifying potential novel biomarkers and mechanistic pathways in 296 

population studies, given its high-throughput characterization of thousands of metabolites in a 297 

small amount of biological samples44. Our study provides new evidence that plasma 298 

metabolite profiling may provide objective and comprehensive measures of LE8 and CVH 299 

among racially and geographically diverse populations. The identified metabolite signature 300 

may complement LE8 scores, improve the precision to stratify individuals with different 301 

future CHD risk, and potentially facilitate personalized CHD prevention strategies. 302 

 303 

Our identified MetaSig consists of metabolites reflecting participants’ alignment with 304 

LE8 health behaviors and metabolic health status, majority of which are lipids and amino 305 
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acids, and many of them have been linked to diet12-16, physical activity17-19, smoking20-22, 306 

sleep23-26, obesity27,28,45, or composite lifestyles scores46-49 in previous studies. For example, 307 

(2,4 or 2,5)-dimethylphenol sulfate, tartronate, and ethyl beta-glucopyranoside are derived 308 

from plant-based foods; cotinine is the major metabolite of nicotine from tobacco smoking; 309 

cholesterol, sphingomyelin, cortisol, and 1-palmitoleoylglycerolare are related to blood 310 

lipids; mannose, metformin, and fructosyllysine are related to prevalent diabetes and blood 311 

glucose. Particularly, drug metabolites including hydrochlorothiazide and metformin reflect 312 

antihypertensive and antidiabetic medications defined in LE8. Nevertheless, the associations 313 

of MetaSig with LE8 score and incident CHD were consistent among participants with or 314 

without history of hypertension or diabetes (Fig. 3 and Table S4), and the MetaSig-CHD 315 

association did not change after excluding those drug metabolites from the MetaSig [OR 316 

(95% CI)=0.55 (0.48-0.64); P<0.001]. Moreover, excluding 29 unknown metabolites (X-) 317 

from the MetaSig also did not change the MetaSig-CHD association [OR (95% CI)=0.58 318 

(0.50-0.66); P<0.001]. Notably, the MetaSig also contains microbial metabolites, e.g., 319 

maltotetraose, anthranilate, indolebutyrate, and bile acids (taurohyocholate, 320 

glycodeoxycholate 3-sulfate, 3b-hydroxy-5-cholenoic acid, and glycohyocholate), suggesting 321 

the role of gut microbiome in host’s CVH, which cannot be captured by questionnaires or 322 

measurements of glucose, cholesterol, or blood pressure. Moreover, several metabolic 323 

pathways related to CVH and CVD development were highlighted. For example, anthranilate, 324 

indolebutyrate, picolinate, and serotonin are members of tryptophan metabolism pathway50-52; 325 

taurohyocholate, glycodeoxycholate 3-sulfate, 3b-hydroxy-5-cholenoic acid, and 326 

glycohyocholate belong to secondary bile acid metabolism pathway53,54; alpha-tocopherol, 327 
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delta-tocopherol, and gamma-tocopherol/beta-tocopherol are vitamin E derivatives through 328 

tocopherol metabolism pathway55,56.    329 

 330 

Importantly, the MetaSig was related to future CHD risk regardless of participants’ age, 331 

sex, race, SES, metabolic disease history, and even after adjustment for LE8. Further analyses 332 

indicated that circulating metabolites could play a substantial mediating role linking LE8 and 333 

reduced CHD risk. Moreover, our findings were replicated in a racially and geographically 334 

different population, suggesting external validity and potential generalizability of our 335 

findings. Taken together, our findings demonstrated that circulating metabolites could 336 

complement LE8 to improve the precision of CVH assessment and predict CHD risk among 337 

sociodemographically and geographically diverse populations. 338 

 339 

To our knowledge, this is the first study that assessed the LE8 score, constructed its 340 

metabolite signature, and associated LE8 score and its MetaSig with incident CHD in Black 341 

and White Americans with low SES. Besides its novelty and inclusion of populations facing 342 

socioeconomic challenges and health disparities, other strengths of our study include its 343 

prospective design, comprehensive profiling of >1500 blood metabolites for a broad coverage 344 

and improved ability to construct metabolite signature for LE8, and robustness of results 345 

across populations with different sociodemographic and health status. Meanwhile, several 346 

limitations of our current study need to be acknowledged. First, as MetaSig of LE8 was 347 

identified using cross-sectional data from baseline blood samples, we cannot be certain as to 348 

the directionality of LE8-MetaSig association, and mediation analysis assumed that LE8 349 
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score preceded MetaSig. Although several population- or animal-based studies have shown 350 

the causal effects of LE8 components on blood metabolites21,26,57-60, given that blood 351 

metabolites might precede some LE8 components, the longitudinal association between LE8 352 

adherence and circulating metabolites should be investigated. Second, given the observational 353 

nature of our study, the causality is unable to be confirmed. However, the prospective design 354 

reduces the concern of reverse causation for the LE8/MetaSig-CHD association. Third, we 355 

cannot rule out the influence of residual confounding on the LE8/MetaSig-CHD association, 356 

although we have adjusted for and stratified by major CHD risk factors. Fourth, the 357 

concentrations of fasting glucose and HbA1c and SBP and DBP were not measured in SSCS; 358 

thus, glucose score and blood pressure score were defined based on history of diabetes or 359 

hypertension and use of medications, which may influence the accuracy of LE8 score. 360 

Finally, the nested case-control design may overestimate the predictive ability of the LE8 361 

score and its MetaSig. Therefore, our results should be further validated in other prospective 362 

cohort studies. 363 

 364 

In summary, our study assessed the LE8 score and identified MetaSig of LE8 among 365 

low-income Black and White Americans. We found that both LE8 score and its MetaSig were 366 

inversely associated with risk of CHD, consistently among participants with varied 367 

sociodemographic and metabolic health status. Our identified metabolite signature may 368 

provide an objective and comprehensive measure of LE8 and its metabolic underpinning, 369 

which may help improve the precision of CVH assessment and facilitate more effective and 370 

personalized CHD prevention strategies in diverse populations. Further examination of our 371 
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identified metabolites may improve understanding of biological mechanisms as how 372 

following LE8 benefits CHD prevention.  373 
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Figure legends 555 

Fig. 1. Overview of the current study. This study involved two nested case-control 556 

metabolomics studies within Southern Community Cohort Study (SCCS, primary cohort) and 557 

Shanghai Women’s and Men’s Health Studies (SWMHS, validation cohort). In the follow-up 558 

visits, participants with incident coronary heart disease (CHD) were identified and matched 559 

with controls by enrollment age, sex, race, fasting time, and time between sample collection 560 

and lab processing. After excluding 8 samples that did not pass metabolomics quality control, 561 

1194 SCCS participants and 598 SWMHS participants were included. Metabolite signature of 562 

Life’s Essential 8 (LE8) were identified using elastic net regression with leave-one-out cross-563 

validation in SCCS. The associations of LE8 score and its metabolite signature with risk of 564 

CHD were evaluated by conditional logistic regression adjusted for confounders. Mediation 565 

analysis was performed to assess the potential mediating role of metabolite signature on the 566 

LE8-CHD association. External validity of the identified metabolite signature related to LE8 567 

score and CHD risk was investigated in SWMHS. 568 

Abbreviations: SCCS, Southern Community Cohort Study; SWMHS, Shanghai Women’s 569 

and Men’s Health Studies; CHD, coronary heart disease; LE8, Life’s Essential 8; MetaSig, 570 

metabolite signature.  571 

 572 

Fig. 2. The metabolite signature of LE8 and its association with risk of CHD. (A) Top 30 573 

metabolites selected by elastic net regression in SCCS. Metabolites were ranked by the 574 

absolute value of regression coefficients. (B) Spearman correlation between MetaSig and 575 

LE8 score in SCCS. The dashed line denotes median LE8 score. (C) Spearman correlation 576 
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between MetaSig and LE8 score in SWMHS. (D) The mediation effect of MetaSig on the 577 

association between LE8 score and risk of CHD in SCCS. (E) The mediation effect of 578 

MetaSig on the association between LE8 score and risk of CHD in SWMHS.  579 

Abbreviations: SCCS, Southern Community Cohort Study; SWMHS, Shanghai Women’s 580 

and Men’s Health Studies; LE8, Life’s Essential 8; MetaSig, metabolite signature; ACME, 581 

average causal mediation effects; ADE, average direct effects; CHD, coronary heart disease. 582 

 583 

Fig. 3. Subgroup analyses for the associations of LE8 score and its metabolite signature 584 

with risk of CHD in SCCS. (A) Subgroup analysis for the association between LE8 score 585 

and risk of CHD. (B) Subgroup analysis for the association between MetaSig and risk of 586 

CHD. Conditional logistic regression models were used, adjusted for potential confounders. 587 

For income, lower income denotes low income and higher income denotes middle and high 588 

income. 589 

Abbreviations: SCCS, Southern Community Cohort Study; MetaSig, metabolite signature; 590 

CHD, coronary heart disease; LE8, Life’s Essential 8; OR, odds ratio; CI, confidence interval. 591 
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Table 1. Characteristics of study participants in the Southern Community Cohort Study 592 

 Black participants (N=598) White participants (N=596) 

CHD (N=299) Control (N=299) CHD (N=298) Control (N=298) 

Age, years 54.9 (8.8) 54.7 (8.7) 55.2 (8.7) 55.1 (8.6) 

Male, n (%) 149 (49.8) 149 (49.8) 148 (49.7) 148 (49.7) 

Education, n (%)     

Less than high school 120 (40.1) 109 (36.5) 108 (36.2) 84 (28.2) 

Completed high school 107 (35.8) 108 (36.1) 118 (39.6) 118 (39.6) 

Vocational school or some 

college 
57 (19.1) 60 (20.1) 52 (17.4) 54 (18.1) 

College or graduate school 15 (5.0) 22 (7.4) 20 (6.7) 42 (14.1) 

Income, n (%)*     

Low 194 (64.9) 185 (61.9) 196 (65.8) 167 (56.0) 

Middle 100 (33.4) 104 (34.8) 92 (30.9) 111 (37.2) 

High 5 (1.7) 10 (3.3) 10 (3.4) 20 (6.7) 

Alcohol intake, n (%)**     

None 154 (51.5) 140 (46.8) 175 (58.7) 140 (47.0) 

Moderate 94 (31.4) 107 (35.8) 98 (32.9) 129 (43.3) 

Heavy 51 (17.1) 52 (17.4) 25 (8.4) 29 (9.7) 

Family history of CHD, n (%)  107 (35.8) 89 (29.8) 168 (56.4) 142 (47.7) 

History of diabetes, n (%)  116 (38.8)     56 (18.7)     96 (32.2)     40 (13.4)  

History of dyslipidemia, n (%)  102 (34.1)     91 (30.4)    155 (52.0)    108 (36.2)  

History of hypertension, n (%)  210 (70.2)    179 (59.9)    177 (59.4)    133 (44.6)  

LE8 score 45.9 (11.9) 52.2 (13.2) 45.0 (13.5) 51.5 (13.5) 

LE8 score category, n (%)***     

High (80-100) 0 (0) 7 (2.3) 3 (1.0) 10 (3.4) 

Moderate (50-79) 114 (38.1) 174 (58.2) 100 (33.6) 148 (49.7) 

Low (0-49) 185 (61.9) 118 (39.5) 195 (65.4) 140 (47.0) 

Health behaviors score 43.8 (18.4) 47.4 (20.5) 42.0 (19.2) 46.3 (21.0) 

Health factors score 47.2 (20.4) 56.7 (21.3) 48.0 (20.7) 56.2 (20.1) 

Diet score 39.8 (32.2) 41.6 (30.6) 36.9 (30.3) 40.8 (32.3) 

Physical activity score 22.8 (39.8) 24.2 (40.5) 19.9 (38.8) 21.3 (39.1) 

Smoking score 43.0 (42.2) 47.8 (42.5) 40.0 (40.3) 46.5 (42.0) 

Sleep score 72.3 (29.2) 77.1 (26.6) 71.2 (29.7) 78.1 (26.6) 

BMI score 50.0 (34.5) 56.9 (35.3) 50.4 (34.1) 57.7 (34.2) 

Blood lipids score 36.8 (32.8) 44.6 (31.8) 25.8 (28.7) 27.9 (27.6) 

Blood glucose score 54.3 (34.3) 69.6 (30.0) 60.9 (34.0) 73.3 (26.7) 

Blood pressure score 47.7 (35.1) 55.8 (37.3) 54.9 (38.3) 65.9 (38.9) 

Data were mean (standard deviation) or n (%) as indicated.  593 

*Annual household income <$15,000, $15,000 to <$25,000, and ≥$25,000 for low, middle, and high levels of 594 

income, respectively. 595 

**Alcohol intake was grouped as none, moderate (>0 to ≤2 drinks per day in men or >0 to ≤1 drink per day in 596 

women; 1 drink = 14 g ethanol), and heavy drinking (>2 drinks per day in men or >1 drink per day in women). 597 

***The cutoffs were provided by the American Heart Association (Lloyd-Jones et al., 2022). 598 
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Abbreviations: CHD, coronary heart disease; LE8, Life’s Essential 8; BMI, body mass index.  599 
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Table 2. The associations of LE8 score, health behaviors score, health factors score and 600 

their related metabolite signatures with risk of CHD* 601 

  OR (95% CI) P 

SCCS 

LE8 LE8 score 0.61 (0.53-0.69) < 0.001 

MetaSig 0.57 (0.49-0.65) < 0.001 

MetaSig (adjusting for LE8 score) 0.66 (0.55-0.78) < 0.001 

Health 

behaviors 
Health behaviors score 0.77 (0.67-0.88) < 0.001 

 MetaSig 0.73 (0.63-0.85) < 0.001 

MetaSig (adjusting for health behaviors score) 0.79 (0.67-0.94) 0.007 

Health 

factors 
Health factors score 0.61 (0.53-0.7) < 0.001 

 MetaSig 0.57 (0.49-0.66) < 0.001 

MetaSig (adjusting for health factors score) 0.68 (0.55-0.84) < 0.001 

SWMHS 

LE8 LE8 score 0.52 (0.42-0.65) < 0.001 

MetaSig 0.57 (0.46-0.69) < 0.001 

MetaSig (adjusting for LE8 score) 0.69 (0.55-0.86) < 0.001 

Health 

behaviors 
Health behaviors score 0.73 (0.59-0.9) 0.003 

 MetaSig 0.69 (0.55-0.87) 0.001 

MetaSig (adjusting for health behaviors score) 0.77 (0.59-0.99) 0.043 

Health 

factors 
Health factors score 0.5 (0.4-0.62) < 0.001 

 MetaSig 0.57 (0.47-0.7) < 0.001 

MetaSig (adjusting for health factors score) 0.80 (0.62-1.04) 0.093 

* For associations of LE8 score and its related metabolite signature with risk of CHD, we used the conditional 602 

logistic regression, adjusted for age, education, income, alcohol intake, family history of CHD. For 603 

associations of health behaviors score and health factors score and their related metabolite signatures with 604 

risk of CHD, we used the conditional logistic regression, adjusted for age, education, income, alcohol intake, 605 

family history of CHD, and mutual adjustments of health factors score/health behaviors score. 606 

Abbreviations: SCCS, Southern Community Cohort Study; SWMHS, Shanghai Women’s and Men’s Health 607 

Studies; CHD, coronary heart disease; LE8, Life’s Essential 8; MetaSig, metabolite signature; OR, odds ratio; CI, 608 

confidence interval. 609 

  610 
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Fig. 1. Overview of the current study 611 

 612 

  613 
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Fig. 2. The metabolite signature of LE8 and its association with risk of CHD 614 

 615 

  616 
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Fig. 3. Subgroup analyses for the associations of LE8 score and its metabolite signature 617 

with risk of CHD in SCCS 618 

 619 
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