
Can an online battery match in-person cognitive testing in predicting age-related cortical changes? 

Thienel, R.1*@, Borne, L. 1*, Faucher, C. 1,  Robinson, G.A.2,3, Fripp, J. 4, Giorgio, J. 1,5, Ceslis, A.3, McAloney, 

K6., Adsett, J.6 , Galligan, D.6,  Martin, N.G.6, Breakspear, M. 1#, Lupton, M. K. 6,7,8 # 

1 The University of Newcastle, Newcastle, Australia 
2 Queensland Brain Institute, The University of Queensland, St. Lucia, Brisbane, Australia 
3School of Psychology, The University of Queensland, St. Lucia, Brisbane, Australia  
4 CSIRO, Australian eHealth Research Centre, Brisbane, Australia; 
5Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA 
6 QIMR Berghofer Medical Research Institute, Brisbane, Australia 
7 School of Biomedical Sciences, The University of Queensland, Brisbane, Australia. 
8 School of Biomedical Sciences, Queensland University of Technology, Australia 

@ corresponding author, renate.thienel@newcastle.edu.au 
*, # Equally contributing        

Abstract 

Understanding how cognition and brain structure change across the lifespan is crucial for gaining insight 

into the healthy ageing process, as well as identifying early signs of neurodegenerative changes. In our 

recent prospective study of healthy ageing in midlife and older adults1, we compared the association of 

two cognitive batteries with age-related variability in brain morphology. Our findings revealed that online 

cognitive testing, which is more cost-effective, demonstrated comparable association to sulcal width as 

comprehensive in person assessment. In person cognitive testing shows a significantly stronger 

correlation with sulcal width when compared to online testing, although the difference is numerically 

minor. In addition, it was found that both cognitive assessment assays showed a more pronounced age-

related decline in individuals with Aβ burden. These findings suggest that online assessment is able to 

detect accelerated cognitive ageing comparably to the in-person assay in our preclinical sample, even in 

the early stages of Aβ accumulation before significant structural brain changes occur. Taken together with 

their greater cost effectiveness, online cognitive testing could lead to more equitable early detection and 

intervention for neurodegenerative diseases. 
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BACKGROUND 

Ageing is associated with substantial changes in cognition2 and brain structure3. The trajectories of these 

age-related changes show significant individual differences with major clinical implications4 such as early 

detection of neurodegenerative disorders (e.g., Alzheimer’s Disease). Comprehensive in-person 

neuropsychological assessments across multiple cognitive domains are routinely used to estimate 

cognitive status in both research and clinical settings and are considered gold standard. This type of 

assessment is labour intensive, costly and not always feasible. Accessibility issues are a significant barrier 

for older adults to receive health care5. Recent events, such as the Covid-19 pandemic, have also been 

found to influence older adults’ access to health care6. These considerations raise the importance of 

reducing barriers to participation in clinical care and research. 

Self-administered online cognitive testing offers several advantages over in-person assessments, including 

greater flexibility, the ability to record accuracy and speed of response with high precision, and better 

cost-efficiency7. The popularity of online neuropsychological tests is rapidly increasing, with the 

availability of online cognitive batteries having more than doubled in the past decade8,9 and large 

biomedical databases such as the UK biobank (https://www.ukbiobank.ac.uk/) solely relying on 

computerized testing. Earlier studies initially expressed skepticism about the use of computerised testing, 

particularly regarding the introduction of environmental confounds and the lack of supervision10,11. 

Nonetheless, research in large samples has shown a strong correlation (Pearson’s r=0.80) between in-

person and web-based cognitive testing12,13, suggesting potential for high-quality data comparable to in-

person testing when quality insurance measures are met. This is excellent considering that test-retest 

reliabilities of widely used in person neuropsychological tests are highly variable (ranging between r=0.5-

0.9 for individual tests, with memory and executive functioning scores often less than r=0.7)14.  Only few 

studies have validated the use of online cognitive testing in older adults, but unsupervised web-based 

tests, including the Stroop task, paired associates learning, and verbal and matrix reasoning, have been 

shown to yield comparable results to supervised tests administered in a laboratory15. Moreover, 

performance on web-based tests does not appear to be correlated with technology familiarity, an issue 

previously raised as a potential barrier15.  

Creyos (previously Cambridge Brain Sciences, CBS), is a widely used online cognitive assessment platform 

that consists of 12 self-administered tasks, based on well-validated neuropsychological tests adapted for 

use in a home environment16. Creyos is designed to adjust the level of difficulty of each task according to 

the performance level of the participant, with corresponding increases and decreases in complexity 

minimising floor and ceiling effects. In addition, data reliability is ensured through ‘validity’ indicators, 

which flag when the data are outside the expected bounds for the correct and uninterrupted task 

completion. Creyos has been used in several large-scale epidemiological studies17,18,19.  There have only 
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been a limited number of studies comparing the use of the Creyos platform with in-person 

neuropsychological testing in older individuals (aged ≥40years), and these have used small sample sizes 

and non-clinical populations20,21.   

Cognitive changes reflect structural and functional changes in the brain. Healthy age-related changes 

occur in the thickness of the grey matter mantle (cortical thickness, CT) as well as the widening of the sulci 

(Sulcal width, SW)22, as inferred from structural magnetic resonance imaging (sMRI). SW has recently 

received increased attention as a robust measurement of cortical morphometry, most notably in older 

adults22 as it appears to be less susceptible to age-related deterioration of sMRI contrast between white 

and grey matter23. A growing number of studies have investigated the brain-associations of cognitive 

performance of older adults using this technique, with results suggesting that greater sulcal width is 

associated with poorer cognition and Alzheimer’s disease progression22, 24, 25. However, the match 

between specific online versus in-person domains (working memory, executive functioning, and language) 

remains unclear, as is the relationship between online cognitive testing and changes in brain structure.   

Here we compared the relationship between brain morphology (sulcal width) and cognitive functioning, 

using both online and in person modalities. We first studied the specific domain-to-domain mapping 

(working memory, executive functioning, language) between online and in-person testing in a sample 

(N=140) of healthy adults and then studied the relationship of the latter to cortical morphology as 

assessed with SW. Furthermore, we sought to disentangle the influence of age, sex, β-amyloid (Aβ) status 

and genetic risk for Alzheimer’s disease (APOE-status) on these associations. We used a partial least 

square (PLS) multivariate analysis, to reduce the variables to a smaller set of predictors.  PLS first extracts 

a set of latent factors that maximize the covariance between two data sets, here cognition and cortical 

morphology. These can then be regressed against independent variables such as age, sex and genetic risk. 

METHOD 

Data collection and analysis followed approval from the QIMR Berghofer Human Research Ethics 

Committee (P2193 and P2210), and the University of Newcastle Human Research ethics committee (H-

2020-0439). Written informed consent was obtained from all participants following local institutional 

ethics approval.  

Participants 

The 141 participants (75% female, aged 46-71 years, mean age=60; years of education: 13.1 (6.5), NART-

IQ mean=110 (SD=9), with 50% or more completed cognitive tasks were drawn from the 159 participants 

that had attempted online and in-person testing, within the Prospective Imaging Study of Ageing (PISA) 
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cohort- a mid-life cohort, genetically enriched for risk of AD1, with data acquired at QIMR Berghofer and 

Herston Imaging Research Facility (HIRF) in Brisbane, QLD, Australia. All participants have had a structural 

(T1-weighted) MRI scan and at least 50% of the cognitive scores (online and in-person) available (see Table 

1 for a demographic overview).  

 

Table 1: Participant demographics for PISA participants who completed both the online and in person 

cognitive assessments.  

Variable  Number of 

participants 

Percent 

Sex Female 107 76% 

Male 34 24% 

Education <12 years 38 27% 

≥12 years 103 73% 

 

Amyloid Burden  

Positive 12 9% 

Negative 122 87% 

Missing 7 5% 

 

APOE ε4 

Positive 66 47% 

Negative 38 38% 

Missing 21 15% 

 

Neuropsychological assessment 

Online 

Participant recruitment has been fully described elsewhere1. In brief, PISA online participants had 

previously volunteered for genetic studies on risk factors or biomarkers for physical and psychiatric traits. 

They were re-contacted, consented, and recruited into the PISA study then completed an online survey, 

subsequently they were invited to undertake online cognitive testing by email approach containing an 

individualised link. The Creyos battery consists of 12 self-administered tasks across memory, executive 

function, language, and visuo-spatial domains (listed in supplementary table 1 and fully described at 

https://creyos.com/). Completion of the full battery takes on average 30 minutes.    

In-person 

A subset of participants who had completed the online phase of the PISA study were invited to complete 

the in person phase. These were eligible individuals, who were designated at high or low genetic risk of 
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Alzheimer’s disease. The comprehensive face to face cognitive battery was administered assessing 

cognitive domains of executive functioning, memory, language, and visuo-spatial functioning. All 

neuropsychological tests listed in Lupton et al.1 were administered by trained clinical neuropsychologists. 

Table 2 lists the tests that were included in this analysis. Completion of the full battery took on average 

two hours to complete. 

For some variables, scores were inverted so that a high score always signifies better performance (e.g., 

task accuracy) and a lower score indicates poorer performance (e.g. error rate, reaction time). 

 

Table 2: In Person cognitive battery 

Domain Task 
Memory Rey Auditory Verbal Learning Test - Immediate and Delayed26,27 

Topographical Recognition Memory Test28 

Executive Functions Stroop Test (Victoria version)29 

Word fluency (FAS)30 

Digit Span F/B (Wechsler Adult Intelligence Scale - Fourth edition - WAIS-
IV)31 
Hayling Sentence Completion Test32 
Test of Everyday Attention: Telephone Search; Dual Task33 
 

Language Graded Naming Test34 

National Adult Reading Test35 

Spontaneous speech - complex scene description36 

Category fluency - Animals30 

Visuo-spatial VOSP-cube37 

 

MRI 

As part of an extensive imaging protocol, T1-weighted 3D-MPRAGE structural Magnetic Resonance 

Imaging (sMRI) data were acquired (TE/TR=2.26 ms/2.3 s, TI=0.9 s, FA=8˚, 1 mm isotropic resolution, 

matrix 256 x 240 x 192, BW=200 Hz/Px, 2x GRAPPA acceleration) at 3T on a Biograph mMR hybrid scanner 

(Siemens Healthineers, Erlangen, Germany). Other MRI modalities including functional, diffusion and 

spectroscopy sequences were acquired but are not analysed in the present study1. 

APOE ɛ4 
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APOE genotype ( ɛ4 allele carriers vs non-carriers) was determined from blood-extracted DNA using 

TaqMan SNP genotyping assays on an ABI Prism 7900HT and analysed using SDS software (Applied 

Biosystems). APOE ɛ4 carriers were coded as positive across homozygeous and heterozygous carriers. 

Aβ quantification 

Positron emission tomography (PET) scans were performed on a Biograph mMR hybrid scanner (Siemens 

Healthineers, Erlangen, Germany) with a Fluorine-18 florbetaben ([18F]FBB) diagnostic radiotracer with 

highly selective binding for Aβ in neural tissue. The centiloid cutoff for Aβ positivity was 20 CL. Full 

details of acquisition and processing pipelines are provided in Lupton et al1.  

 

Data processing and modelling 

Sulcal Width (SW) 

The Morphologist pipeline of the BrainVISA toolbox38 was used to extract local measures of brain anatomy 

from the T1-w MRI. This pipeline identifies 127 cortical sulci, 63 in the right hemisphere and 64 in the left 

hemisphere. Cortical thickness (CT) around each sulcus and the sulcal width (SW) were extracted; these 

have both shown promise for the early detection of AD22,39. Following Dauphinot et al.39, right and left 

hemisphere measurements were averaged when the same two sulci exist in each hemisphere, resulting 

in 64 unique measurements (see Supp. Fig. 1 for abbreviations and full labels). The pipeline was applied 

in a docker image as described in https://github.com/LeonieBorne/morpho-deepsulci-docker. 

Partial Least Square (PLS) 

Partial least squares (PLS) was used to study co-variation between the two cognitive assays (online and in 

person) and between cognitive and brain changes across mid- and older adulthood. PLS is a multivariate 

method that identifies modes of common variation between two data sets and ranks these according to 

their explained covariance. The resulting projections help identify the most important factors, often 

referred to as latent variables, that link the two sets of data together, to improve understanding of the 

relationship between them. The Canonical Partial Least Square (PLS) approach40, implemented in the 

Python library scikit-learn41, was used. Two datasets were given as inputs: In the first PLS the first consisted 

of online and the second of in person testing scores and in the second PLS the first input consisted of 

sulcal anatomy measures (SW of each sulcus) and the second comprised the cognitive test batteries. This 

method iteratively calculates pairs of latent variables (modes): the first mode corresponds to the pair 

explaining the most covariance, and so on for ensuing modes. These latent variables enable both online 

and in person and brain and cognitive loadings respectively (or back-projections), which weight each 

individual SW or cognitive test according to their contribution to that mode. Higher scores of these 

loadings correspond to better task performance and wider sulci, respectively. 
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PLS models including SW were trained separately for the online and the in-person cognitive tests. Effects 

of age, sex, APOE, Aβ were analysed post-hoc using appropriate linear statistics (see below). For all 

analyses, missing values were replaced by the average score across all participants. Sulci width features 

and neuropsychological measures were excluded if these were missing in more than 50% of participants. 

Likewise, participants were excluded if they were missing more than 50% of either cognitive measures or 

sulci width measures. In total, 3 sulci measures were excluded (F.C.L.r.sc.ant., S.GSM., S.intraCing). No  

participants were excluded. All measures were z-scored by subtracting the mean of these participants and 

scaling to unit variance before applying the PLS.  

The corresponding code is available at https://github.com/LeonieBorne/brain-cognition-pisa. 

Statistics 

Permutation tests 

Permutation tests were used to identify the robustness of the rank ordered PLS modes42. These tests 

consist of randomly shuffling subject labels in one of the data domains (in this case, the cognitive 

measures dataset) to disrupt the empirical association with the other domain (sMRI). Then PLS is 

performed on these shuffled data and the covariance is measured between each pair of latent variables. 

This test is repeated 1000 times. If the covariance of an empirical mode is greater than 95% of those 

obtained from the first of these shuffled modes, then that mode is considered robust. As in Smith et al.43; 

we compared scores to the first mode of the permutation tests because this extracts the highest explained 

variance in a null sample and can thus be viewed as the strictest measure of the null hypothesis44.  

Bootstrapping 

Bootstrapping was used to identify which individual measures within a mode had a significant impact on 

the PLS latent variables45. This approach consists of creating a surrogate dataset of the same size as the 

original data by randomly selecting and removing participants, with replacement. This tests how robust 

the loadings are to particularities of the original dataset. PLS is then performed on the bootstrapped data 

and the loadings between each initial measure and the corresponding latent variable are calculated. This 

test is repeated 1000 times. If the 2.5 and 97.5 percentiles of the loadings obtained have the same sign, 

the measure (a specific sulcus or cognitive measure) is considered to have a statistically significant impact 

on the calculation of the latent variable. 

Statistical analyses 

The impact of age was assessed using the Wald Test with the t-distribution as the test statistic. To test 

whether any age-related effect differs between subgroups (diagnosis, sex, amyloid or APOE status), the 

analysis of covariance (ANCOVA) was used, to test the interaction effect. The effect of sex (male, female) 

was evaluated using an ANCOVA, controlling for age. The strength of association between in person 
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cognitive testing and sulcal width versus online cognitive testing and sulcal width was tested with Steiger’s 

z test. The PISA sample was enriched for high genetic risk of AD, including participants who were APOE ɛ4 

positive, as well as those in the highest decile of risk for AD as defined by a polygenic risk score (PRS), 

which was calculated by combining common AD genetic risk variants with APOE ɛ4 omitted (as described 

in Lupton et al.1). To control for any selection bias caused by APOE ɛ4 negative participants being enriched 

for other AD genetic risk variants, the ANCOVA was also controlled for the AD PRS used in the participant 

selection.   

RESULTS 

Association between online performance and in-person performance 

Across all tests, performance in online cognitive testing strongly and significantly covaried with 

performance in detailed in-person assessment (cov=2.67; z-cov=12.33; r=0.60; r2=0.37; p<0.001; Figure 

1).  Analyzing different cognitive domains of the face-to face assessment separately (i.e., executive, 

memory, language and visuo-spatial), revealed that the variance explained for executive tests of the face-

to face battery was strongest (cov=1.81; z-cov=11.57; r=0.57; r2=0.32; p<0.001), followed by language 

(cov=1.42; z-cov=7.09; r=0.51; r2 =0.26; p<0.001), memory (cov=1.45; z-cov=6.44; r=0.44; r2 =0.19; 

p<0.001), then visuo-spatial (cov=0.44; z-cov=2.60; r=0.26; r2=0.07; p=0.013). The average performance 

on the in-person and online tasks can be found in the supplementary tables 2 and 3.  
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Fig. 1: Projections (latent variables) explaining the relationship between online and onsite tests 

 

a, Projection (latent variable) of the common variation of all online tests onto all in-person tests. b, 
Projection of online tests of executive function onto in-person tests of executive functions. c, Projection 
of online tests of language onto in-person tests of language. d, Projection of online memory tests onto 
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in-person memory tests.  e, Projection of online tests of visuo-spatial abilities onto in-person tests of 
visuo-spatial abilities; the shaded area represents the 95% confidence interval. 

Associations between cognition assessments and cortical morphology  

The application of partial least square (PLS) yielded a single robust mode for covariation between both 

the online and in-person assessments, although the nature of the loadings differed somewhat (Fig. 2). The 

cognitive projection loaded most strongly onto memory and executive functions for the in-person 

assessment (1st mode, p=0.011, cov=3.55, z-cov=3.00, R2=0.18, z-R2=0.95; 2nd mode, p>0.99), and onto 

executive function for the online battery (1st mode, p<0.001, cov=2.76, z-cov=4.71, R2=0.14, z-R2=1.15; 

2nd mode, p=0.99).  

 

Figure 2: Loadings of the individual cognitive tests of the in person (left) and online (right) battery 

onto the latent variable of the PLS  

a, Cognitive test loadings for partial least square (PLS) applied to the in-person assessment, and b, to the 

online assessment. The variables are shown in order of how strongly they load onto the latent variable, 

with the strongest at the bottom. Tests with non-robust associations are shown in grey.  

Brain loadings of cognition-related sulcal width showed a regional pattern that was significantly correlated 

between the online and in person cognitive appraisals (r=0.996; see figure S1 in supplementary material). 

Greater SW in these projections covaried with poorer performance in the corresponding cognitive 

assessments. Brain projections from both cognitive administration modalities (in-person and online) 

loaded most strongly across the occipital lobe, the anterior and posterior inferior temporal sulcus, the 
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posterior lateral fissure, superior, inferior and internal frontal sulcus, intraparietal sulcus, sub-parietal 

sulcus, and parieto-occipital fissure.  

The variance explained in sulci width was only slightly smaller for the online cognitive assay (r2=0.15) than 

the in person testing (r2=0.18), although this marginal difference was statistically significant (z=5.3, 

p<0.001). ), although this marginal difference was statistically significant (z=5.3, p<0.001). Brain-behaviour 

z-transformed covariance was likewise comparable across the two administration types (Fig. 3). 

Figure 3: Mean loading of the in person and online latent variable onto the 127 sulci averaged across 

left and right hemisphere according to BrainVISA toolbox38  

 

Mean loading of all reliable sulci in the in-person (top) and online administration (bottom), with the 

strongest positive covariation of the latent variables of the respective cognitive assays onto the sulcal 

width latent variable in red and the weakest association in blue. 

 

There was a significant effect of sex on the PLS projections for both the in-person (Fig. 4) and online (Fig. 

5) assessments, with poorer performance on the cognitive test (F (1, 140) = 14.89, p<0.001, Fig. 5a) and 

larger sulcal width for men (F (1,140) = 23.39, p<0.001, Fig. 5d) for the in-person assessment and larger 
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sulcal width for men (F (1, 140) = 21.18, p<0.001, Fig. 4d) in the online assessment. Cognitive performance, 

both online (F (1,140) = 4.91, p=0.03, Fig. 4b), and in-person (F (1,140) = 8.84, p=0.004, Fig. 5b) was lower 

for older β-amyloid positive participants. There were no significant age-related differences in sulcal width 

for either in-person or online assessments and there were no effects of APOE ɛ4 status on cognition or 

sulcal width, for either the in-person or the online assessment.  

 

Figure 4: Effects of sex, β-amyloid burden, and APOE status on PLS loadings of latent variables of 

online cognition (left) and sulcal width (right column)  

 

Effects of sex (a), amyloid positivity (Aβ) (b), and APOE ε4 status (c) on the cognitive projections. Effects 

of sex (d), amyloid positivity (Aβ)  (e) and APOE ε4 genetic risk (f) on the sulcal width projections in the 

online condition. Higher scores of these loadings correspond to worse task performance and wider sulci, 

respectively, significant regressions are indicated by asterisk and p-value . 
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Figure 5: Effects of sex, β-amyloid burden, and APOE ɛ4 status on PLS loadings of latent variables of in 

person cognition (left) and sulcal width (right column). Box and whiskers show mean and inter-

quartile range of effects across ages.  

 

Effects of sex (a), amyloid positivity (Aβ) (b), and APOE ɛ4 status (c) on the cognitive projections. A 

higher score on the cognitive loading variable indicates poorer cognition. Effects of sex (d), amyloid 

positivity (Aβ) (e) and APOE4 genetic risk (f) on the sulcal width projections in the in-person condition. 

Higher scores of these loadings correspond to worse task performance and wider sulci, respectively.  
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DISCUSSION 

With an aging population, the need for accessible, digital cognitive testing is paramount. Such tests need 

to have comparable performance to traditional in person tests, and similar sensitivity to the presence and 

nature of underlying neurobiological differences. Here we demonstrated that relatively brief online 

cognitive tests strongly co-vary with extensive in-person assessment and relate to similar underlying 

cortical morphology, with executive and memory domains showing the strongest loadings. A very strong 

correlation was observed between the sulcal width projections of online and in-person cognitive assays 

(r=0.996). The variance explained by the in person testing (r=0.42) was marginally higher than that of the 

online testing (r=0.39). This difference reached statistical significance, partly due to the large sample size 

and the very strong correlations of the sulci width projections. For in-person assessment, the cognitive 

projection loaded strongly onto memory and executive functions, whereas for online the cognitive 

projection loaded mostly onto executive function. This is likely due to fewer memory-based tests being 

included in the Creyos platform compared to in-person testing. The strong brain-cognition covariance 

seen for executive function shows the importance of considering executive function as well as memory 

when investigating brain neurodegeneration in mid-life aging. In sum, the current analyses suggest 

adequate sensitivity of online cognitive tests for studying the age-related neurobiology of cognition. 

Grouping individuals by demographic or biological variables also shows convergence between online and 

in person testing. Sex differences were identified on SW projections with lower cognitive test performance 

and larger sulcal width for men. In previous studies, women have been shown to have higher scores on 

tests of memory and processing speed compared to men at middle age46, in addition to smaller sulcal 

width which remains consistent across the age spectrum47. Our study shows this effect is equally evident 

in both online and in-person testing. Similarly, the aggregation of Aβ was associated with steeper cognitive 

age-associated differences in both online and in-person assessments, suggesting that in this healthy 

community-residing cohort, the impact of early Aβ accumulation is evident in an economical online 

cognitive assay. 

A potential limitation to the study is that the PISA cohort is enriched for those at the extremes of genetic 

risk for Alzheimer’s disease (selected based on APOE genotype and polygenic risk scores). This selection 

bias does not affect the comparison of the online versus in-person cognitive testing platforms but may 

predetermine the projections towards prodromal Alzheimer’s disease related impairment, rather than 

impairment associated with normal aging. The aggregation of Aβ was associated with a poorer cognitive 

performance for older participants for both cognitive testing modalities, suggesting that in a preclinical 
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sample the early stages of Aβ accumulation accelerate cognitive aging potentially before translation into 

structural brain changes. 

Online cognitive testing has several advantages over in-person cognitive testing, including cost saving, 

automated interpretation, accessibility, and the ability to adjust the difficulty to match the participant’s 

ability level21. We show that an easily assessable online platform that can be accessed from home and 

completed unsupervised in 30 minutes has near-comparable prediction of age-associated differences in 

cortical morphology, compared to an extensive two-hour cognitive test battery administered by a trained 

neuropsychologist in a controlled environment.   

Online testing is being increasingly used for large scale epidemiology studies, such as our PISA study where 

we have collected data for over 2,000 research participants1. It also has the potential to be used as an 

assessment of the effect of an intervention on cognitive outcomes, and for use as screening tool for the 

inclusion of participants into clinical trials48,49. The latest data collection wave for the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), aims to use online screening on 20,000 participants before enrichment 

for further phenotyping50. Ours is the first to directly benchmark online cognitive testing against in person 

testing in its ability to predict brain morphology. In person cognitive assessment offers alternative 

strengths, particularly for the clinical assessment and disambiguation of different neurodegenerative 

disorders in their early phase. In person neurocognitive assessment therefore can assist with diagnosis 

and treatment tailored to individual patients where it can make a crucial contribution in a clinical setting 

in the reduction of labor costs and participant time investment. 

There are some caveats to note in the current study. There was only a weak correlation between online 

and in-person performance for the visuo-spatial domains (Fig. 1). This is likely due to the limited variation 

in scores for the VOSP-cube test which is the sole visuo-spatial task used in the in-person assessment. 

Overall although we show that both modalities can be used successfully to derive an age effect, the onsite 

and in-person tests represent each cognitive domain to differing extents, which may have implications in 

screening for dementia related cognitive decline. Future validation work should also include longitudinal 

data to allow the effect of change over time to also be assessed.     

Unsupervised cognitive testing in a home environment has its own set of limitations that should be taken 

into account. One of these limitations is the potential for incorrect use of tasks due to various factors, 

including a lack of understanding of instructions, misinterpretation of instructions, or interruptions and 

distractions during testing. These issues can affect the accuracy and reliability of the test results and 
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accordingly appropriate measures should be put in place to minimize the impact of these limitations on 

the testing process, ensuring the quality and reliability of the test results. There is also a risk of intentional 

misuse such as completion by another individual or purposely failing tasks. Monitoring for validity (such 

as checking that performance lies within the expected bounds for correct and uninterrupted task 

completion) may mitigate these issues. This requires consideration if such tests were to be employed as 

screening tools for inclusion in a clinical trial.  

Current alternatives to comprehensive cognitive testing include the Mini-Mental Status Exam (MMSE51) 

and Montreal Cognitive Assessment (MoCA52), which are used by health care providers as screening tools 

and to monitor cognitive changes. Online testing forms, such as Creyos, are likely to become a viable 

alternative to these tests. The increasing sizes of normative datasets will allow the integration of these 

platforms into the broader health care system for use by non-experts in monitoring cognitive decline, as 

well as assessing the effects of drugs or surgery on cognition. 
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