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Abstract 

Purpose 

To present a Swin Transformer-based deep learning (DL) model for denoising of single-delay 

and multi-delay 3D arterial spin labeling (ASL) and compare its performance with 

convolutional neural network (CNN) methods. 

Methods 

Swin Transformer and CNN-based spatial denoising models were developed for single-delay 

ASL. The models were trained on 59 subjects (104 scans) and tested on 44 subjects (57 

scans) from 3 different vendors. Spatiotemporal denoising models were developed using 

another dataset (6 subjects, 10 scans) of multi-delay ASL. A range of input conditions was 

tested for denoising single and multi-delay ASL respectively. The performance was evaluated 

using similarity metrics, spatial signal-to-noise ratio (SNR) and quantification accuracy of 

cerebral blood flow (CBF) and arterial transit time (ATT).  

Results 

Swin Transformer outperformed CNN-based networks, whereas pseudo-3D models showed 

better performance than 2D models for denoising single-delay ASL. The similarity metrics 

and image quality (SNR) improved with more slices in pseudo-3D models, and further 

improved when using M0 as input but introduced greater biases for CBF quantification. 

Pseudo-3D models with 3 slices as input achieved optimal balance between SNR and 

accuracy, which can be generalized to different vendors. For multi-delay, spatiotemporal 

denoising models had better performance than spatial-only models with reduced biases in 

fitted CBF and ATT maps. 

Conclusions 

Swin Transformer DL models provided better performance than CNN methods for denoising 

both single and multi-delay 3D ASL data. The proposed model offers flexibility to improve 

image quality and/or reduce scan time for 3D ASL to facilitate its clinical use. 
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1. Introduction 

Arterial Spin Labeling (ASL) is an appealing MRI technique for studying brain function since 

it is entirely non-invasive and is able to quantify hemodynamic parameters such as cerebral 

blood flow (CBF) and arterial transit time (ATT). However, a major limitation of ASL is its 

relatively low sensitivity and signal-to-noise ratio (SNR) due to the small fraction (1-2%) of 

the labeled arterial blood and its T1 relaxation during the measurement. The past decade has 

seen a range of technical advances including pseudo-Continuous ASL (pCASL), background 

suppression (BS) and 3D acquisitions in conjunction with high magnetic field strength that 

have facilitated the clinical translation of ASL[1]. However, it remains challenging to reliably 

apply ASL to the diagnosis and management of individual patients, especially in aging 

populations. Denoising algorithms based on spatial and/or temporal filtering have been 

proposed to improve the robustness and SNR of ASL, often at the cost of reduced imaging 

coverage and sharpness[2], [3]. 

 

Deep learning (DL) techniques have recently shown great promises and versatility in various 

fields including medical imaging[4]. As the most widely used DL technique, convolutional 

neural networks (CNN), such as U-net[5] and ResNet[6] is able to automatically capture the 

hierarchical and complex features of the input image and can identify, classify, and quantify 

patterns in medical images[7], [8]. During recent years, CNN-based denoising algorithms 

have been proposed for ASL to suppress noise/artifacts[7], [9], which are potentially superior 

to standard denoising algorithms in terms of preserving the original image resolution and 

sharpness. Kim et al. [9] first introduced a CNN-based network for ASL denoising with local 

and global pathways. Xie et al. [7] developed a Dilated Wide Activation Network (DWAN) 

for denoising ASL images which has been applied to 2D pulsed ASL (PASL) data in persons 

with mild cognitive impairment and Alzheimer’s disease[7], [10]. Gong et al.[8] introduced 

multi-contrast input including ASL and M0 images to the network to further improve the 

performance for denoising 3D pCASL data. 

 

Transformer[11] is a newly developed DL model that adopts the mechanism of self-attention, 

differentially weighting the significance of each part of the input data to provide long-range 

dependencies especially for time series. Transformer has been successfully applied in the 

fields of natural language processing [11], computer vision[12], and recently expanded to 

medical image processing[13]. In particular, Vision Transformer[12] was first proposed to 
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directly apply Transformer on images, which can integrate both short and long range features 

with the multi-head self-attention mechanism. Swin Transformer[14] was proposed to serve 

as a general-purpose backbone for computer vision, which calculates attention in local 

windows to improve efficiency for different image scales. SwinIR[15] was built upon Swin 

Transformer and combined with Convolution layers to perform lower-level image restoration 

task like super-resolution or denoising. These features of SwinIR were desirable for medical 

imaging as medical images always have different contrasts in different image regions, which 

may be useful in image enhancement tasks. In addition, Transformer-based network 

preserves local features compared to CNN, which may have shortcoming of spatial 

blurring[15], [16]. 

 

The purpose of the present study is to present a Swin Transformer-based DL model for 

denoising single-delay and multi-delay 3D ASL data and compare its performance with 

CNN-based methods. We compared three model backbones, a Swin Transformer-based 

network (SwinIR) and two CNN-based networks (DWAN and ResNet), with different 2D 

and pseudo-3D input conditions. We evaluated the performance by measuring similarity with 

the reference, SNR in the perfusion images, and systematic bias in quantification of CBF. 

Finally, spatiotemporal denoising models were developed for denoising multi-delay ASL 

data. 

 

2. Methods 

2.1 Problem formulation 

ASL is commonly acquired with multiple repetitions including pairs of control and label 

images to obtain an average perfusion image with sufficient SNR and a proton density image 

(M0) for quantification. Here we propose a flexible scheme that is based on performing DL 

denoising on each perfusion image calculated with a single pair of control and label images, 

which can then be averaged to obtain a perfusion image with higher SNR. Alternatively, this 

scheme allows fewer repetitions with shorter scan time to achieve a perfusion image with 

sufficient SNR. In this study, we focused on single and multi-delay 3D pCASL data acquired 

on 3T MRI scanners of different vendors. 3D acquisition is the recommended form of ASL 

acquisition by the consensus paper[1] and offers higher SNR compared to 2D acquisitions. 
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A summary of the 6 datasets used in this study is summarized in Table 1. The participants 

(total N=116, age=60±18, 74 females) were generally healthy without major 

neurologic/psychiatric disorder or severe systemic disease, and provided written informed 

consents. The participants of dataset 1, 3-5 were part of the MarkVCID consortium study 

[17]at the University of Southern California (USC), Massachusetts General Hospital and 

Johns Hopkins University, while the participants of dataset 2 and 6 underwent MRI scanning 

at USC.  

 

For single-delay ASL, the training data were chosen from the first 2 datasets acquired on 3T 

Siemens Prisma scanner using background suppressed 3D GRASE (gradient and spin echo) 

pCASL. The trained DL models were first tested on unseen data from the same cohorts 

(datasets 1-2) as the training data, and were also independently tested on 3D pCASL data 

acquired on Siemens Prisma, Philips Achieva and GE Discovery 750 3T scanners 

respectively (datasets 3-5) with different imaging parameters[18]. Each scan in the dataset 

was organized as a 4-D matrix of perfusion images with first three dimensions as image 

volume and the last dimension as the repetition. For the training stage, each individual 

repetition was served as the input and the average of all repetitions was used as the reference.  

 

In multi-delay ASL, several perfusion images with different PLDs were acquired and used to 

fit parametric maps such as CBF and ATT[19]. For multi-delay ASL model training and 

evaluation, we used a separate multi-delay dataset (dataset 6) with 3D GRASE pCASL 

acquisition and five PLDs of 500/1000/1500/2000/2500ms on a Siemens 3T Prisma scanner. 

We performed denoising for the perfusion image of a single repetition for each PLD 

respectively, which were then used to fit for CBF and ATT maps. In this study, we first 

validated the method on single-delay ASL data for spatial denoising, and then extended the 

proposed method to multi-delay ASL for spatiotemporal denoising. 

 

2.2 Network architecture 

In this work, a Swin Transformer-based network SwinIR[15] and two state-of-the-art CNN 

network architectures, DWAN[7] and ResNet[20] were investigated. The SwinIR network 

architecture for denoising is shown in Figure 1. Input images were first processed by a 

convolution block for shallow feature extraction, which was followed by 6 residual Swin 

Transformer blocks for deep feature extraction. Each Swin Transformer block was composed 
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of 6 consecutive Swin Transformer layers with a convolutional block at the end. Compared to 

vision Transformer, Swin Transformer uses a shifted window approach, where the input 

image is divided into several non-overlapping windows and the self-attention is calculated 

within each window. Window shifting is made in consecutive Swin Transformer layers to 

provide connections between these windows. The output of the Swin Transformer blocks is 

finally processed by a convolution layer to perform the image denoising task. For ResNet, the 

input image was processed by 20 residual convolution blocks without batch normalization 

according to Lim et al.[20]. As a benchmark for CNN-based network for ASL denoising, 

DWAN network was implemented using the same structure reported in the original paper by 

Xie et al.[7]. 

 

For each of the backbones, the baseline model uses a 2D structure which takes a single slice 

as the input and outputs a single slice. Given that the perfusion image is a 3D volume, 

adjacent slices may provide useful information for denoising. Pseudo-3D method is a way to 

incorporate adjacent slices in the input[21]. Instead of a single slice, a sub-volume of N slices 

(odd number) which contains the center slice, and N-1 adjacent slices are used as the input, 

which feeds more spatial information to the model. In this study, several pseudo-3D methods 

were investigated (N=1, 3, 5, 7, N=1 means standard 2D model). We also investigated multi-

modality input conditions, where the M0 image was included as an additional channel to the 

input[8]. Since the M0 image is usually acquired with ASL for quantification, this method 

does not require a separate scan or coregistration. A detailed setting of the experiments is 

summarized in Supplementary Table S1. The 2D with M0 condition took one slice of 

perfusion image and the M0 image of the same slice. The M0-with-3-slice condition took 3 

slices from the perfusion images and the center slice of the corresponding M0 image as input. 

 

2.3 Training and testing procedures 

All networks were implemented with Pytorch 1.12 [22] and python 3.7 and trained on a 

lambda cluster with NVIDIA 3090 GPU.  The ASL control and label images were motion 

corrected using SPM12 and pairwise subtracted to get the perfusion images. The perfusion 

images were averaged to get the reference for each scan. Since there might be large artifact or 

severe head motion occurred across the perfusion series, a quality control step was performed 

to ensure the training data did not include outliers. Perfusion images with mean signal greater 

or less than mean±2 standard deviations of the perfusion image time series were considered 
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outliers and excluded from the training data. (On average, less than 1 time frame of each scan 

was excluded from the training data). The top and bottom 10% of the slices were cropped 

since they didn’t have enough SNR and/or often contained artifacts. The data were divided 

into 8:1:1 for training, validation and testing respectively. Each perfusion image and its 

corresponding reference were considered an input-reference pair, resulting in a total of 104 

training scans with 28443 slices and 15 validation scans with 4018 slices. A sub-volume 

training strategy was used where a 48×48×N sub-volume randomly chosen from the image 

instead of the whole was used as the input. Data augmentation strategies included random 

image rotation within the range of -60 to 60 degrees and range flip along x direction. A 

combined loss with ℓ1 and structural similarity index (SSIM) loss, where  

                               ℒ(𝐼𝑜𝑢𝑡𝑝𝑢𝑡 , 𝐼𝑟𝑒𝑓) =  ℓ1(𝐼𝑜𝑢𝑡𝑝𝑢𝑡 , 𝐼𝑟𝑒𝑓) + ℒ𝑆𝑆𝐼𝑀(𝐼𝑜𝑢𝑡𝑝𝑢𝑡 , 𝐼𝑟𝑒𝑓)   (1) 

                                    ℒ𝑆𝑆𝐼𝑀(𝐼𝑜𝑢𝑡𝑝𝑢𝑡 , 𝐼𝑟𝑒𝑓) = 1 − 𝑆𝑆𝐼𝑀(𝐼𝑜𝑢𝑡𝑝𝑢𝑡 , 𝐼𝑟𝑒𝑓)    (2) 

was used as the loss function to preserve both local features and perceptual image quality. 

ADAM optimizer was used with initial learning rate of 10-3. The learning rate was reduced if 

the performance had not improved after 20 epochs. Batch size was 16 for all model settings. 

Each model was trained for 500 epochs, and the parameters from the model that achieved the 

best performance on the validation dataset was recorded.  

 

 

2.4 Model evaluation 

We tested the model performance on the test data as described in Table1. The perfusion 

images were first normalized to the range of 0 and 1 and fed into the model, then the output 

was scaled back to the input scale according to the pre-recorded minimum and maximum 

values of the original image after processing. The predicted CBF maps were calculated using 

the predicted perfusion image and the original M0 image with the following equation: 

                                              𝐶𝐵𝐹 =
6000×λ×perfusion×𝑒

𝑃𝐿𝐷
𝑇1𝑏𝑙𝑜𝑜𝑑

2×𝑀0×𝛼×𝑇1𝑏𝑙𝑜𝑜𝑑×(1−𝑒
−

𝐿𝐷
𝑇1𝑏𝑙𝑜𝑜𝑑)

                (3) 

where T1blood was 1650ms, λ is the brain blood partition coefficient and assumed to be 0.9[1], 

𝛼 is labeling efficiency was set to 0.735 based on simulation accounting for 2 background 

suppression (BS) pulses (Siemens and Philips data), LD and PLD were the labeling duration 

and post labeling delay and were set to the actual scan parameters. For GE ASL data, 𝛼 was 

0.6 with 4 BS pulses and the M0 image was extrapolated from a saturation recovery image 

with a brain T1 of 1200ms and a 2000ms delay following the saturation pulse[23]. 
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The performance of the models was evaluated in three aspects. First, the similarity metrics 

including peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) were 

measured between the predicted CBF maps and the reference. These metrics were calculated 

for each repetition and then averaged for the scan. Paired t tests were used to compare 

performance metrics between each pair of 3 models for each input condition respectively. 

Second, spatial SNR was calculated in the gray matter mask by the definition in Feinberg et 

al. [24], with the mean of the signal averaged across all repetitions, divided by the standard 

deviation of the difference image between even-number-averaged and odd-number-averaged 

perfusion images. The spatial SNR was calculated for perfusion images of either part of or all 

repetitions (2, 4 and all repetitions) respectively. This SNR calculation provided an image 

quality measurement without a required reference. Third, processed perfusion images of 

either part of or all repetitions (2, 4 and all repetitions) were averaged to produce an averaged 

CBF map. Whole brain, gray matter and white matter CBF values were calculated within 

masks for processed method and reference to evaluate the systematic bias introduced by the 

models. Mean difference between reference and predicted CBF values along with its 95% 

confidence interval was calculated. Gray matter (GM), white matter (WM), and whole brain 

masks were segmented from M0 image using SPM12. Since existing literature reported test-

retest variability of ASL scans on the order of 10% [25]–[29], we consider CBF and ATT 

biases less than 10% within the normal variation range and clinically acceptable. The 

intraclass correlation coefficient (ICC) of absolute agreement between the prediction and the 

reference was calculated to test the accuracy of the predicted values.  

 

For independent evaluation in 3D pCASL data of 3 vendors, the models trained on datasets 1 

and 2 were directly applied to the test dataset 3-5 without fine-tuning. Note the similarity 

metrics of SSIM and PSNR cannot be calculated as the GE scanner provided only one 

perfusion image which was the average of 3 repetitions. The SNR was calculated by the 

mean of signal in the gray matter divided by the standard deviation in the white matter for GE 

perfusion images. 

 

2.5 Model extension to multi-delay ASL 

The aforementioned DL denoising schemes on single-delay ASL data were extended to 

multi-delay ASL data with 3-slice and temporally adjacent perfusion images (pseudo-4D, see 

Figure 1) as input for spatiotemporal denoising. For multi-delay ASL, it is important to not 
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only improve the SNR for each perfusion image, but also to preserve the temporal 

relationship across different PLDs. Therefore, we included one temporal dimension as the 

input to constrain the dynamic relationship between PLDs to improve the model performance 

in estimating quantitative maps. In this experiment, we acquired a separate multi-delay 3D 

GRASE pCASL dataset (dataset 6 in Table 1) with 5 delays (500, 1000, 1500, 2000, 2500ms) 

and 9/9/9/9/3 repetitions for each delay respectively, fewer repetitions for last PLD were 

acquired due to time limits. Similar to the previous experiments, each individual perfusion 

image was used as input and the average of all timepoints of that delay was used as the 

reference. The three model backbones, DWAN, ResNet and SwinIR were tested with either 

spatial input (center + 2 adjacent slices) or spatiotemporal input (center + 2 adjacent slices 

and 2 adjacent PLDs). We padded in the temporal dimension to get enough input for the first 

and last PLDs. We used a 3-fold cross validation for the training and in each fold 1/3 of the 

subjects would be left for the test group so that every subject can be used once for evaluation. 

For evaluations, Predicted CBF and ATT maps were fitted from DL processed 5-delay 

perfusion images with repetitions of 1,1,1,2,2, which would result in a 5-minute scan. 

Reference CBF and ATT maps were fitted using the 5-delay perfusion images averaged with 

all repetitions. The similarity metrics between the output and reference quantitative maps 

were calculated, and differences in mean CBF and ATT value in whole brain, GM and WM 

masks were calculated. The similarity metrics (SSIM, PSNR), and quantification accuracy 

using mean difference in masks and ICC were similarly calculated as described in single-

delay experiment. 

 

3. Results 

3.1 Single delay ASL results on dataset 1 and 2 

The average inference time was 0.22, 0.23 and 0.33 seconds per slice for DWAN, ResNet 

and SwinIR. 

 

Figure 2 shows the DL denoised perfusion images with different model backbones and input 

settings on a representative subject. The input image is an individual perfusion image 

calculated by subtraction of one control-label pair and the subtitles indicate the model from 

which the input was processed. Compared to the input image, DL denoised images had 

higher SNR and better gray and white matter contrast. Figure 3 shows an example of the 

prediction by a 3-slice SwinIR model with 12 slices covering the cortex. The reference was 

averaged by all repetitions of original perfusion images, and the prediction was averaged by 
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2, 4 and all repetitions of denoised perfusion images respectively. The SNR of output 

perfusion images was the highest after DL processing and averaging all repetitions which 

improved the SNR by approximately 2-fold compared to the reference image.  

 

Figure 4 shows the comparison of similarity metrics for different model backbones and 

settings respectively. Within the same backbone model the SSIM and PSNR improved as the 

slice channel increased, where the improvement from 5 slice to 7 slice was marginal. The 

models with the M0 image as additional input outperformed all model settings with only 

perfusion images as the input. Among the three model backbones, SwinIR outperformed 

ResNet and DWAN in all model settings (p<0.001), except for the 2D model, the SSIM of 

ResNet was slightly higher than that of SwinIR (p<0.01). Supplementary Figure S1 shows 

the SNR of the output perfusion image with different averages. The trend for different model 

settings was similar to that of the similarity metrics, where increased input channels increased 

SNR and including the M0 image as additional channel improved SNR the most. With more 

averages of DL denoised perfusion images, the SNR was further improved. The reference 

image with the average of all time points achieved SNR of 4.840±1.627 (dashed red line), 

while a comparable and higher SNR can be achieved with only ~50% the data points. If all 

the data points were used in averaging, the SNR can be improved by about 2-fold. The details 

of all model results were included in supplementary Table S2 and Table S3. 

 

Supplementary Figure S2 shows the scatter plot for all 3 baseline models. It can be observed 

that with more averages, the predicted CBF values became closer to the reference. Figure 

5(A) shows the mean difference of CBF values for whole brain, GM, and WM using all 

repetitions for different model settings respectively. In Figure 5(B), it can be seen that for 

models that didn’t include M0 as input, the mean CBF differences were relatively small 

(within 10%), while the models that included M0 as input had significantly higher biases in 

WM CBF compared to other input settings for all 3 model backbones. For SwinIR models 

without M0 as input, the mean value in the GM was slightly increased by less than 5%, while 

the mean value in WM was decreased by less than 10% except for 7-slice pseudo-3D input. 

The detailed results of the biases and the ICCs for the prediction and the reference are shown 

in supplementary Table S4. Based on the above results, we chose pseudo-3D input with 3 

slices as the optimal input condition for independent evaluation on 3D pCASL data of 3 
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different vendors below, based on the balance between increased SNR and minimal bias for 

CBF quantification as well as computational complexity.  

 

3.2 Single delay ASL results on dataset 3-5 

Figure 6 shows the denoising performance for the perfusion images from different cohorts 

acquired on 3 MR vendors. For all three vendors, there was an increase in SNR for the 

perfusion images. For GE data, since the original data was already the average of 3 

repetitions with high SNR (individual repetition data were not provided by the vendor), the 

improvement by DL denoising was marginal. Table 2 shows the details of improvement in 

SNR of different model backbones with 3 slice input for 3 vendors respectively. All three 

models were able to improve SNR over the input. ResNet achieved the best performance for 

Philips data, SwinIR achieved best performance for the Siemens data, and DWAN performed 

best on GE data.  

 

Supplementary Table S5 shows the bias analysis for three different vendors. For Siemens 

data, SwinIR achieved the highest ICC in whole brain and GM CBF values, while ResNet 

achieved the highest ICC in the WM. For Philips and GE data, all three backbones achieved 

similar performance except that DWAN had a large bias in WM CBF (>10%). 

 

3.3 Multi-delay ASL results 

Figure 7 shows denoising results of a representative multi-delay dataset. The SNR of the 

perfusion image of each PLD was improved with all models. Figure 8 shows the fitted CBF 

and ATT maps from two representative subjects. The input CBF and ATT maps were fitted 

from the 5-delay perfusion images with fewer repetitions (1, 1, 1, 2, 2) and the reference 

maps were fitted from the 5-delay perfusion images with all repetitions (9, 9, 9, 9, 3). The DL 

models denoised the input perfusion image of each delay and the CBF and ATT maps were 

fitted from the denoised 5-delay perfusion images. It can be seen that after DL denoising, the 

fitted CBF maps and ATT maps achieved higher SNR compared to those calculated from the 

input images. The models with an extra temporal denoising dimension showed better 

performance in the WM compared to the spatial only denoising models. The red arrows in 

Figure 8 indicate spurious high ATT values in input images which were suppressed in 

spatiotemporal denoised images using 3 PLD input. 
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Supplementary Figure S3 shows the similarity and bias analysis for the CBF and ATT maps 

of the denoising models. The results were averaged for all test subjects across the 3-fold cross 

validation. Supplementary Figure S3 (A) shows that the spatial denoising models and 

spatiotemporal denoising models achieved similar performance for the CBF maps, 

nevertheless the spatiotemporal models achieved significantly higher similarity for the fitted 

ATT maps. In all experimental settings, SwinIR outperformed ResNet and DWAN in the 

quantitative metrics (SSIM and PSNR) of both CBF and ATT maps. Details of similarity 

metrics can be found in supplementary Table S6. Supplementary Figure S3 (B) shows the 

differences in the CBF and ATT values between the denoised image and reference. For the 

CBF values, all models achieved relatively small bias (the largest difference in GM and WM 

CBF was 5.97% and 6.29% respectively). For the ATT values, all models showed small 

biases in gray matter (within 10%), but the spatiotemporal models showed better performance 

with small ATT biases in the WM (~ 2%), whereas the spatial only models showed a 

difference of ~8% in WM ATT. Details of bias analysis can be found in supplementary Table 

S7. 

 

4. Discussion 

4.1 Study innovation  

In this study, we presented a Swin Transformer-based DL method to perform ASL denoising 

and compared its performance with CNN-based methods. There are 4 innovations in our 

method: 1) To the best of our knowledge, this is the first study applying Transformer for 

denoising ASL images and one of first few studies for denoising medical images[30]–[32]; 2) 

We employed a flexible strategy to denoise each single perfusion image which can be 

averaged according to the specific need for either reducing total scan time and/or achieving 

image enhancement; 3) We trained DL models using 3D pCASL data acquired on Siemens 

3T scanner and tested the models on 3D pCASL data acquired on different cohorts and MRI 

vendor platforms, as well as on a multi-delay 3D pCASL dataset. All these ASL acquisitions 

are state-of-the-art and consistent with consensus recommendation; 4) Last but not the least, 

three state-of-the-art network backbones, ResNet, DWAN and SwinIR were adapted for ASL 

denoising with a range of input conditions including 2D and 3 pseudo-3D input conditions 

(N=3,5,7) and multi-model input with both perfusion and M0 images. Furthermore, we 

extended the model with pseudo-4D input to perform spatiotemporal denoising on multi-

delay ASL data. 
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4.2 Optimal input conditions and model backbone 

In this study, several input conditions were investigated including pseudo-3D and 

combination with M0 image. Compared to the proposed pseudo-3D strategy, direct 3D 

models have the following limitations. First, 3D convolution layers have more parameters 

compared to their 2D counterparts, which will result in a larger model size. Second, training a 

3D network will need more working memory than 2D models since the 3D input size is 

larger, and this will reduce feasible batch size given the limitation of GPU memory. Third, 

3D model training and inferencing will take longer than 2D models. For these reasons, we 

proposed a 2D network with proper pseudo-3D input which provides more flexibility and 

might be more feasible for clinical applications. In our experiments, we found using a 

pseudo-3D input improves model performance compared to using a single 2D slice as input. 

This is reasonable as the adjacent slices contain useful spatial information for denoising the 

center slice. The performance improved as more adjacent slices were included as the input 

(N=3,5,7). Nevertheless, the improvement from 5 to 7 slices was marginal and since further 

away slices has less anatomically relevant information, we assume using more slices will 

have limited improvement to the performance. It is interesting that adding an M0 channel can 

improve the performance of similarity metrics and SNR to a great extent, consistent with 

Gong et al[8]. This may be because the M0 image provides more structural information than 

perfusion images. However, we also found a large bias in WM CBF with models including 

M0 input, which was larger than 10% of the reference values. In addition, CBF biases 

increased with pseudo-3D input with larger number of slices. These observations prompted 

us to pick pseudo-3D models with 3 slices input as the optimal choice for achieving improved 

SNR without affecting the accuracy in CBF quantification. 

 

Among the 3 model backbones, a Swin Transformer-based network (SwinIR) achieved better 

performance than CNN-based network (ResNet and DWAN) in almost every input 

conditions. Though previous studies have shown Transformer-based models can perform 

better than CNN-only based network[15], it usually requires a large amount of training data, 

which can be a challenge in medical imaging. In this study, we used the SwinIR network that 

combined CNN and Transformer. The convolution layers can enhance the translational 

equivalence of the Transformer models. Also, we used a sub-volume training strategy and 

data augmentation techniques to increase the training data size. Given that ASL is always 

acquired with repetitions, we were able to obtain multiple input-reference pairs for each scan. 

The results may suggest that SwinIR may be ideally suited for denoising ASL images by 
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capturing the spatial and temporal information in a 4D ASL dataset. More inference data and 

future studies are warranted to thoroughly evaluate Transformer-based models. 

 

4.3 Model generalizability and extension to multidelay ASL  

We also evaluated the model performance on 3D pCASL datasets from different cohorts 

acquired on 3 vendor platforms with different acquisition parameters to test the model 

generalizability (without finetuning). Overall, the denoising performance was moderate in 

new datasets, the SNR can be improved by about 50% if all repetitions were averaged by 

(except for GE data). The SNR can reach the level of reference with about 50% average of 

repetitions. Among the model backbones, SwinIR showed a moderate performance on all 

three test-only cohorts with the best performance in Siemens data and second place for 

Philips and GE data. This result supports the generalizability of Transformer and CNN-based 

DL models for ASL denoising.  

 

The idea of adding input channels was extended to multi-delay ASL data. Multi-delay ASL 

can simultaneously measure CBF and ATT and may be more advantageous for characterizing 

cerebrovascular disorders compared to single-delay ASL [33]–[35]. However, since the 

number of repetitions were distributed across multiple PLDs, the SNR for each delay is 

relatively low, which makes it a desirable application for DL denoising. Traditional methods 

that denoise each perfusion image may disrupt the temporal relationship across PLDs, leading 

to bias or error in fitting perfusion parameters. In this study, we combined perfusion images 

in adjacent PLDs to provide a constraint for the model to preserve the dynamic signal 

changes for multi-delay ASL. The results showed that the CBF value was marginally 

affected, while ATT can be more precisely estimated with the added temporal channel (i.e., 

pseudo-4D input). This makes multi-delay ASL more feasible for clinical applications by 

reducing the total scan time to about 5 minutes. 

 

4.4 Study limitation 

There are several limitations for this study. First, we observed biases in fitted CBF and ATT 

values with DL denoising, although the differences were not large, cautions still need to be 

taken in clinical applications. Since existing literature reported test-retest variability of ASL 

scans on the order of 10%[25]–[29], we consider biases less than 10% acceptable in clinical 

applications. One possible solution to this may be developing direct mapping from the input 

to quantitative maps, like the work in[36] and this would be a direction in future studies. 
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Second, the training sample size of the model is still relatively small compared to other 

computer vision tasks. This is important for improving the generalizability of the model to 

make it work for ASL data of multiple vendors rather than the patterns seen in the training 

data. Third, we only used generally healthy subjects in the training, the performance of the 

proposed DL method needs to be further tested on subjects with neurologic disorders such as 

stroke and brain tumor. Future work may include more clinical ASL cases in training and/or 

combined with a fine-tuning approach. 

 

5. Conclusion 

In conclusion, we presented Swin Transformer-based DL model for spatial and 

spatiotemporal denoising of single-delay or multi-delay ASL data respectively. This may 

facilitate the clinical translation of ASL by reducing scan time and/or enhancing the perfusion 

image.  
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Figures and tables: 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 

(Multi-delay) 

Vendor Siemens 

Prisma 

Siemens 

Prisma 

Siemens 

Prisma 

Philips 

Achieva 

GE Discovery 

750W 

Siemens 

Prisma 

N subjects 55(15 males) 25(11 males) 10 (4 males) 10 (3 males) 10 (4 males) 6 (5 males) 

Age 69±7 38±20 65±10 69±8 71±9 35±13 

N scans 98 48 10 10 10 10 

LD/PLD (ms) 1500/2000 1800/2000 2000/2500 2000/2500 2000/2500 1800/500-

2500 

Resolution 

(mm3) 

2.5×2.5×2.5 2.5×2.5×2.5 3.4×3.4×4 3.4×3.4×4 3.4×3.4×4 2.5×2.5×2.5 

Matrix size 96×96×48 96×96×40 64×64×36 80×80×36 128×128×36 96×96×40 

Repetitions 

(L/C pairs) 

7 9 8 5 1 9/9/9/9/3 (for 

delay 1-5) 

N test case 9 18 10 10 10 3-fold cross 

validation 

*Some subjects have 2 scans 

 

Table 1. Details of the datasets used in this study, including the number of subjects and cases, 

patient age and gender, MRI scanner vendors, ASL parameters including labeling duration 

(LD) and post labeling delay (PLD), image resolution, matrix size, number of repetitions 

(L/C pairs) and the number of testing cases.  
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Figure 1. The framework for the ASL denoising task. The input to the model was an image 

slice combined with several other channels, which are images from spatially adjacent slices, 

or image from temporally adjacent PLDs. The SwinIR structure was composed of a shallow 

feature extraction module (convolution layer), a deep feature extraction module (residual 

Swin Transformer blocks (RSTB)) and an image restoration module (convolution layer). 

(STL: Swin Transformer layer, LN: layer normalization, MSA: multi-head self-attention, 

MLP: multi-layer perceptron) 

 

Figure 2. Input, reference, and prediction perfusion images processed by the deep learning 

models of different settings. The DL processed image has higher SNR compared to the input 

image and high similarity to the reference.  
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Figure 3. Example with larger coverage of a representative subject. The reference is averaged 

by all input perfusion images. Each input perfusion image was denoised by the DL model and 

averaged by different portions of the time points (2, 4 and all). More averaging will result in 

higher SNR. 
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Figure 4. Comparison of the SSIM, PSNR of different model backbones and input settings. 

For both SSIM and PSNR, with more adjacent slices to the input channels, the performance 

improves. Adding a M0 channel will result in the largest improvement. The significance of 

the difference was indicated on the bar plot (*: p<0.05, **: p<0.01, ***: p<0.001) 
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Figure 5. Mean difference of CBF values in whole brain, gray matter, and white matter 

(relative values (A) and in percentage (B)) for different model backbones and input settings. 

 

 

Figure 6. Denoising performance of 3 models for 3 representative cases from independent 

testing cases from different vendors. For GE data, the original image is the input to the 

networks. For the other 2 vendors, the reference images are averaged by all input repetitions. 

SNR of the images are shown above each case. 
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Model Philips Siemens GE 

 SNR 2 SNR 4 SNR all SNR 2 SNR 4 SNR all SNR all 

ResNet_3 3.509±1.077 5.005±1.607 5.582±1.701 3.109±1.308 4.278±1.935 6.379±2.705 4.398±0.457 

SwinIR_3 3.108±1.229 4.476±1.594 4.988±1.580 3.104±1.281 4.391±2.017 6.485±2.789 4.561±0.210 

DWAN_3 3.001±1.069 4.244±1.554 4.714±1.576 2.716±1.141 3.843±1.777 5.754±2.632 4.725±0.589 

Input 2.171±0.861 3.101±1.107 3.524±1.143 2.088±0.884 2.948±1.352 4.359±1.975 4.105±0.504 

 

Table 2. SNR performance for different vendors with different proportion of averages. The 

best performance across different models was shown in bold. 

 

 

Figure 7. An example of the multi-delay dataset. Input perfusion images were averaged with 

1,1,1,2,2 repetitions for PLD of 500, 1000, 1500, 2000 and 2500ms. Reference perfusion 

images were averaged with 9,9,9,9,3 repetitions for PLD of 500, 1000, 1500, 2000 and 

2500ms. The denoised perfusion images were DL predictions with the input, which show 

improves SNR for each PLD. 
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Figure 8. Fitted CBF and ATT maps for two representative subjects. Red arrows show a spot 

where an error in fitting occurs due to spike in the input, which was resolved in 

spatiotemporal denoising models, but not resolved in spatial only models. 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2023. ; https://doi.org/10.1101/2023.04.24.23288718doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.24.23288718

